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Abstract: The influence of urbanization on macroinvertebrate traits was explored in forested rivers in
the Niger Delta area of Nigeria. Physico-chemical variables were sampled on a monthly basis alongside
macroinvertebrates in 20 sites of 11 rivers spanning 2008–2012. Physico-chemical variables were used
to classify the 20 sites into three ecological classes, namely: least impacted sites (LIS), moderately
impacted sites (MIS) and highly impacted sites (HIS) using principal component analysis. Our results
based on RLQ (R = physico-chemical variables, L = macroinvertebrate taxa and Q = macroinvertebrate
traits) and fourth-corner analyses revealed that large body size, grazing and hardshell were positively
significantly associated with LIS on the RLQ. They were also either negatively correlated with any
two of water temperature, nutrients, BOD5 and flow velocity or positively significantly correlated
with increasing DO. Thus, these traits were considered sensitive to urban pollution in forested
rivers. Burrowing, predation and pupa aquatic stage, which were positively associated with HIS,
were also significantly negatively correlated with increasing DO, and were deemed tolerant of urban
pollution in forested rivers. Box plots and a Kruskal–Wallis test revealed that the three sensitive
traits were significantly highest at LIS (p < 0.05) except grazing; while the three tolerant traits were
significantly highest at MIS (p < 0.05) except burrowing. Overall, this study revealed that urban
pollution influences macroinvertebrate traits differently in forested rivers.

Keywords: macroinvertebrate traits; large and small body sizes; potential biological indicator
traits; ecological classes; forested riverine systems; urban pollution; RLQ and fourth-corner tests;
Niger Delta; Nigeria

1. Introduction

Increasing urbanization and other human activities such as urban storm water return flow
poses serious threats to riverine systems within forested catchments [1,2]. Riverine systems draining
urban catchments have been reported to display poor water quality conditions, depleted biodiversity,
river channel modification and loss of habitat complexity [2,3]. In the Afro tropics (e.g., Nigeria)
rural-urban migration is on the rise, and there is a high probability that forested riverine systems would
be gravely disturbed due to the increasing population growth. Rural–urban migration has caused
forested rivers within the Afro tropics to be draining urban landscapes as developmental activities
are increasing exponentially [4,5]. The Niger Delta area of Nigeria is not exempt from this avoidable
ecological risk, as the area which houses a number of forested rivers is now urbanizing precipitously
because of the activities of oil exploration firms and other industrial undertakings.
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The Niger Delta area sits within the tropical rainforest belt of Nigeria [6] and most riverine
systems within the area are forested and as such depend mainly on coarse particulate organic materials
(CPOM) and fine particulate organic materials (FPOM) arising from allochthonous materials from
nearby forest [7]. Additionally, studies conducted with regard to functional ecology are of the
viewpoint that macroinvertebrates that are shredders and collector-gatherers are usually common in
forested rivers, which break down CPOM, and accelerate their conversion into FPOM for efficient
transfer of energy and carbon along the food web [2,8–10]. Consequently, the functional feeding
groups (FFGs), particularly shredders within forested catchments, are critical to the functioning
and delivery of the required ecosystem services to the society that depends on forested rivers [9].
The majority of the forested riverine systems in the Niger Delta are shaded, making them consistently
cooler than non-forested rivers. However, due to increasing urbanization and other anthropogenic
activities, natural patterns observed in the forested rivers of the Niger Delta region of Nigeria are being
altered [8]. For instance, temperature increase due to influx of floodwaters from nearby unplanned
urban settlements within forested riverine systems has been reported in an earlier study [6], and this
has also been reported to impact the structural and functional dynamics of riverine systems—e.g.,
excessive algal growth and high nutrient concentration [8,9]. Judging from the potential negative
impact that follow nutrient influx from urban pollution sources into forested riverine systems in the
Niger Delta area of Nigeria [4], the question was thus asked: “how does urban pollution influence
macroinvertebrate traits in forested riverine systems in the Niger Delta area of Nigeria?” This question
was addressed in this study by exploring the influences of pollution on traits distribution in the studied
riverine systems. The trait-based approach is important because it gives an indirect evaluation of
ecosystem function through trait-mediated ecosystem processes such as top-down control and energy
transfer [2,8,9].

Macroinvertebrates traits are among the most explored aquatic biota traits for biomonitoring the
health of aquatic systems [2,11]. Urban pollution has been reported to negatively affect the composition,
diversity, richness and abundance of macroinvertebrate community structure in riverine systems within
forested catchments [11,12]. Through the effects of the so-called urban stream syndrome [2,13,14],
certain sensitive macroinvertebrate taxa such as Ephemeroptera, Plecoptera and Trichoptera (EPT) have
been reported to be negatively affected [2,13,15]. On the other hand, pollution tolerant macroinvertebrate
taxa such as some genera of Oligochaetes and Diptera—e.g., the syrphids and culicids—have been
reported to be favoured by the effects of urban-stream syndrome [8]. However, in spite of the increasing
studies on urban pollution effects on the community structure of forested systems, trait-based studies
in such systems, particularly in the Afrotropical region, remain scarce [5,16,17]. Thus, the present
study which investigates the effect of urban pollution on macroinvertebrate traits in forested riverine
systems is crucial, because organisms use their inherent traits to adapt to prevailing environmental
alteration in the face of ecosystem alteration [13]. Therefore, the overall goal of the present study is to
assess the responses of macroinvertebrate traits to urban pollution in forested riverine systems in the
Niger Delta area of Nigeria. Then, we addressed the following two specific objectives from the overall
goal: (i) identify and classify potential indicator macroinvertebrate traits that would be suitable for
assessing the effect of urban pollution in forested riverine systems in the Niger Delta area of Nigeria;
(ii) explore the pattern of distribution of macroinvertebrate traits along urban pollution gradient in
forested riverine systems in the Niger Delta area of Nigeria.

