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Abstract: Understanding the main drivers of runoff availability has important implications for
water-limited inland basins, where snow and ice melt provide essential input to the surface runoff.
This paper presents an analysis on the runoff response to changes in climatic and other controls of
water-energy balance in an inland glacierized basin, the Urumqi River basin, located in the arid
region of northwest China, and identifies the major control to which runoff is sensitive across the
basin’s heterogeneous subzones. The results indicate that the runoff is more sensitive to change in
precipitation in the mountainous headwaters zone of the upper reach, and followed by the impact of
basin characteristics. In contrast, the runoff is more sensitive to changes in the basin characteristics
in the semiarid and arid zones of the mid and lower reaches. In addition, the change in basin
characteristics might be represented by the distinct glacier recession in the mountainous upper reach
zone and the increasing human interferences, i.e., changes in land surface condition and population
growth, across the mid and lower reach zones. The glacier wasting contributed around 7% on average
to the annual runoff between 1960 and 2012, with an augmentation beginning in the mid-1990s.
Findings of this study might help to better understand the possible triggers of streamflow fluctuation
and the magnitude of glacier wasting contribution to runoff in inland glacierized river basins.
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1. Introduction

Facing a warming climate, unraveling the dominant factors responsible for streamflow change
is an important step for water resource management [1,2]. In general, the prevailing climatic factors
(e.g., precipitation) and the integrative factors (e.g., the landform features) that exclude climatic factors
(referred as other factors hereafter) are two types of factors that trigger streamflow changes, and many
efforts have been made to assess their effects on streamflow [3,4]. For climatic factors, precipitation (P)
and potential evapotranspiration (E0) are considered to be two major factors that cause fluctuations
in the hydrological cycle [5,6]. Integrative other factors consist of a wide range of controls, and the
components often vary across regions characterized by different climatic conditions [7]. A correct
assessment of the effects of the two types of factors on runoff requires a good understanding of the
physical nature of the water and energy balance between the Earth’s surface and the atmosphere,
which accounts for the partition of precipitation into evaporation (E) and runoff (Q) [8,9].

Budyko frameworks couple the water and energy balances [10], estimating that the long-term
annual average E is primarily controlled by available water, i.e., P, and energy, i.e., E0 [11,12].
This framework quantifies impacts of changes in climatic and other factors on runoff [1–9]. Particularly,
the parametric Budyko frameworks [13–15] that integrate the elasticity method [16] are often used
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to assess the climate elasticity and joined influence of other factors on runoff [1–6]. A vast amount
of applications has shown that the Budyko frameworks are efficient and robust in assessing the
water-energy balance problems and hydrological responses at various scales of time and space [6–11].

Alpine glaciers are important natural solid reservoirs because they contribute considerably to
the water supply in many catchments across the world [17]. However, global warming seems to have
enhanced glaciers’ melting [18] and their contribution to a rise in global sea level [19] and runoff [20].
At a basin scale, the enhanced glacier melting may change the water-energy balance by lowering the
ice surface albedo, which in turn induces faster melting and snow to rain transitions [21]. This makes
ice caps in glacierized basins further vulnerable to warming. One of the anticipated trends is that
shrinking glaciers augment runoff in the first instance, then induce water deficiency, if water from
other sources remain unchanged [22]. Enhanced glacier wasting thus challenges the water resources
sustainability in the long term [23] and raises a strong concern about the future function of glaciers as a
source of freshwater [22].

The arid regions in northwest China are characterized by fragile ecosystem and scarce water
resources [23]. Warming-induced water issues are very distinct in these regions [24,25], especially
across basins where glacier and snow melt provide important input to surface runoff. Remarkable
shrinking in alpine glaciers and associated changes in water resources have been reported [18,22].
For example, glaciers in the Tianshan Mountains have been retreating since the mid-nineteenth
century [22], resulting in significant changes in runoff in many inland rivers across Central Asia [26,27].
Moreover, changes in water availability caused by other factors cannot also be ignored [23,25]. With the
impact of warming, the effect of precipitation, glacier melting, and other factors on runoff tend to be
amplified [28]. Therefore, it is crucial to identify runoff response to warming and understand the local
effects of glacier wasting on river flow.

