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Abstract: Foodmaterial (FM)derivedfrombiochemicalcomponents (e.g., proteins, lipids, andcarbohydrates)
of phytoplankton can provide important quantitative and qualitative information of the food available to
filter-feedinganimals. The main objective of this study was to observe the seasonal and spatial variations
of the biochemical compositions of phytoplankton and to identify the major controlling factors of FM
as a primary food source in Jaran Bay, a large shellfish aquaculture site in South Korea. Base d on
monthly sampling conducted during 2016, significant monthly variations in the depth-integrated
concentrations of major inorganic nutrients and chlorophyll a within the euphotic water column
and a predominance (49.9 ± 18.7%) of micro-sized phytoplankton (>20 µm) were observed in Jaran
Bay. Carb ohydrates were the dominant biochemical component (51.8 ± 8.7%), followed by lipids
(27.3 ± 3.8%) and proteins (20.9 ± 7.4%), during the study period. The biochemical compositions
and average monthly FM levels (411.7 ± 93.0 mg m−3) in Jaran Bay were not consistent among
different bays in the southern coastal region of South Korea, possibly due to differences in controlling
factors, such as environmental and biological factors. Acco rding to the results from multiple linear
regression, the variations in FM could be explained by the relatively large phytoplankton and the P*
(PO4

3−
− 1/16 ×NO3

−) and NH4
+ concentrations in Jaran Bay. The macromolecular compositions

and FM, as alternatives food source materials, should be monitored in Jaran Bay due to recent changes
in nutrient concentrations and phytoplankton communities.
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1. Introduction

Bays are important aquatic systems that provide food resources for fisheries and aquaculture
since they provide habitats and prey for various marine organisms. Rece ntly, mollusk farming,
including bivalves, has contributed greatly to global farming production [1]. The present study site,
Jaran Bay, is one of the largest shellfish aquaculture regions for oysters and scallops in South Korea [2],
and these filter-feeding oysters and scallops feed mainly on water-dwelling phytoplankton for their
growth and reproduction [3,4].

The growth and physiological conditions of phytoplankton can vary depending on environmental
conditions [5–7]. In particular, phytoplankton synthesize biochemical components through photosynthesis
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and are therefore highly dependent on light conditions and quality [8–10], temperature [11],
species composition [12,13] and nutrient availability [5,8,14]. Rece ntly, Lee et al. [5] reported that
dissolved inorganic nitrogen loading from river discharge is a major factor that controls the photosynthetic
biochemical compositions (e.g., carbohydrates, proteins and lipids) of phytoplankton in Gwangyang Bay.
More over, the community structure and, consequently, biochemical composition of phytoplankton
can be altered by differences in nutrient inputs due to river discharge [7]. Diff erences in the
biochemical compositions of phytoplankton can lead to differences in nutritional qualities for potential
consumers [5,15–17]. Ther efore, the biochemical compositions of phytoplankton, as natural food
resources, are very important for phytoplankton-grazing herbivores. In agreement with this finding,
Yun et al. [16] reported a strong positive relationship between the lipid composition in phytoplankton
and protein content in the mesozooplankton community in the northern Chukchi Sea, indicating that a
high lipid content in phytoplankton can be important for protein synthesis for zooplankton growth.

Food material (FM) is represented as the sum of the concentrations of proteins, lipids and
carbohydrates [18,19]. FM indicates the quantity of food that is available to potential consumers [19]
and is also used as a food index of food quality [20]. Seas onal and spatial variations in the quantity and
quality of the natural diet available to filter feeders could be important for their grazing characteristics [20].
Nava rro and Thompson [20] observed that the seasonal trends in FM dynamics are closely correlated
with the trends of the chlorophyll a concentration in Logy Bay, southeast Newfoundland, Canada.
Rece ntly, Kang et al. [21] found that small-sized cells of phytoplankton could assimilate higher amounts
of FM per unit of chlorophyll a concentration compared to large-sized cells of phytoplankton in the
East/Japan Sea based on size fractionation filtering methods. Simi lar results from Gwangyang Bay,
Korea, were also in agreement with this consistent observation [7].