2. Materials and Methods

2.1. Study Sites

The study area comprises Edo and Delta States within the Niger Delta region of Nigeria. It is an
approximate area of about 70,000 km2 in the southern part of Nigeria [13]. Wetlands, inland waters
and mangrove swamps are the major aquatic ecosystem types within the region [4,18]. Most aquatic
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systems in the area are mainly forested, with patches of agricultural and urban catchments. Fishing,
wood logging and crop farming are the major occupations of local people in the area [8,19].

The area is characterized by two seasons (dry and wet seasons) [6]. The dry season spans from
October to March, while the wet season is between late March to the end of September [4]. The Niger
Delta is the oil rich region of Nigeria, and as such is the nation’s economic backbone. Exploitation
and exploration of crude oil are the major industrial activities in the region, and this is what is
attracting people to the region leading to increasing rural–urban migration. Towns and cities in the
region have very poor drainage systems, and riverine systems in the area usually suffer the impact
of untreated wastewater, storm water return flow and run-offs from nearby fish mongers and other
farmers’ settlements [8].

Twenty (20) sites in 11 forested riverine systems draining urban catchments in Edo and Delta
States within the Niger Delta region were selected for the present study (see Supplementary Table S1)
for geographical locations of the twenty sites sampled. The 11 riverine systems include Adofi, Ase,
Benin, Eriora, Iyiukwu, Orogodo, Ossiomo, Owan, Umakuku, Umomi and Warri Rivers (Figure 1),
and samples were collected across the 20 sites in these 11 rivers for a period of five years (2008–2012).

Figure 1. Study area map showing the sampling sites and the map of Nigeria, indicating the location of
study area within the southern part of Nigeria.

The sampled sites’ land use types were determined using Google Earth satellite imagery.
A particular land use type was considered dominant in a site if it covered more than 70% of the adjacent
catchment area within the sampling site as per the site catchment sizes indicated in the Supplementary
Table S1. A similar method was employed by Pena-Cortes et al. [20] and Fierro et al. [21] to characterise
land use types. Supplementary Table S1 shows the sites dominant and not-dominant land use types,
and catchment sizes.

2.2. Sampling and Analysing of Macroinvertebrates and Physico-Chemical Variables

In the five years from 2008 to 2012, samples of macroinvertebrates were collected during the wet
and dry seasons on a monthly basis using a modified D-frame kick-net (500 µm mesh size) [22] at each
sampling site. Sampling at each site per biotope takes place for three minutes and covers all biotopes
in each site. The biotopes include leaf litters, sand, mud, silt, stones and vegetation, and sampling was
performed equally across the sampled sites per biotope. Collected macroinvertebrates samples from
leaf litters, sand, mud, silt, stones and vegetation were pooled together to represent a composite sample,
and afterward the samples were preserved in 70% alcohol, before transferring to the laboratory for
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sorting, identification and enumeration. Identification of collected macroinvertebrates was performed
to the family level using a stereoscopic microscope at X10 magnification with the aid of available
taxonomic keys [23–25].

Physico-chemical variables were also analysed for a period of five years (2008–2012).
Physico-chemical variables analysed in the present study include water temperature (◦C), flow
velocity (ms−1), depth (m), electrical conductivity (EC-µScm−1), dissolved oxygen (DO-mgL−1),
five-day biochemical oxygen demand (BOD5-mgL−1), pH, phosphate (mgL−1) and nitrate (mgL−1) (see
Supplementary Table S2). Water temperature was measured using a mercury-in-glass thermometer,
and water depth was measured using a rod calibrated in metres. Flow velocity was measured by
floating a timed table tennis ball in the mid-channel of each sampling site over a distance of ten metres
according to the Gordon et al. [26] method. Dissolved oxygen, EC and pH were determined using a
portable HANNA HI9829 multi-probe meter manufactured by HANNA instruments. For the analyses
of BOD5, phosphate and nitrate, three replicates of water samples were collected in 500 mL glass bottles
at each sampling site and fixed with appropriate reagents, and thereafter analysed in the laboratory
following APHA [27] methods.