The objective of this study is to examine the spatial heterogeneity of factors responsible for runoff

availability in arid water tense regions, where the water resource system relies on precipitation and
meltwater from glacier and snowpack. Toward this end, this study selected the Urumqi River basin
located in the arid region of northwest China as the study area. The Urumqi River is the lifeblood
of many communities in this region, and a good case where basin characteristics differ significantly
spatially and where management strategies need to be carefully issued. In addition, the distinct
glacier wastage, i.e., the wastage of the Glacier No.1 at the headwaters of the Urumqi River basin,
has received much attention [29], and understanding its implication for water resources in the water
scares glacierized basin is essential [30]. Such an investigation can help us to see clearly the situations
in the past and serve the water management strategies in the future.

2. Methods and Materials

2.1. Water Balance Equation

Over a long-term scale, water–energy balance in a catchment can be expressed as:

P = E + Q + ∆S (1)

where ∆S is the change in moisture storage of glacier, snow, and groundwater.
Hydrological attributes of the glacierized basins vary from that of the non-glacierized basins

because the existence of ice and snow [31]. In the glacierized upper reach zone of the Urumqi River
basin (Figure 1a), the contribution of the glacier melting to runoff should be considered, which is
represented by ∆S in Equation (1). In the non-glacierized mid and lower reach zones (Figure 1a), water
balance depends mainly on the partition of precipitation into E and Q, ∆S can be assumed to be zero
on a long-term basis [11].
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Figure 1. (a) Location of the Urumqi River basin and spatial layout of land surface condition in (b) 1980
and (c) 2015.

2.2. Budyko Framework

Assume that the available water is represented by P and the energy is measured as E0, the functional
relationship between E and P can be expressed as:

E = E0

1 +
P
E0
−

(
1 +

(
P
E0

)m)1/m (2)

where m represents the watershed properties, including all factors other than the climatic variables of
P and E0, such as vegetation cover [32,33], soil water [34], topography [35], temperature [36], effects of
CO2 on plant water use [37], population density [8], irrigation [38], and construction of reservoirs [4,38].

The Budyko framework estimates the impacts of climate change and other factors on runoff

regime by the partial derivatives of streamflow with respect to the target variables, which is generally
referred to as elasticity [16]. Combining water balance equation, Equation (1), and the Budyko curve,
Equation (2), the streamflow of a watershed can be expressed as:

Q(P, E0, m) = P

−E0

P
+

(
1 +

(E0

P

)m) 1
m
 (3)

Berghuijs et al. (2017) derived the elasticity of streamflow to climatic variables and watershed
properties as follows [1]:

ξ(Q, P) =
∂Q
∂P

P
Q

=
((E0/P)m + 1)

1
m−1

−E0/P + (1 + (E0/P)m)
1/m

(4)

ξ(Q, E0) =
∂Q
∂E0

E0

Q
=

(E0/P)m((E0/P)m + 1)
1
m−1
− E0/P

−E0/P + (1 + (E0/P)m)
1/m

(5)

ξ(Q, m) =
∂Q
∂m

m
Q

=
(1 + (E0/P)m)

1/m
(
(E0/P)m ln(E0/P)

1+(E0/P)m −
ln(1+(E0/P)m)

m

)
−E0/P + (1 + (E0/P)m)

1/m
(6)

Equations (4)–(6) account for the relative change in runoff due to relative changes in P, E0,
and other factors, respectively.
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Obviously, to calculate the change in runoff due to shifts in climate and other factors, the basin
characteristic parameter, i.e., m, must be estimated first. Usually, the basin characteristic parameter
is estimated using a nonlinear least square regression model, e.g., Equations (2) or (3). In this
paper, calibration of the regression is made by minimizing the difference between water balance
based and simulated E [39], and the accuracy was tested using the coefficient of determination (R2),
the Nash–Sutcliffe efficiency (NSE) and the root mean square error (RMSE).