Previously, most biochemical composition studies have been conducted once a year or, at most,
seasonally [5,7,21]. Cons idering the importance of phytoplankton as a primary food source for
filter-feeding aquaculture animals, the present study aimed to observe monthly and spatial variations
in biochemical compositions as a food quality indicator of phytoplankton and to determine the major
environmental controlling factors of FM available to shellfish, such as oysters and scallops, growing in
Jaran Bay as a large aquaculture site in South Korea.

2. Materials and Methods

2.1. Water Sampling and Analysis

Using a 5 L Niskin sampler (General Oceanics Inc., Miami, FL, USA), water samples for the
determination of the nutrient and chlorophyll a concentrations were obtained from three different light
depths (e.g., 100, 30 and 1% of photosynthetic active radiation (PAR), determined by using a Secchi
disk) at seven different stations (Figure 1). The study area Jaran Bay is a relatively shallow coastal bay
with an average water depth of 10 m [2]. Samp ling was conducted monthly from January to December
2016. The depth-averaged values were obtained from the three light depths (e.g., 100, 30 and 1% PAR),
and monthly observed values were obtained from all depths and stations.

The water samples (0.2 L) used for determining the dissolved inorganic nutrient concentrations
were filtered through a 47 mm GF/F filters (0.7-µm pore size, Whatman, Maidstone, UK), and the
filtrates were stored at −20 ◦C for further analysis using an Auto Analyzer (Quaatro, Bran+Luebbe,
Germany) at the National Institute of Fisheries Science (NIFS), Korea. For determining the total
chlorophyll a concentration as a proxy for biomass, water samples (0.2 L) were filtered through 25-mm
GF/F filters (0.7-µm pore size, Whatman, Maidstone, UK). The water samples (0.6 L) were filtered
sequentially through 47-mm Nucleopore filters (20- and 2-µm) and 47-mm GF/F filters (0.7-µm pore
size, Whatman, Maidstone, UK) to determine size-fractionated chlorophyll a concentrations of different
cell-sized phytoplankton communities [22,23]. The filters retained chlorophyll a and were immediately
frozen and preserved at −70 ◦C for chlorophyll a extraction at the home laboratory at Pusan National
University, South Korea. The chlorophyll a concentrations were measured using a previously calibrated



Water 2020, 12, 3093 3 of 16

10-AU fluorometer (Turner Designs, San Jose, CA, USA) after extraction (approximately 24 h, 4 ◦C)
with 90% acetone and centrifugation at 4480 g for 20 min [24].Water 2020, 12, x FOR PEER REVIEW 4 of 16 
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Figure 1. Sampling stations in Jaran Bay, South Sea of Korea.

The water samples that were used for determining the macromolecular compositions
(e.g., carbohydrates, proteins and lipids) of particulate organic matter (POM) were filtered through
47 mm GF/F filters, and the filters were immediately preserved at−70 ◦C until further spectrophotometric
analysis. The samples were filtered under a constant vacuum (<10 cm Hg) because live cells could
be damaged during the strong vacuum filtration [23]. Carb ohydrate extraction was performed
by following Dubois et al. [25]. The preground POM-retained filter paper was transferred to a
polypropylene (PP) tube. Afte r the addition of 1 mL deionized water, 1 mL of a 5% phenol solution
was added and allowed to rest for 40 min. Then , 5 mL of sulfuric acid (H2SO4) was added and allowed
to stand for 10 min. Next , the solutions were centrifuged at 3430 g for 10 min. The absorbance of the
supernatant was measured at 490 nm. A glucose solution (1 mg mL−1, Sigma Aldrich) was used as the
standard for determining the carbohydrate concentration.

For protein extraction, each preground sample filter was transferred to a 12-mL glass tube with
1 mL deionized water (DH2O) and was added to 5 mL of an alkaline copper solution. Afte r the solution
was well mixed, 0.5 mL of diluted Folin–Ciocalteu phenol reagent (1:1, v/v) were added and allowed
to sit for 1 h 30 min at room temperature. Then , the solutions were centrifuged for 10 min at 2520 g.
The absorbance of the supernatant was measured at 750 nm. Bovi ne serum albumin (2 mg mL−1,
Sigma Aldrich) was used as the standard for determining the protein concentration based on previous
works in various oceans [5–7,16,17,21].