2.3. Data/Statistical Analyses

Physico-Chemically-Based Classification of Sites into Ecological Classes

The 20 sites in 11 rivers of the forested riverine systems within urban catchments were
physico-chemically classified into three potential ecological classes using Principal Component
Analysis (PCA—Figure S1 on Supplementary material). The ecological classes were least impacted
sites (LIS), moderately impacted sites (MIS) and highly impacted sites (HIS), as shown in Table 1.
Initially, the classification of the 20 sites was performed by visual examination of the physico-chemical
variables analysed for each site [8]. Sites with pollution indicating physico-chemical variables such
as increasing concentration of nutrients, BOD5 and EC were classified as either moderately or highly
impacted sites, while sites with increasing concentration of physico-chemical variables indicating good
water quality such DO were classified as least impacted sites [8]. The three ecological classes (LIS,
MIS and HIS) were employed for this study because the sampled forested rivers and sites are within
urban catchment. The actual ecological classification of the sampled sites was performed by extracting
coordinate values of each of the sites from Axis 1 of the PCA biplot, and thereafter inter-site distance
of the first occurring site in the PCA first axis was computed by subtracting the site with the lowest
coordinate value from the site with the highest coordinate value on the PCA, and subsequently the
coordinate values of the remaining sites were computed by subtracting their values from the site with
the highest coordinate value on the PCA to obtain their corresponding inter-site distances [4,17,28].
The inter-site distances computed for the 20 sites were converted to percentage inter-site distances,
and the obtained percentage inter-site distances were interpreted as percentile distribution which
was used to classify the sites into one of the three ecological classes: LIS, MIS and HIS. A percentile
distribution of 100–90th, <90–50th and <50–0th was used to classify sites into LIS, MIS and HIS,
respectively [4,17,28]. Vegan package version 2.5.4 within the R-programming language was used in
developing the PCA biplot in this study [29,30].
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Table 1. Coordinate values of sites on the PCA first axis, inter-site distances, percentage inter-site
distances and ecological categories of the sampled sites for the forested riverine systems within urban
catchments. Abbreviations: Site Codes: Ad (Adfofi River), Wa1 (Warri River Site 1),Wa2 (Warri River
Site 2), As1 (Ase River Site 1), As2 (Ase River Site 2), Iy1 (Iyiukwu River Site 1), Iy2 (Iyiukwu River Site
2), Iy3 (Iyiukwu River Site 3), Or (Orogodo River), Be1 (Benin River Site 1), Be2 (Benin River Site 2),
Be3 (Benin River Site 3), Er (Eriora River), Os1 (Ossiomo River Site 1), Os2 (Ossiomo River Site 2),
Oa (Owan River), Um1 (Umaluku River Site 1), Um2 (Umaluku River Site 2), Ui1 (Umomi River Site
1) and Ui2 (Umomi River Site 2). Ecological classes: LIS = least impacted sites, MIS = moderately
impacted sites, HIS = highly impacted sites.

Site Codes
Coordinate Values
of Sampled Sites

on the PCA Axis 1

Inter-Site
Distances

% Inter-Site
Distances

Site Ecological
Classes

Wa2 −28.3 189 100 LIS
Wa1 −28 188.6 99.8 LIS
Ad −26.1 186.7 98.8 LIS
Or −24.2 184.8 97.8 MIS

As2 −22.5 183.1 96.9 MIS
Iy3 −22.4 183.0 96.9 MIS
Iy1 −21.2 181.8 96.2 MIS
As1 −20.7 181.4 96.0 MIS
Iy2 −20.3 181 95.8 MIS
Be3 −17.1 177.7 94.0 MIS
Os2 −14.8 173.5 91.8 HIS
Be1 −12.9 173.5 91.8 HIS
Os1 −12.2 172.9 91.5 HIS
Oa −8.6 169.3 89.6 HIS

Um2 −2.3 163 86.2 HIS
Er 19.0 142 75.0 HIS

Ui2 24.7 136 71.9 HIS
Um1 32.9 127.8 67.6 HIS
Ui1 44.1 116.6 61.7 HIS
Be2 160.7 0.0 0.0 HIS

2.4. Trait Selection for this Study

Traits were selected following a stressor-based approach. Firstly, the literature was reviewed
to identify stressors linked to urban pollution in forested systems, and the identified stressors
were nutrient enrichments, organic pollution, increased sedimentation and storm water return-flow,
pesticide pollution and potential heavy metal pollutions [13,31–38]. Most of the outlined stressors
are evident in the sampled forested riverine systems draining urban catchments in the Niger Delta
area of Nigeria. Secondly, based on the outlined stressors, traits that were potentially mechanistically
linked to the forested riverine systems draining urban catchments were then selected. In the present
study, 12 categories of traits which include respiration, body armouring, turbidity preference,
voltinism, attachment mechanism, mobility, body shape, food preference, sensitivity to organic
pollution, body size, aquatic stages and feeding habit were selected [17]. The traits categories
were resolved into 53 trait attributes. Trait information was obtained primarily from available trait
literature in Nigeria [17], and supplemented and confirmed by literature information on traits from
elsewhere [2,14,39]. Trait information was retrieved at the family level because species level information
is sparse in the Afro tropics. The trait family level information comes with its limitations, as species
within a given family may exhibit plasticity traits. Based on the limitations of using family level traits
information, a fuzzy coding method was used to compensate trait variation among species within a
family. The fuzzy coding method takes into account the variability, plasticity and life history stages of
macroinvertebrate species within a given family [40]. A fuzzy coding system of 0–3 was used to award
affinity scores to macroinvertebrate taxa, with a score of 0 awarded to macroinvertebrate taxa with no
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affinity to a given trait(s), while 1, 2 and 3 were awarded to macroinvertebrate taxa with low affinity,
moderate affinity and high affinity, respectively, to a given trait(s) [40]. Each trait score was multiplied
by the relative abundance of macroinvertebrate taxa.