After clarifying the elasticity of runoff to climatic and other factors, the most important control
on runoff can be distinguished from those having the least importance by evaluating the relative
importance of each factor to runoff as:

εx =

∣∣∣ξ(Q, x)
∣∣∣∣∣∣ξ(Q, P)

∣∣∣+ ∣∣∣ξ(Q, E0)
∣∣∣+ ∣∣∣ξ(Q, m)

∣∣∣ (7)

where εx is the relative sensitivity of runoff to a given factor, and varies from zero to one; the εp, εE0 ,
and εm are summed up to a unity. The higher the value of the relative importance, the stronger the
influence from an investigated factor on runoff [1].

2.3. Galcier-Melt Contribution

Change in glacier mass balance can be used to explain glacier wasting contribution to runoff [40,41].
Among all existing glaciers in the mountainous catchment of the Urumqi River basin, the Glacier
No.1 has the longest continuing series of mass balance measurements starting in the 1950s. It is a
northwest-facing valley glacier, with elevations ranging between 3740–4486 m [42], and representative
among the existing glaciers in the arid region of northwest China [43]. We use the mass balance
measurements of the Glacier No.1 to estimate the melting of entire glaciers in the basin. For this purpose,
the mass balance of the Glacier No.1 [44–47] is extrapolated to the entire glaciers in the mountainous
catchment using an area proportion method [48]. The area of the Glacier No.1 [29,47,49–51] and that of
the entire glaciers in the Urumqi River basin [52] are collected from the existing literature, and time
series glacier areas are interpolated using the rate of area change between two given time periods.
Finally, the estimated mass balance of the entire glaciers was converted into runoff depth, and its
contribution to the runoff at the river outlet is estimated.

2.4. The Urumqi River Basin

The Urumqi River basin is located in the northern slopes of the Tianshan Mountains in China
and covers 4684 km2 (Figure 1). The Urumqi River originates from the Glacier No.1 in the Tianshan
Mountains in China and flows northward through the city of Urumqi. It has a total length of 214 km
before disappearing in the northwestern Gurbantunggut Desert [53]. With respect to the climatic
and hydrological conditions, the basin can be divided into three zones: the upper, mid, and lower
reach zones (Figure 1a) [54,55]. The upper reach zone, Daxigou, spreads from the river heads to the
Baiyanggou confluence and has a total area of approximately 1488 km2. The mid reach, named the
Urumqi River, starts from the Baiyanggou confluence, flows through the city of Urumqi, and ends near
the Mengjin reservoir. This zone covers an area of 2437 km2. The lower reach, named the Laolong
River, refers to the section to the north of the Mengjin Reservoir. This section has an area of 773 km2.

To date, the mountainous upper reach zone has been minimally affected by human activities,
while the mid and lower reach zones are highly impacted by urbanization, agricultural, and industrial
activities. For example, the streams in the mid and lower reach zones are now maintained as
irrigation channels and supply water to a number of small reservoirs. It should also be noted that the
segmentation of the basin reaches considers both the natural boundaries of the catchments and the
practical segmentation of the three reaches in the Urumqi River basin [54,55]. By doing so, the basin
segmentation has practical meaning, and the subsequent results will be more applicable to water
resources management in this basin.
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2.5. Hydrometeorological Data

The runoff data were collected from the Yingxiongqiao hydrological station and spanned from
1962 to 2012. Since there are no regular hydrological stations in the mid and lower reach zones, river
runoff for the mid and lower reach zones are extrapolated using the observed runoff from the upper
reach zone. The relevant long-term average annual runoff records at the mid and lower reach zones are
obtained from “The Urumqi River Basin Chronicles” [55]. A detailed description of the extrapolation
method is described in Appendix A.

The meteorological data from seven national meteorological stations scattered along the river course
were provided by the National Meteorological Information Center of China. These meteorological
stations are as follows: (1) Daxigou and Mushizhan, located in the upper reach zone; (2) Urumqi
and Changji in the mid reach zone; and (3) Caijiahu, Fukang, and Miquan, located near the lower
reach zone. Based on the collected meteorological data, daily E0 at the Daxigou, Mushizhan, Urumqi,
Caijiahu and Miquan stations is estimated using the FAO Pennman–Monteith method. Given the lack
of observed wind speed and humidity at the Fukang and Changji stations, the temperature-based
method [56] is employed to estimate daily E0 at these two stations. Daily E0 is aggregated to obtain
annual values for analysis. The mean annual E is estimated considering the glacier ablation in the
upper reach zone and as the difference between P and Q in the mid and lower reach zones. A summary
of the hydrometeorological variables used in this study is presented in Table 1.