Last, the filters used for lipid extraction were transferred into a 16-mL glass tubes, ground with
3 mL of chloroform-methanol (1:2, v/v) and stored at 4 ◦C for 1 h. Afte r the solution was homogenized
with 4 mL of DH2O, the lower (chloroform) phase of the solution was dried at 40 ◦C for 48 h and then
heated at 200 ◦C for 15 min with 2 mL of H2SO4. An additional 3 mL of DH2O was added to the
chloroform phase in the glass tubes and then they were allowed to rest for 10 min. The absorbance of
the supernatant was measured at 375 nm, and a tripalmitin solution (Sigma Aldrich) was used as the
standard for determining the lipid concentration. Afte r each extraction process, the concentration
of each biochemical component was determined using a UV spectrophotometer (Hitachi-UH5300,
Hitachi, Tokyo, Japan).
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2.2. Statistical Analysis

Principal component analysis (PCA) was performed on our field-obtained data of the chemical
and biological variables (i.e., nutrient concentrations and phytoplankton biomass) for their relative
significance and interrelationship patterns among the various biochemical conditions measured during
our sampling period. Bart lett’s sphericity tests were used to determine the validity of the PCA
(p < 0.01) [26,27]. Fact or analysis was conducted to obtain various factors selected by the principal
component method with varimax rotation [28]. Due to the strong dependency between PO4

3− and
NO3

− (r = 0.56, p < 0.01; Pearson’s correlation coefficient), PO4
3− was excluded but included P*

(PO4
3−
− 1/16 × NO3

−) in the PCA. P * reflects the excess (or deficiency) of PO4
3− versus NO3

− [29,30].
To determine the major factors controlling the macromolecular composition and FM of POM,

multiple linear regression analysis was conducted in this study based on the PCA results. The multiple
linear regression equation of Pedhazur [31] is as follows:

Y = α+ b1X1 + · · ·+ bkXk + e (1)

where Y denotes a dependent variable and the FM of POM is estimated from the independent variables
(predictors), X1· · ·Xk. Para meter α is a constant, b1· · · bk are the regression coefficients for the predictors
(FM in this study), and e is an error term.

Insignificant variables for the controlling the FM variation were stepwise eliminated from the
model by stepwise variable selection after multiple linear regression analysis. Stat istical analysis
was performed with IBM SPSS software version 12.0 (SPSS Inc., Chicago, IL, USA). t statistics were
conducted for testing the regression coefficients and values of the coefficient of determination (R2)
were obtained for measure of goodness of fit for the FM in this study.

3. Results

3.1. Monthly Concentrations of Nutrients and Chlorophyll a

The monthly depth-integrated nutrient concentrations within the euphotic water column from
100 to 1% light depths during the present study period are summarized in Table 1. The ranges of
the NH4

+, NO2
− + NO3

−, PO4
3− and Si(OH)4

2− concentrations were 4.0−47.5, 10.9−80.0, 0.5−6.0 and
20.9−166.9 µm, respectively, in Jaran Bay from January to December 2016. The concentration ranges
varied significantly during the observation period, and the highest concentrations were detected in
September, except for the Si(OH)4

2− concentrations, which showed the largest peak in June and a
secondary peak in September.

Table 1. Monthly variations in the water column-integrated major nutrient concentrations averaged
from seven different stations in Jaran Bay.