2.5. Assessing Macroinvertebrate Traits and Taxa Responses, as Well as Identifying and Classifying Potential
Indicator Macroinvertebrate Traits along Urban Pollution Gradient in Forested Riverine Systems

In assessing macroinvertebrate traits and taxa responses, and identifying and classifying potential
indicator traits in relation to urban pollution in forested riverine systems, an RLQ analysis was
performed. RLQ is a multivariate analysis that was developed by Dolédec et al. [41], and it performs
an ordination on three datasets, namely environmental variables—e.g., physico-chemical variables (R),
taxa (L) and traits (Q). In the present study, we used the RLQ ordination test to relate physico-chemical
variables (R), macroinvertebrates taxa (L) and the traits (Q) in relation to urban pollution gradient in
forested riverine systems. The function dudi.COA (i.e., dudi.Correspondence Ordination Analysis)
was applied to the macroinvertebrate taxa table [42], and the function dudi.PCA (i.e., Principal
Component Analysis) was applied to the trait table [42]. Finally, the Hillsmith transformation function
(dudi.Hillsmith) was applied to the physico-chemical variables [42].

In identifying and classifying potential indicator urban pollution traits in forested riverine systems,
two criteria were adopted. Firstly, on the RLQ ordination plots, trait attributes that were associated
with least impacted sites (LIS) were considered urban pollution sensitive traits in forested riverine
systems, and traits associated with highly impacted sites (HIS) were deemed urban pollution tolerant
traits in forested riverine systems. The two axes of the RLQ ordination plot were tested for statistical
significance using the Monte Carlo permutation test at 999 permutation arguments (p = 0.05). Secondly,
to further confirm urban pollution potential indicator traits in forested riverine systems, a fourth-corner
test was computed. The fourth-corner test is a multivariate analysis which expounds the relationships
between multiple traits and environmental variables—e.g., physico-chemical variables. The test shows
traits that either positively or negatively correlates with a given physico-chemical variable.

The final identification and classification of trait attributes into potential urban pollution indicators
in forested riverine systems were confirmed by both the RLQ and fourth-corner tests results. Thus,
a trait associated with the LIS based on the RLQ plot, and either significantly positively correlated
with increasing concentration of DO, or negatively correlated with any two of increasing nutrients,
five-day Biochemical Oxygen Demand (BOD5), water temperature and increased flow velocity on
the fourth-corner test were finally considered urban pollution sensitive traits in forested riverine
systems. On the other hand, traits associated with HIS on the RLQ plot and also either significantly
negatively correlated with increasing concentration of DO or positively correlated with any two of
increasing nutrients, BOD5, water temperature and increased flow velocity on the fourth-corner test
were considered urban pollution tolerant traits in forested riverine systems. The RLQ, fourth-corner
and other analyses (COA, PCA and Hillsmith) were computed using the ade4 package for R-statistics
version 2.5.4 within the R programming environment [29,42]. The approach adapted in the present
study has recently been used to identify and classify urban pollution indicator signature and sensitive
traits and ecological preferences in riverine systems draining urban and agricultural catchments [5,17].

2.6. Exploring the Distribution Patterns of Macroinvertebrate Traits along Urban Pollution Gradient in
Forested Riverine Systems

The distribution patterns of macroinvertebrate traits identified and classified as sensitive to and
tolerant of urban pollution in forested riverine systems were plotted using box plots, and they were
further tested for statistical significance across the ecological classes using the Kruskal–Wallis multiple
comparison test. The box plots and Kruskal–Wallis tests were computed using Statistica version
13.4.0.14 (TIBCO Software Inc., CA, USA, 2018).
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3. Results

3.1. Assessing Macroinvertebrate Traits and Taxa Responses, as Well as Identifying and Classifying Potential
Indicator Macroinvertebrate Traits along Urban Pollution Gradient in Forested Riverine Systems

Of the 20 sites sampled in the forested riverine systems draining urban catchments in the present
study, three sites were classified as LIS, seven were classified as MIS and 10 were classified as HIS
(Table 1). On the RLQ ordination, two of the three LIS (Sites 1 and 2 of Warri River) were positioned
on the first axis of the RLQ ordination along with MIS (Site 2 of Ase River, and Site 3 of Benin River)
(Figure 2). Two of the classified MIS sites (Site 1 of Ase River, and Orogodo River) were positioned at
the centre of the RLQ ordination plot. All sites classified as HIS were positioned on Axis 2 of the RLQ
ordination plot, except Sites 1 and 2 of Umomi River and Owan River, which were positioned at the
centre of the RLQ ordination plot (Figure 2). One site classified as LIS (Adofi River) and three sites
classified as MIS (Sites 1, 2 and 3 of Iyiukwu River) were also positioned on the second axis of the RLQ
ordination plot.