Table 1. Hydrometeorological characteristics of the Urumqi River basin.

Basin
Zones

Area
/km2

Mean
Elevation/m

Temperature
/◦C

P
/mm

E0
/mm ϕ

Meteorological
Station

Data
Extension

Upper
reach
zone

1488 2922 −1.6 458 665 1.5 Daxigou
Mushizhan

1960–2012
1978–2012

Mid
reach
zone

2437 1163 7.2 228 1091 4.8 Urumqi
Changji

1960–2012
1960–2012

Lower
reach
zone

773 448 7.5 196 1205 6.1
Caijiahu
Fukang
Miquan

1960–2012
1963–2012
1962–2012

Temperature, P, E0, and ϕ at each zone are calculated by averaging the mean of a variable from the available stations
over the given time scale.

2.6. Basin Characteristics

For a given region, aridity index (ϕ) can be related to the characteristics of regional climate
types [13,50]. Regions where ϕ is greater than unity (water limited) are generally classified as dry since
the atmospheric evaporative demand cannot be met by precipitation [8,11]. Conversely, regions where
ϕ is less than unity (energy limited) are described as wet since the available energy is insufficient for
evaporating all coming precipitation [8,11]. Thus, studies have proposed that aridity can reflect the
characteristics of regional climate types and that the aridity within the range of 12 > ϕ ≥ 5, 5 > ϕ ≥ 2,
2 > ϕ ≥ 0.75, and 0.75 > ϕ ≥ 0.375 can represent the arid, semiarid, subhumid, and humid regions,
respectively [11]. Table 1 shows that the Urumqi River basin is characterized by a semiarid climate
with a basin-wide average aridity of 4.1. However, there are noticeable differences in aridity index
among different subzones, which vary between 1.5 and 6.1. Based on the aforementioned classification
criteria, the upper, mid, and lower reach zones of the Urumqi River basin can be characterized as
subhumid, semiarid, and arid zones, respectively. Thus, the runoff sensitivity to changes in climatic
and other factors can be separately analyzed. These three reaches, by their up-to-date characteristics,
can be described as mountainous zone, urban areas, and near-desert zone.
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3. Results

3.1. Simulation of Water-Energy Balance

The basin characteristic parameter m was estimated for each climatic station and spatially averaged
across each zone to evaluate the zonal value (Table 2). Within the Budyko framework, the parameter
m is essential to accurately assessing the water balance, and spatial variation in this parameter is
affected by the properties of underlying surface [57]. Our results show that the basin parameter m
varies noticeably between 1.86 and 2.49 across the three subzones, suggesting that the underlying
surface and climatic conditions differ across space in the Urumqi River basin.

Table 2. Simulation accuracy of E and elasticity of runoff to changes in climatic and other factors across
the Urumqi River basin.

Indices Upper Reach Zone Mid Reach Zone Lower Reach Zone

m 1.86 1.95 2.49
R2 0.84 0.99 0.99

NSE 0.54 0.95 0.99
RMSE 53.00 12.77 4.58
ζ(Q,P) 1.64 1.96 2.48
ζ(Q,E0) −0.64 −0.96 −1.48
ζ(Q,m) −1.35 −4.08 −5.21

The Budyko framework with the zone-specific m values simulates the water-balance based
evaporation with considerably high accuracy (Figure 2 and Table 2). It can be seen that the evaporation
derived, respectively, from the water balance equation and Budyko framework exhibits good agreement
with R2 ranging from 0.80 to 0.99, NSE from 0.54 to 0.99, and RSME from 4.58 to 53.00 mm. However,
compared with the upper reach mountainous watershed, the mid and lower reach zones have higher
simulation accuracies with greater R2 and NSE, and smaller RSME.
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3.2. Major Controls on Runoff across Heterogeneous Subzones