Integrated Nutrients

NH4
+ NO2− + NO3− DIP SiO2-Si

mmol m−2

Jan. 8 ± 5 21 ± 19 3 ± 2 64 ± 46
Feb. 4 ± 3 8 ± 6 2 ± 1 21 ± 11
Mar. 4 ± 2 7 ± 6 1 ± 1 22 ± 7
Apr. 7 ± 2 12 ± 5 2 ± 1 47 ± 5
May 6 ± 1 7 ± 2 0.5 ± 0.2 74 ± 14
Jun. 8 ± 3 12 ± 8 1 ± 1 167 ± 48
Jul. 11 ± 4 15 ± 10 2 ± 1 161 ± 31

Aug. 9 ± 4 8 ± 4 2 ± 1 90 ± 46
Sep. 48 ± 19 33 ± 13 6 ± 2 146 ± 37
Oct. 6 ± 2 22 ± 23 1 ± 2 72 ± 70
Nov. 11 ± 4 44 ± 24 4 ± 2 102 ± 46
Dec. 9 ± 4 46 ± 31 4 ± 2 106 ± 66
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The total monthly chlorophyll a concentration averaged from the three light depths at seven
stations ranged from 0.77 µg L−1 in September to 4.89 µg L−1 in October, with an average of
2.13 µg L−1 (S.D. = ± 1.18 µg L−1) (Figure 2). Base d on the different size-fractionated chlorophyll a
concentrations (Figure 3), the compositions of the micro- (> 20 µm), nano- (2−20 µm) and pico-sized
chlorophyll a concentrations (0.7−2 µm) varied significantly in Jaran Bay among the different months.
The compositions of the micro-sized chlorophyll a concentrations ranged from the lowest value
in April (23.8 ± 18.7%) to the highest value in January (77.8 ± 6.8%), whereas the nano-sized
chlorophyll a compositions ranged from the lowest value in January (14.3 ± 7.0%) to the highest
value in June (50.3 ± 21.3%). In comparison, the compositions of pico-sized chlorophyll a were
lowest in January (7.9 ± 4.4%) and highest in April (46.0 ± 18.1%). Seas onally, the compositions
of the micro-sized chlorophyll a concentrations steadily increased from spring (March−May) to
winter (December−February), although significant monthly variations were present. In contrast,
the compositions of the pico-sized chlorophyll a concentrations steadily decreased from spring to winter.
The compositions of the nano-sized chlorophyll a concentrations were highest in summer (June−August)
and lowest in winter. On average, micro-sized (>20 µm) cells contributed 49.9% (± 18.7%) of the total
chlorophyll a concentration in Jaran Bay during our observation period. In comparison, the nano- and
pico-sized chlorophyll a compositions contributed 28.5% (± 12.4%) and 21.6% (± 11.2%), respectively.
A strong positive relationship was found between the micro-sized chlorophyll a concentrations
and total chlorophyll a concentrations integrated from the euphotic water columns in this study
(y = 1.31x + 5.74, r2 = 0.82; Figure 4).

3.2. Spatial and Temporal Variations of the Macromolecular Compositions of POM

Figure 5 shows the average of three light depth values of each macromolecular composition of
POM in Jaran Bay from January to December 2016. No distinctive spatial variations were detected
in the macromolecular compositions among the different stations; however, they significantly varied
among the different months. Carb ohydrates were the predominant biochemical component during
our observation period from January to December, with monthly proportions of carbohydrates ranging
from 40.9% to 66.4%. In comparison, the protein and lipid proportions were 11.1–31.0% and 22.5–35.1%,
respectively. The lipid proportion appeared to decrease steadily from January to December. Seas onally,
the carbohydrate proportion were relatively variable compared to the protein and lipid proportions.
The carbohydrate proportion was lowest during summer (45.6 ± 1.4%) and highest during autumn
(59.1 ± 10.9%). In comparison, the protein proportion was lowest during winter (17.5 ± 5.7%) and
highest during summer (28.1 ± 2.7%), while the lipid proportion was lowest in autumn (23.1 ± 0.6%)
and highest in winter (31.1 ± 3.7%).

The monthly FM concentrations ranged from 297 to 630 mg m−3, with an average of 411.7 mg m−3

(S.D. = ± 93.0 mg m−3), in this study (Table 2). No noticeable monthly variations were observed for
the FM concentrations. Spat ial variations in the FM concentrations were not noticeable for the seven
stations during the observation period except for March, April and June, which had considerably
higher FM concentrations at several stations (Figure 6). The monthly calorific values and FM contents
of FM averaged from the three light depths at the seven stations did not vary significantly and ranged
from 5.5–6.3 Kcal g−1 and 1.7–3.7 Kcal m−3, respectively, in Jaran Bay (Table 2).
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Table 2. Monthly averaged compositions of different sized chlorophyll a concentrations and biochemical concentrations and compositions of POM averaged from
seven different stations in Jaran Bay.