The first axis of the RLQ ordination explained a variance of 93%, and the second axis explained
a variance of 6%. The eigenvalues of the first and second axes of the RLQ were 10.70 and 0.70,
respectively, and a total inertia of 11.50. The RLQ ordination first two axes showed no significant
differences between macroinvertebrate traits and physico-chemical variables (p > 0.05) as revealed
by the Monte Carlo test at 999 permutation arguments. Increasing water temperature, flow velocity,
nutrients, EC and BOD5 were positively strongly correlated with sites classified as HIS, and increasing
DO was positively associated with sites classified as LIS (Figure 2).

Traits such as temporary attachment, grazing, hardshell and large body size (>20–40 mm) were
positively correlated with sites classified as LIS, and traits which include burrowing, predation,
free living, small body size (>5–10 mm) and pupa aquatic stage were positively correlated with sites
classified as HIS (Figure 2). Conversely, traits such as gills, 2 years (bivoltine), cylindrical/tubular and
filter feeding were positively correlated with sites classified as LIS and MIS (Figure 2).

A total of 32,816 macroinvertebrate individuals in 54 families were collected and recorded during
the entire sampling period (see Supplementary Table S3). Site 2 of Warri River had the highest
absolute abundance of macroinvertebrate individuals (10,468) followed by Site 1 of Umaluku River
(5402), while the least absolute abundance of macroinvertebrate individuals was recorded in Site 1 of
Umomi River (109), followed by Site 3 of Benin River (126) (Supplementary Table S3). The dominant
macroinvertebrate taxa were Thiaridae represented by 5286 individuals; this was immediately followed
by Chironomidae with 4624 individuals (Supplementary Table S3). On the other hand, Lymnaidae
was the least represented macroinvertebrate taxa with only two individuals recorded in the entire
sampling period, and it was only collected in Orogodo River; this taxon was immediately followed by
Tubificidae with eight individuals (Supplementary Table S3).

From the RLQ analysis and further correlation of traits with physico-chemical variables using
fourth-corner test, it was revealed that traits such as large body size (>20–40 mm), grazing and hardshell,
which were positively significantly associated with the sites classified as LIS on the RLQ ordination
(Figure 2), were also either negatively significantly correlated with water temperature, nutrients, BOD5

and flow velocity or positively significantly correlated with increasing DO concentration (Table 2). Thus,
these traits were considered sensitive to urban pollution in forested riverine systems. Furthermore,
burrowing, predation and pupa aquatic stages that were positively significantly associated with sites
classified as HIS on the RLQ ordination (Figure 2) were also significantly negatively significantly
correlated with increasing DO concentration (Table 2). These traits were considered tolerant of urban
pollution in forested riverine systems draining urban landscapes.
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Figure 2. RLQ analysis showing the co-variation of the 20 river sites sampled in the present study (see
Table 1 for site codes); sites in blue = LIS, sites in green = MIS and sites in red = HIS) (a), physico-chemical
variables (b), macroinvertebrate traits (c), and macroinvertebrate taxa (d) in relation to the first two
axes of the RLQ. Abbreviations: Water Temp = Water Temperature, Cond = Electrical conductivity,
Flow = Flow velocity, Phosp = Phosphate, DO = Dissolved oxygen, BOD = Five-day biochemical oxygen
demand (BOD5). Site ecological classes: LIS = least impacted sites, MIS = moderately impacted sites,
HIS = highly impacted sites. Traits: “A1 = Gills, A2 = Tegument/cutaneous, A3 = Aerial: spiracle,
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A4 = Aerial/vegetation: breathing tube, strap/other apparatus, B1 = Hardshell, B2 = Completely
sclerotized, B3 = Partly sclerotized, B4 = Soft and exposed, B5 = Cased/tubed, C1 = Clear and transparent
waters, C2 = Silty, C3 = Turbid waters, C4 = No preference, D1 = 1 year (Univoltine), D2 = 2 years
(Bivoltine), D3 = >2 years (Multivoltine), D4 = longer than one year (Semivoltine), E1 = Free-living,
E2 = Temporary attachment, E3 = Permanent attachment, F1 = Climbing, F2 = Crawling, F3 = Sprawling,
F4 = Swimming, F5 = Skating, F6 = Burrowing, G1 = Streamlined, G2 = Flattened, G3 = Spherical,
G4 = Cylindrical/tubular, H1 = Detritus (FPOM), H2 = Detritus (CPOM), H3 = Macrophytes/algae,
H4 = Animal materials, I1 = Highly sensitive to oxygen depletion, I2 = Moderately sensitive to oxygen
depletion, I3 = Moderately tolerant of oxygen depletion, I4 = Highly tolerant of oxygen depletion,
J1 = Very small (<5 mm), J2 = Small (>5–10 mm), J3 = Medium (>10–20 mm), J4 = Large body size
(>20–40 mm), J5 = Very large body size (>40–80 mm), K1 = Egg, K2 = Larva aquatic stage, K3 = Nymph
aquatic stage, K4 = Pupa aquatic stage, L1 = Predation, L2 = Scraping, L3 = Grazing, L4 = Filter
feeding, L5 = Deposit feeding, L6 = Shredding” [17]. Taxa: Nai = Naididae, Tub = Tubificidae,
Lum = Lumbricidae, Lym = Lymnaidae, Pla = Planorbidae, Thi = Thiaridae, Amp = Amphullariidae,
Aty = Atyidae, Eur = Euryrhynchidae Pal = Palaemonidae, Bae = Baetidae, Lep = Leptophlebiidae,
Cae = Caenidae, Hep = Heptageniidae, Tri = Tricorythidae, Oli = Oligoneuridae, Pot = Potamanthidae,
Pro = Prosopistomatidae, Glo = Glossosomatidae, Hyd = Hydroptilidae, Hyr = Hydropsychidae,
Ecn = Ecnomidae, Hel = Helicopsychidae, Let = Leptoceridae, Pyr = Pyraustidae, Not = Notonectidae,
Cor = Corixidae, Ple = Pleidae, Mes = Mesoviliidae, Nep = Nepidae, Nau = Naucoridae,
Bel = Belostomatidae, Ger = Gerridae, Dyt = Dytiscidae, Hyp = Hydrophilidae, Elm = Elmidae,
Gyr = Gyrinidae, Nor = Noteridae, Aes = Aeschnidae, Gom = Gomphidae, Coe = Coenagrionidae,
Lib = Libellulidae, Cal = Calopterygidae, Mac = Macromidae, Chl = Chlorocyphidae, Cul = Culicidae,
Sim = Simulidae, Tab = Tabanidae, Cer = Ceratopogonidae, Ath = Athericidae, Cha = Chaoboridae,
Tip = Tipulidae, Syr = Sryhidae, Chi = Chironomidae.