Table 2 shows the elasticity of runoff to climatic and other factors. It can be seen that in the
headwaters of the Urumqi River basin, the elasticity of runoff to P and E0 is 1.64 and −0.64, respectively,
implying that a 10% increase in mountain precipitation would increase runoff by 16.4% on average,
while a 10% increase in E0 would decrease streamflow by 6.4%. In the mid reach zone, the average
elasticity of runoff to P and E0 is 1.96 and −0.96, respectively, indicating that a 10% increase in P would
increase runoff nearly by 20%, while a 10% increase in E0 would decrease runoff approximately by
10%. When compared with those of the upper and mid reach zones, the lower reach zone has greater P
and E0 elasticity, which are 2.48 and −1.48, respectively. Regarding the impacts of other factors, the
elasticity of runoff to other factors is higher than that of the climatic factors, especially in the mid and
lower reach zones where the climate is drier. As shown in Table 2, for each 10% change in other factors,
the runoff decreases by 13.5%, 40.8%, and 52.1% in the upper, mid, and lower reach zones, respectively.

To discern the major controls on runoff in different zones, the relative importance was calculated
using Equation (7), and the results are shown in Figure 3. It can be seen that both P and other factors
play important roles in the runoff regime in the glacierized headwaters with greater impact from P.
For example, the relative sensitivity of runoff to changes in P and other factors are 45% and 37%,
respectively. For the mid and lower reach zones, the impact of other factors is stronger than that of
P and E0. Noticeably, in the mid and lower reach zones, changes in other factors account for major
variation, i.e., nearly 60%, in runoff, and the variation in climatic variables becomes less significant.
In particular, the relative importance of E0 is small across the basin, which is less than 20%, indicating
that the effect of change in E0 on runoff may not be significant.
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3.3. Glacier Wasting Contribution to Runoff

There was a total of 155 glaciers at the headwaters of the Urumqi River basin in the 1960s [52].
However, the glacier area decreased from 48.04 km2 to 23.61 km2, for the entire basin, and from
1.95 km2 to 1.59 km2, for the Glacier No.1 at the headwaters, between 1960s and early 2010s (Table 3).
The consecutive retreat of the Glacier No.1 has been observed, with a faster shrinkage beginning in
1990s, resulting in the glacier body completely separated into two small glaciers, the west and east
branches, in 1993 [29]. In addition, most pronounced shrinkage or disappearance is found on smaller
glaciers due to the greater sensitivity of small and fragile glaciers to warming [22].
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Table 3. Summary of the changes in glaciers in the Urumqi River basin.

Year Glacier
Area/km2

Retreated Glacier
Area/km2

Rate of Area
Change/km2 a−1 References

Glacier No.1 at the headwaters of the Urumqi River basin

1921–1962 1.950 −0.030 −0.0007

[47,49,50]

1963–1973 1.872 −0.078 −0.0071
1974–1980 1.858 −0.014 −0.0020
1981–1988 1.828 −0.030 −0.0038
1989–1993 1.800 −0.028 −0.0056
1994–2000 1.733 −0.067 −0.0096
2001–2009 1.646 −0.087 −0.0097 [29]
2010–2012 1.590 −0.056 −0.0280 [51]

Glaciers at the mountainous upper reach catchment of the Urumqi River basin

1964 48.04

[52]1964–1989 34.42 −13.62 −0.5448
1990–2005 28.00 −6.42 −0.4013
2006–2014 23.61 −4.39 −0.4878

The changes in glacier mass balance shows a mostly negative balance in the Urumqi River basin
(Figure 4), suggesting a glacier wastage. According to the records on the Glacier No.1, nearly 70%
of observed values revealed glacier mass losses, which began to augment in mid-1980s, especially
pronounced after mid-1990s, and largest in 2010, when the mass balance for the Glacier No.1 was
−219 × 104 m3 water equivalent (w.e.).
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Certain proportion of the surface streamflow is fed by glacier melting in the Urumqi River
basin [48]. Our results showed that the annual glacier mass loss contribution to the runoff at the river
outlet does not exceed 15% between 1960 and 2012 (Figure 5a), with an average of nearly 7% each year
(averaged for the years with negative mass balances). Particularly, the contribution of glacier wasting
to runoff has augmented since mid-1990s (Figure 5a), and the decadal average contribution reached its
highest value, which is 9.5%, in the 2000s (Figure 5b).
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4. Discussion