Total chl a Micro Nano Pico CHO PRT LIP FM CHO PRT LIP
(µg L−1) (%) (%) (%) (µg L−1) (µg L−1) (µg L−1) (µg L−1) (%) (%) (%)

Jan. 3.2 ± 1.0 78 ± 7 14 ± 7 8 ± 4 145 ± 64 81 ±19 119 ± 34 345 ± 84 41 ± 9 24 ± 4 35 ± 8
Feb. 1.7 ± 0.6 72 ± 19 15 ± 8 13 ± 18 243 ± 56 65 ± 21 134 ± 44 442 ± 56 55 ± 10 15 ± 5 30 ± 8
Mar. 2.5 ± 1.6 45 ± 22 19 ± 5 37 ± 18 206 ± 48 68 ± 21 92 ± 26 368 ± 78 56 ± 6 18 ± 3 25 ± 5
Apr. 1.4 ± 0.7 24 ± 19 30 ± 6 46 ± 18 183 ± 37 53 ± 17 96 ± 31 332 ± 57 56 ± 8 16 ± 3 29 ± 7
May 1.4 ± 0.8 32 ± 16 38 ± 12 29 ± 12 163 ± 44 103 ± 37 129 ± 50 395 ± 101 42 ± 7 26 ± 7 32 ± 5
Jun. 2.5 ± 1.4 32 ± 19 50 ± 21 18 ± 6 239 ± 182 122 ± 64 131 ± 82 492 ± 317 47 ± 8 26 ± 5 27 ± 8
Jul. 3.2 ± 1.8 40 ± 15 41 ± 15 19 ± 6 269 ± 94 202 ± 108 158 ± 99 630 ± 250 45 ± 11 31 ± 8 24 ± 6

Aug. 1.6 ± 1.5 62 ± 16 21 ± 11 16 ± 8 168 ± 71 101 ± 34 101 ± 32 370 ± 125 45 ± 6 28 ± 5 28 ± 4
Sep. 0.8 ± 0.2 32 ± 15 45 ± 14 23 ± 18 255 ± 48 42 ± 11 85 ± 14 382 ± 53 66 ± 6 11 ± 3 23 ± 4
Oct. 4.9 ± 1.6 75 ± 11 17 ± 8 8 ± 3 239 ± 48 157 ± 43 117 ± 18 513 ± 83 47 ± 6 30 ± 6 23 ± 3
Nov. 1.4 ± 0.7 51 ± 20 28 ± 12 20 ± 9 240 ± 36 45 ± 19 89 ± 22 375 ± 45 64 ± 8 12 ± 5 24 ± 5
Dec. 0.9 ± 0.4 55 ± 14 23 ±6 22 ± 13 172 ± 23 41 ± 14 85 ± 32 297 ± 49 58 ± 7 14 ± 4 28 ± 7
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3.3. Principal Component Analysis (PCA)

The PCA results for our field-observed biochemical parameters are summarized in Table 3. Thre e
PCs were selected for multiple linear regression analysis in this study. The variables shown in
bold indicate the highest correlations among the 12 variables and the corresponding components.
The nano-sized chlorophyll a concentrations, carbohydrates, proteins, lipids and FMs had the highest
correlations with PC1, whereas the concentrations of NH4

+, NO3
−, P* and Si(OH)4

2− were highest
correlated with PC2. For PC3, temperature and the micro- and pico-sized chlorophyll a concentrations
showed the highest correlations. Base d on the PCA results in Table 3, multiple linear regression
analysis was performed to obtain the major controlling factors for the variation in the FM in Jaran Bay
(Table 4). The nano- and micro-sized chlorophyll a concentrations and P* and NH4

+ concentrations
were found to be the major factors for controlling the FM in Jaran Bay during our observation period
(Table 4). The concentrations of nano- and micro-sized chlorophyll a and NH4

+ had positive effects
whereas the P* concentration had a negative impact on the FM in Jaran Bay during the study period.
In other word, a total increase in the concentrations of nano- and micro-sized chlorophyll a and NH4

+

could bring an increase in the FM. On the other hand, an increase in P* concentration could lead to a
decrease in the FM.
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Table 3. Principal component analysis (PCA) results in Jaran Bay during the observation period.