Table 2. Fourth-corner test performed for macroinvertebrate traits and physico-chemical variables in
the selected forested riverine systems draining urban landscapes in the present study area. + shows
significant positive correlations, and - shows significant negative correlations correlations.

Traits
Physico-Chemical Variables

Water Temp Depth Flow Cond DO BOD5 pH Nitrate Phosp

Gills

Tegument/cutaneous +

Aerial: spiracle

Aerial/vegetation: breathing tube,
strap/other apparatus

Hardshell - + -

Completely sclerotized

Partly sclerotized

Soft and exposed

Cased/tubed -

Clear and transparent waters

Silty waters - +

Turbid waters

No preference for turbid waters

1 year (Univoltine) +

2 years (Bivoltine) + - +

D3 = >2 years (Multivoltine)

D4 = longer than one year (Semivoltine)

Free-living

Temporary attachment
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Table 2. Cont.

Traits
Physico-Chemical Variables

Water Temp Depth Flow Cond DO BOD5 pH Nitrate Phosp

Permanent attachment

Climbing

Crawling +

Sprawling + +

Swimming - + - -

Skating

Burrowing + + -

Streamlined -

Flattened -

Spherical

Cylindrical/tubular

Detritus (FPOM)

Detritus (CPOM)

Macrophytes/algae

Animal materials

Highly sensitive to oxygen depletion

Moderately sensitive to oxygen depletion - -

Moderately tolerant of oxygen depletion

Highly tolerant of oxygen depletion + - +

Very small body size (<5 mm)

Small body size (>5–10 mm)

Medium body size (>10–20 mm

Large body size (>20–40 mm) +

Very large body size (>40–80 mm)

Egg aquatic stage

Larva aquatic stage

Nymph aquatic stage

Pupa aquatic stage - +

Predation -

Scraping

Grazing - -

Filter feeding

Deposit feeding

Shredding

3.2. Exploring the Distribution Patterns of Macroinvertebrate Traits along Urban Pollution Gradient in
Forested Riverine Systems

The relative abundance of the three identified and classified traits sensitive to urban pollution
in forested systems were highest at LIS except grazing as a feeding preference (Figure 3).
The Kruskal–Wallis test revealed that large body size (>20–40 mm) and the possession of hardshell
were significantly lowest at MIS and HIS compared to LIS (p < 0.05), and they showed no significant
difference between the MIS and HIS (p > 0.05). Grazing as a feeding preference showed no significant
difference between LIS, MIS and HIS (p > 0.05) (Figure 3).
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Figure 3. Pattern of distribution of sensitive traits across the three ecological classes in the present study.

The relative abundance of the three identified and classified traits tolerant of urban pollution
in forested riverine systems was highest at MIS (Figure 4). The Kruskal–Wallis test showed that
predation and the pupa aquatic stage were statistically significantly lowest at LIS and HIS compared
MIS (p < 0.05) (Figure 4).