Climatic factors (i.e., P) are the dominant controls on runoff in the mountainous catchment of
the Urumqi River basin. This is consistent with the findings of Chen et al. (2012) and Ma et al.
(2008) for mountainous catchments in arid settings which are close to the Urumqi River basin [58,59].
The significance of P and other factors were also stressed by He et al. (2019), indicating that P and
changes in basin characteristics have the strongest control on the runoff availability in northwest
China [60]. Existence of glaciers is one of the important features of basin characteristics across the
mountainous catchment in the arid regions of northwest China. In addition to climate variables, one of
the most important factors which might influence runoff is the change in glacier melting. Previous
studies have shown that change in glaciers melting affects river flow [30], and has become one of the
critical controls on runoff perturbations in the Urumqi River basin [25]. However, mountain glaciers
across the world have experienced a general recession under warming since the early twentieth century,
due to their strong dependency on climatic conditions [18]. The observed drastic warming in the
arid regions of northwest China [24] also exacerbated the fragility of mountain glaciers in this region.
For example, an intensive glacier retreat was found in the southeast Tibetan Plateau and Karakorum
Mountains in the northwest China [30]. Sun et al. (2013) found that the Glacier No.1 in the headwaters
of the Urumqi River basin shrank by approximately 15% during last five decades [29]. Li et al. (2011)
reported that smaller glaciers in an area of 0.5 km2 on the Eastern Tianshan Mountains had shrunk or
even disappeared at the same time period [61]. Particularly, the impact of warming on the glaciers
is pronounced after 1990s in the northwest China and has led to a great amount of glacial volume
loss [30,41]. We found that ablation of the Glacier No.1 has accelerated since mid-1980s and especially
pronounced after mid-1990s. Li et al. (2011) also found that the acceleration of the mass loss for
the Glacier No.1 commenced first in 1985 and further augmented in 1996 [62]. Such a phenomenon
may be related to the albedo reduction at the ice surface caused by the augmentation of mineral and
organic dust [63] and/or warming in the melting season [22,30]. In addition, Braithwaite and Raper
(2007) argued that [19] glaciers in dry-cold climate have lower mass balance sensitivity to changes
in precipitation and air temperature than those in warm-wet climate. The acceleration of glacier
ablation in the Urumqi River basin thus might reflect the observed climate shift from warm-dry to
warm-wet in the arid regions of northwest China [64]. However, due to the enhanced glacier melting,
the glacier wasting contribution to runoff has increased by more than 5.5% since the 1990s in the
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northwest China [30]. In the Urumqi River basin, we found that the glacier wasting contribution to
runoff has increased considerably since min-1990s, i.e., 1996, which concurs with the findings of Sun et
al. (2013) [29]. As to the magnitude of this contribution, Shi et al. (1992) estimated that glacier melting
in the Urumqi River basin contributes approximately 8.7% to the total runoff, which is close to our
results [48].

In the mid and lower reach zones, impacts of changes in basin characteristics, which is represented
by the parameter m in the Budyko framework, plays an important role in runoff fluctuation. Changes in
basin characteristics, to some degree, can be explained by the changes in land use and land cover, since
surface conditions reflect basin properties [2], and some other factors, such as population growth [8].
Land surface conditions in the Urumqi River basin have experienced drastic changes (Figure 1b,c) over
the last few decades [65]. For example, the expansion of settlements was evident in the mid and lower
reach zones [66]. Especially, the areal extensions of settlements, water body, and glacier had exhibited
remarkable variations. The settlements were mainly distributed in the urbanized mid reach zone
before 1980; however, over the recent 35 years, the area of settlements in the mid reach zone expanded
while new settlements were also developed in the lower reach zone; the total area of settlements in
Urumqi River basin, therefore, increased by around 200% in comparison to the areal extension in
1980 (Table 4). The expansion of settlements implies, undoubtedly, that human interferences and their
impacts on the surface condition had been growing. For example, without much increase in total
available runoff in the basin, there is nearly 23 times more population in the Urumqi River basin in
the early 2010s than it was in early 1950s [67,68], implying huge increase in water consumption due
to a larger population. This can support our results that the influences of non-climatic factors are
dominant on water availability in the mid and lower reach zones. Other studies also found that human
interferences are the major cause of streamflow perturbations in the downstream of water tense arid
inland river basins [69–71].