Variables in
Standardized Weight of Variables in Selected Loading of Variables (vik)

CommunalitiesPC (tik; I = 1, 2, . . . , 12 and k = 1, 2)

PC 1 PC 2 PC 3 PC 1 PC 2 PC 3

Temperature −0.103 0.18 0.373 0.109 0.506 0.587 0.612
NH4

+
−0.002 0.35 −0.06 −0.087 0.874 −0.065 0.775

NO3
− 0.054 0.217 −0.028 0.154 0.543 0.047 0.321

P* −0.052 0.289 −0.141 −0.371 0.708 −0.289 0.723
SiO2-Si −0.017 0.273 0.222 0.221 0.719 0.43 0.75
Micro −0.102 −0.133 0.416 0.171 −0.276 0.624 0.495
Nano 0.204 0.046 0.033 0.772 0.118 0.33 0.719
Pico −0.107 0.023 0.335 0.048 0.105 0.489 0.253
CHO 0.357 0.108 −0.357 0.818 0.219 −0.19 0.754
PRT 0.094 −0.068 0.277 0.694 −0.133 0.627 0.892
LIP 0.252 −0.053 −0.075 0.805 −0.147 0.177 0.702
FM 0.304 0.012 −0.099 0.961 0.013 0.209 0.967

Table 4. Regression analysis results for the FM in Jaran Bay (**: p < 0.01, n = 252).

Included Independent Regression Standard Standardized Regression
t Statics p Value Adjusted R2 (%)

Variables Coefficient (bk) Error of bk Coefficient

Constant 337.872 12.08 27.969 0.000 **
Nano-chlorophyll a concentration 112.476 8.16 0.617 13.784 0.000 ** 0.544
Micro-chlorophyll a concentration 20.115 5.412 0.156 3.716 0.000 ** 0.57

P* −230.321 49.425 −0.305 −4.66 0.000 ** 0.582
NH4

+ concentration 19.321 5.362 0.225 3.603 0.000 ** 0.602
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4. Discussion

The monthly-averaged concentrations of the depth-integrated nutrient concentrations measured
were within the ranges previously reported from regions near Jaran Bay [32–35]. The present study
indicates that each nutrient concentration showed significant seasonal variations. For example, the DIN
concentrations were relatively higher during the period from September to December, whereas the
silicate concentrations were higher in June−September compared to other months (Table 1).

The monthly depth-integrated total chlorophyll a concentrations within the euphotic water column
from 100% to 1% light depths ranged from 5.2 to 36.7 mg m−2 (mean ± S.D. = 17.0 ± 9.2 mg chl-a m−2)
during the study period from January to December 2016. The largest peak was observed in October
immediately, followed by the nutrient peaks observed in September (Table 1). Howe ver, the seasonal
chlorophyll a concentrations did not vary greatly and ranged from 15.8 to 17.8 mg m−2. Gene rally,
the spatial variation of the total chlorophyll a concentrations appeared to be low among the seven stations
in Jaran Bay during the observation period except for March (Figure 2). Over all, the phytoplankton
community was dominated by micro-sized phytoplankton based on the size-fractionated chlorophyll
a concentration results during our observation period. Prev ious studies have reported that the
predominant species in this area consisted of diatoms [23,36]. In general, the spatial and seasonal
variations of the total chlorophyll a concentrations were strongly related to the micro-sized (> 20 µm)
chlorophyll a concentrations (Figure 4). This finding suggests that micro-sized cells greatly contributed
to the total chlorophyll a concentration in Jaran Bay. In other words, 49.9% (± 18.7%) of total chlorophyll
a was from micro-sized cells (Figure 3) during our observation period.