Figure 4. Pattern of distribution of tolerant traits across the three ecological classes in the present study.
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4. Discussion

In this study, we explore how urban pollution influences macroinvertebrates traits in forested
riverine systems. Macroinvertebrates traits were found to respond differently to urban pollution
with regard to the classified ecological classes. In the West Africa sub-region where this study was
conducted, most of the existing studies on biomonitoring have been centred on macroinvertebrate
taxonomic structures [4,6,15]: only a very few study have explored the use of trait-based approaches in
assessing the ecological health of riverine systems in the sub-region [17]. While taxonomy accounts for
biota structural diversity, composition and abundance, traits explore the functional characteristics of
aquatic biota [8]. Furthermore, traits unlike taxonomy are less constrained by geographical differences,
making trait-based tools likely to be more widely applicable on a broad spatial scale.

Trait-based ecology is gaining popularity because of its potential to turn community ecology into
a predictive science, enabling the prediction of the responses of biota to a given stress because of the
stressor mediation role of traits [2]. It has also been argued that the use of traits may be less costly
because of potential reduction in species identification time [8]. Thus, identifying trait-based indicators
can add value to the practice of freshwater biomonitoring particularly in a region where taxonomic
expertise is sparse. In this study, we explore trait distribution in relation to urban pollution in forested
riverine systems with the aim of identifying indicator traits using RLQ and fourth-corner analyses.

The RLQ ordination in recent time has been consistently used to explain how environmental
variables (R) relate with taxa (L), and their inherent trait attributes (Q) in a bid to understand trait
patterns of distribution in ecological sites [43,44]. The concept has been used to develop biomonitoring
criteria in conjunction with the fourth-corner test to assess the level of disturbances riverine systems
are undergoing [44]. In this present study, the LIS were associated with the first axis of RLQ ordination
which harbours macroinvertebrate taxa that have been reported to be sensitive to pollution—e.g.,
Plecoptera, Ephemeroptera and Trichoptera. This association was explained by increased dissolved
oxygen concentration and water depth [8,15]. This study corroborates the study by Kuzmanovic et
al. [13], who recorded sensitive taxa of macroinvertebrates in less disturbed sites. Taxa in the orders
Ephemeroptera, Plecoptera and Trichoptera (EPT) have been shown to disappear in impacted sites due
to their high sensitivity to degradation and poor water condition [15]. This was noted in this study,
as most of the pollution sensitive species were sharply separated from the HIS compared to the LIS
and MIS. Furthermore, the second RLQ axis which harbours more of the HIS and aggravated pollution
indicating physico-chemical variables such as EC, nutrients and BOD5 favours the assemblages of most
pollution tolerant Dipterans (e.g., Chironomidae, Culicidae), Mollusca (e.g., Thiaridae, Planorbidae)
and Annelids, most especially the Oligochaetes (e.g., Naididae, Tubificidae). A similar study conducted
elsewhere reported very high proportions of Oligochaetes and Dipterans in urban dominated sites
with high concentrations of nutrients and heavy metals [13].

Following our results for traits, it was revealed that macroinvertebrates possessing large body
sizes such as Gomphidae, Dytiscidae, Atyidae and Amphullaridae were particularly sensitive to
urban pollution in forested riverine systems as they were dominant in the LIS compared to MIS and
HIS. Urban pollution can introduce elevated dissolved solids into forested riverine systems, thereby
increasing the risk of absorbing dissolved materials—e.g., metals that are potentially toxic [13,14,37,38].
Organisms with a large body size have been reported to have a large surface area to volume ratio,
which increases their likelihood of increased exposure and adsorption to chemicals due to their
increased surface area to volume ratio compared to organisms possessing a small body size [45,46].
Organisms with a large body size have also been predicted to be particularly sensitive to pollution
because they are often associated with the production of fewer offspring per reproductive cycle [47].
This prediction is in congruence with our result in the present study, as the relative abundance of
macroinvertebrates with large body size was highest in the least impacted sites, which showed that
body size can serve as an indicator of urban pollution in forested riverine systems. A study on
macroinvertebrate body size distribution in an effluent-impacted system in a South African river also
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found large-bodied macroinvertebrate being less dominant at the impacted sites compared with the
less impacted sites [5].

Small body sized organisms—e.g., Chironomidae and Culicidae—have been confirmed by earlier
studies to be resilient in environments subjected to pollution [48,49]. Serra et al. [48] and Castro et
al. [49] in their studies attributed the preponderance of small body sized organisms in disturbed sites
to their relatively short life cycles, which enables them to recover quickly after disturbance activities.

The relative abundance of macroinvertebrates such as Gomphidae, Calopterygidae, Dysticidae,
Hydrophilidae, Elmidae, Gyrinidae and Hydraenidae, which grazed as a primary feeding mode,
was significantly lower in the MIS and HIS compared to the LIS, and they were also negatively
significantly correlated with urban pollution indicating physico-chemical variables on the RLQ
ordination plot. It was unexpected for grazing as a feeding mode to be positively associated with the
LIS instead of the HIS and MIS, as grazers are often expected to prefer sites with potential for algal
growth due to the increased concentration of nutrients which characterised HIS and MIS in the present
studied rivers. However, the results of the present study are in congruence with the result reported
elsewhere by Odume [5] who reported grazing as a feeding mode to be associated with a less impaired
site in an industrially impacted river in South Africa.