Table 4. Changes in land use/land cover during 1980 and 2015.

Land Use Class
Proportion (%)

Relative Change (%) Trend
1980 2015

Agriculture 18.7 16.7 −10.8 decreasing
Forestland 8.0 4.8 −39.8 decreasing
Grassland 54.9 56.7 3.3 increasing

Water body 0.5 0.9 75.0 increasing
Glacier and snow 4.1 0.8 −80.1 decreasing

Settlements 4.0 12.2 204.0 increasing
Bare land 9.7 7.9 −18.8 decreasing

Total 100 100 - -

The data shown in this table is driven from the dataset, which is specified in the reference [65].

5. Conclusions

Surface runoff across the glacierized inland river basins are extremely fragile to variation in
climatic and other factors. Identifying the major controls on runoff has important implication for water
resources management in these regions. In the glacierized mountainous catchments of the Urumqi
River basin, runoff variation is most sensitive to change in P, and followed by the impact of change in
basin characteristics. Across the drier mid and lower reach zones, variation in basin characteristics
plays a dominant role and accounts for nearly 60% of the change in runoff alteration. In addition,
the enhanced glacier recession represents the most pronounced change in basin characteristics in the
mountainous upper reach zone, whereas human interferences are dominant in the mid and lower reach
zones. In the long term, the enhanced glacier wasting contributes around 7% to the annual runoff in the
Urumqi River basin. Our results highlight that the major control on runoff varies noticeably over the
heterogeneous basin surface, and is needed to be identified separately. In addition, the importance of
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change in glacier melting and intensity of human interferences should be considered in water resources
management over the arid inland glacierized river basins.
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Appendix A. Extrapolation of Runoff across the Three Reaches

Hydrological stations are sparse in the inland river basins in the northwest China. Usually, there is
one hydrological station available at the river outlet, and calculating the runoff depth at the remainder
of the basin is challenging. In the Urumqi River basin, the Yingxiongqiao station is available at the
upper reach. Thus, for the upper reach, the below equation is used to calculate the runoff depth by
spreading the observed runoff at the hydrological station over the contributing area as:

Qu =
Q
Au

(A1)

where Qu is the runoff depth at the upper reach (mm), Q is runoff observation at the hydrological
station (mm3), and Au is the runoff contributing area of the upper reach (mm2).

In the mid and lower reach zones, a number of seasonal streams contribute to the streamflow.
Because observations are scare, streamflow for the mid and lower reach zones are extrapolated,
respectively, using the observed runoff from the upper reach zone. For this purpose:

First, the ratio of long-term average annual runoff at the upper reach over the long-term average
annual runoff at the mid and lower reaches are calculated respectively as:

Cm =
Qm

Q
(A2)

Cl =
Ql

Q
(A3)

where Q, Qm, and Ql are, respectively, long-term average annual runoff at the upper, mid, and lower
reaches of the Urumqi River basin (mm).

Second, the annual runoff at the upper reach was multiplied by the runoff ratio of mid and lower
reaches to estimate the annual runoff at mid and lower reaches respectively as:

Qmi = CmQi (A4)

Qli = ClQi (A5)

where Qi is the given annual runoff at the upper reach (mm). Qmi and Qli are, respectively, the annual
runoff at the mid and lower reaches (mm).

http://data.cma.cn/en
www.ncdc.ac.cn
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Finally, the annual runoff depths of mid and lower reach zones were calculated, respectively,
by multiplying the annual runoff and the areal ratio, which is the ratio of the runoff contributing area
over the zone area as:

Rmi = QmiAm (A6)

Rli = QliAl (A7)

where Rmi and Rli are annual runoff depth for the mid and lower reaches (mm), and Am and Al are the
areal ratios for the mid and lower reaches, respectively, without unit.
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