The overall dominant macromolecular composition of POM was carbohydrates (51.8 ± 8.7%),
followed by lipids (27.3 ± 3.8%) and proteins (20.9 ± 7.4%), during our observation period (Figure 5).
The macromolecular compositions obtained from the present study fell in a similar range to those
obtained from Geoje-Hansan Bay by Kim et al. [6], in which their study area was close to our research
site. Howe ver, the compositions in Jaran and Geoje-Hansan bays were considerably different from
those in Gwangyang Bay. The mean compositions in Gwangyang Bay were 26.4% (± 9.4%), 37.8%
(± 16.1%), and 35.7% (± 13.9%) carbohydrates, proteins, and lipids, respectively [5]. Thes e differences
may have been due to the influence of river-borne nutrients. The protein and lipid proportions are
largely dependent on the input of dissolved inorganic nitrogen from the Seomjin River in Gwangyang
Bay [5]. In comparison, there are no large river inputs in the Jaran and Geoje-Hansan bays. For coastal
management plans, e.g., artificial dam construction, the potential influence of river inputs on the
dominant cell size and photosynthetic end-products of phytoplankton should be considered [7].

Although the macromolecular compositions between Jaran and Geoje-Hansan Bays [6] in south
Korea are similar, the monthly FM concentrations were relatively lower in Jaran Bay and ranged from
297 to 630 mg m−3 with an average of 411.7 mg m−3 (S.D. = ± 93.0 mg m−3), than in Geoje-Hansan Bay,
which had a range of 346−1280 mg m−3 (615.5 ± 291.7 mg m−3; Table 5). Howe ver, the average monthly
FM concentration (411.7 ± 93.0 mg m−3) of POM in Jaran Bay during our observation period was similar
to that in Gwangyang Bay (434.5 ± 175.5 mg m−3) [5] despite the large difference in macromolecular
compositions between the two bays. Base d on the fact that FM concentrations are derived from the
total concentrations of carbohydrates, proteins and lipids [18,19] and that their relative compositions
can be affected by various environmental and biological factors [5,8–14], different macromolecular
compositions are unlikely to be strongly related to the FM concentrations of POM. Inst ead of the
compositions of the chlorophyll a concentrations, which are often used to represent phytoplankton
biomass, would be more appropriate for comparisons. Howe ver, no strong relationship between the
FM concentrations and total chlorophyll a concentrations was found in the present study, although a
strong correlation was found in Gwangyang Bay by [7]. Simi larly, no significant linear relationship
was observed between the FM and total chlorophyll a concentrations among the different bays in South
Korea (Table 5). The average chlorophyll a concentrations were 2.13 µg L−1 (S.D. = ± 1.18 µg L−1,
this study), 4.34 µg L−1 [6] and 3.45 µg L−1 [5] in the Jaran, Geoje-Hansan and Gwangyang Bays,
(Table 5). Thes e bays are all in the South Sea of South Korea. In the Garolim-Asan Bay, Yellow Sea [37],
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the average chlorophyll a concentration (2.81 ± 2.12 µg L−1) was within the low range (2.13−4.34 µg L−1)
among the three bays, but the average FM concentration (781.4 ± 228.2 mg m−3) was highest among
the bays in this study. The chlorophyll a concentration has been used as a proxy for biomass, but may
not be completely representative of phytoplankton biomass since the chlorophyll a concentration is
greatly influenced by light and nutrient conditions, physiological status and species composition of
phytoplankton [38–41]. Inst ead of the chlorophyll a concentration, Lee et al. [5] and Kim et al. [7]
suggested that the FM concentration of POM, mainly phytoplankton, could be an alternative proxy for
food sources available to higher trophic levels in bay or coastal marine ecosystems. Ther efore, the
FM concentration could have a quantitatively complementary value for the amount of various food
material sources available to potential consumers in estuarine or bay ecosystems [7,21]. With respect
to energy aspects, the calorific content, which depends on the different macromolecular compositions
of the FM concentration, should be considered as representative of the physiological or ecological
conditions of higher trophic levels of consumers [5,7,21].