Predation as a feeding mode was expected to be sensitive to urban pollution in forested
riverine systems as most predators are specialist feeders [2]. Nevertheless, in this study, predating
macroinvertebrates were associated with the MIS and HIS, and thus proved to be tolerant to urban
pollution. Odume [5] recently reported the majority of the predating macroinvertebrates collected
in the impacted sites to be coleopterans and hemipterans, which possess special apparatus for
taking in atmospheric oxygen in the face of depleting dissolved oxygen concentration in a river.
In the present study, the majority of the predators such as Nepidae, Notonectidae, Belostomatidae,
Macromidae, Aeschnidae, Libellulidae, Cordulidae, Platycnemididae, Calopterygidae, Coenagrionidae
and Chlorocyphidae were also distributed in sites classified as HIS. Similar distribution of some
predating Hemipterans has been documented in the neotropics [50]. Thus, it is possible that the
possession of traits which enable intake of atmospheric oxygen in the face of depleting dissolved
oxygen concentration may confer resilience on these groups of macroinvertebrates, thereby enabling
them to survive and thrive in impacted sites as noticed in the HIS of the present study.

Organisms possessing hardshell body armouring—e.g., Thiaridae and Planorbidae—have been
reported to harbour sites with high concentration of nutrients and heavy metals pollution [2]. This is
in consonance with the result of the present study, as organisms possessing hardshell body armouring
such as Thiaridae, Planorbidae and Hydrobiidae were highly abundant in sites classified as HIS,
except for Amphullariidae that was abundant in sites classified as LIS. The inconsistency observed
in the present study with regard to the relationship between organisms possessing hardshell body
armouring and sites ecological classes may not be unconnected to the concept of “trait syndromes” [1].
Phylogenetic constraints have been attributed to the relationship between the diversity of trait attributes
and level of pollution in an ecosystem [51]. Poff et al. [52] and [46] pointed to the fact that the response
of a trait to a given indirect stressor(s) may be the cause of an inter-correlation in the response of traits
to different stressors. Furthermore, random diffusion or unfinished migration may be attributed to the
presence of some of the pollution tolerant trait attributes noted in the LIS relating with the pollution
sensitive taxa [53].

Traits that are a full reflection of perturbation were associated with the second axis of RLQ
ordination in this study. The pupa aquatic stage which has been reported to associate with increased
concentration nutrients and EC were highly distributed in sites classified as HIS [2]. This is as expected
as Mollusca families—e.g., Thiaridae—which was one of the dominant groups of macroinvertebrates
in the HIS have been reported to be tolerant of pollution due to their pupa aquatic stage [1]. This is a
confirmation of the association of the Mollusca with the HIS in this study area. Additionally, organisms
exhibiting burrowing mobility mode were associated with sites classified as HIS and pollution indicating
physico-chemical variables such as EC and BOD5. Organisms exhibiting burrowing mobility mode
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have been reported to thrive in disturbed sites with high sedimentation [54]. This also confirmed some
of our predicted key stressors of urban pollution—storm water return flow and increased suspended
solids—which were evident in the present study area.

5. Conclusions

The present study elucidates the influence of urban pollution on macroinvertebrate traits in
forested riverine systems draining urban landscapes. The study highlighted that macroinvertebrate
traits responded differently to urban pollution in forested riverine systems. We identified and classified
sensitive and tolerant traits which were suggested as potential biological indicators for assessing forested
riverine systems health draining urban landscapes in the Niger Delta area of Nigeria. The present
study identified and classified large body size (>20–40 mm), grazing and hardshell as traits potentially
sensitive to urban pollution in forested riverine systems, while traits such as burrowing, predation and
pupa aquatic stage were deemed tolerant of urban pollution in forested riverine systems. On the other
hand, our earlier study explored the influence of agricultural and urban pollution on the distribution
patterns of macroinvertebrate traits [17]. In that study, we identified traits such as large body size,
permanent attachment, moderate and high sensitivity to oxygen depletion to be sensitive to agricultural
and urban pollution, while traits such as small body size and CPOM were identified as traits tolerant
of agricultural and urban pollution. The present study confirms that large body sized organisms are
sensitive to urban pollution, as earlier reported by us. Furthermore, the identification and classification
of predation as tolerant trait, in this study is not unconnected to the high concentration of nutrients
which usually characterised river systems draining urban catchment. Overall, the present study is
an important step in the field of community ecology and predictive science, and the study serves as
a roadmap in using macroinvertebrates TBA for biomonitoring riverine systems most especially in
the Afrotropical region where study of this kind is still scarce. This study can be improved upon
by developing more sophisticated potential trait-based biomonitoring indicators globally by using
macroinvertebrate genera or species as against the family levels used in the present study.
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