Table 5. Comparison of the total chlorophyll a concentrations and FM concentrations of POM among
different Korean bays.

Region Period
Total Chlorophyll
a Concentration FM Concentration

Reference
(µg L−1) (mg m−3)

Gwangyang Bay, Korea Seasonally, 2012–2013 3.45 (±2.81) 434.5 (±175.5) [5]
Geoje-Hansan Bay, Korea Monthly, 2015 4.34 (±2.42) 615.5 (±291.7) [6]
Garolim-Asan Bay, Korea Seasonally, 2015–2016 2.81 (±2.12) 781.4 (±228.2) [37]

Jaran Bay, Korea Monthly, 2016 2.13 (±1.18) 411.7 (±93.0) This study

According to the PCA results, spatiotemporal variations in FM are primarily governed by the
nano-sized chlorophyll a concentrations, carbohydrates, proteins and lipids since FM is the sum
of the concentrations of the three different macromolecules. Howe ver, the positive relationship
between the nano-sized chlorophyll a concentration and FM would not be predictable. In Jaran Bay,
the spatiotemporal change of the total chlorophyll a concentration was primarily controlled by the
micro-sized chlorophyll a concentrations because of their high contribution to the total chlorophyll a
concentration. In comparison, nano-sized chlorophyll a compositions contributed 28.5% (± 12.4%)
of the total chlorophyll a concentration in this study, although their monthly contributions varied
somewhat broadly and ranged from 14.3% (±7.0%) in January to 50.3% (±21.3%) in June (Figure 3).
In PC2, the positive correlations among the major inorganic nutrient concentrations (e.g., NH4

+,
NO3

−, P* and Si(OH)4
2−) were reasonable. Temp erature and the micro- and pico-sized chlorophyll a

concentrations in PC3 indicate positive correlations among the three variables in Jaran Bay (Table 3).
PCA was used in this study for ranking their relative significance (Table 3) among our field-observed
biochemical parameters for multiple linear regression analysis and deriving major controlling factors
(Table 4) of the FM in our study site. In this approach, we could predict the FM in our study site based
on the multiple linear regression analysis. Acco rding to the multiple linear regression, approximately
60% of the variation in FM could be explained by the nano- and micro-sized chlorophyll a concentrations
and P* and NH4

+ concentrations in Jaran Bay (Table 4). With this approach, the four major controlling
factors were determined for the observed FM variations in Jaran Bay during our observation period
from January to December 2016. Howe ver, the somewhat low prediction of up to 60% suggests that
other potential factors in addition to our observed parameters should be investigated to improve the
spatiotemporal variation in the FM in Jaran Bay. Sinc e this study was a pilot study, some of important
parameters were not considered. For example, grazing effects from predators, such as aquaculture
shellfish and zooplankton, could be highly correlated with FM, which is a main food source available
to them.
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5. Conclusions

A detailed spatiotemporal evaluation of the biochemical compositions and FM of POM of
phytoplankton communities and a set of multiple linear regression analyses were conducted in Jaran
Bay to understand their major controlling factors. Base d on this research, the variations in FM
representing food source materials could be explained by large-cell-sized phytoplankton (>2 µm) and
major inorganic nutrient concentrations. Kim et al. [42] observed progressive decreases in dissolved
inorganic nutrients in the southern coastal region of South Korea in recent decades. A progressive
decline of the chlorophyll a concentration has been consistently reported in several regions in the
southern coastal region of South Korea [43]. At this point, we cannot assume that the changes of
the species compositions or size compositions of phytoplankton are correlated with the decreases
of the concentrations of nutrients and chlorophyll a. Howe ver, we may expect greater numbers of
small-sized phytoplankton cells than of large cell-sized phytoplankton cells under these conditions.
Thes e changes in nutrient concentrations and dominant phytoplankton communities could cause
changes in FM and further alterations in potential consumers. Jara n Bay is one of the largest shellfish
aquaculture sites in the South Sea of Korea. Furt her studies on the spatial and temporal variations in
the macromolecular compositions and FM of POM in regard to various environmental conditions are
needed to better understand the quality and quantity of the primary food source available to higher
trophic animals.
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