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Abstract: Catchments located in cold weather regions are highly influenced by the natural seasonality
that dictates all hydrological processes. This represents a challenge in the development of river flow
forecasting models, which often require complex software that use multiple explanatory variables
and a large amount of data to forecast such seasonality. The Athabasca River Basin (ARB) in
Alberta, Canada, receives no or very little rainfall and snowmelt during the winter and an abundant
rainfall–runoff and snowmelt during the spring/summer. Using the ARB as a case study, this paper
proposes a novel simplistic method for short-term (i.e., 6 days) river flow forecasting in cold regions
and compares existing hydrological modelling techniques to demonstrate that it is possible to achieve
a good level of accuracy using simple modelling. In particular, the performance of a regression model
(RM), base difference model (BDM), and the newly developed flow difference model (FDM) were
evaluated and compared. The results showed that the FDM could accurately forecast river flow
(ENS = 0.95) using limited data inputs and calibration parameters. Moreover, the newly proposed
FDM had similar performance to artificial intelligence (AI) techniques, demonstrating the capability
of simplistic methods to forecast river flow while bypassing the fundamental processes that govern
the natural annual river cycle.

Keywords: Athabasca River; cold weather regions; predictive hydrology; simplistic environmental
modelling; water resources

1. Introduction

Hydrological processes are the results of the continuous natural changes of the state of water
between the atmosphere and the earth, and several models exist in the literature to simulate and forecast
such processes. Within a watershed, the hydrological cycle can be considered as a closed system
because there are no external inputs or outputs of water entering or exiting the system [1]. Hydrological
modelling for large watersheds, which could include multiple basins, is often challenging due to the
complexity of hydroclimatic regimes related to intra- and inter-basin variations in topography, climatic
patterns, land cover, basin drainage density, soil drainage capacity, and other similar factors [2,3].
These factors play an important role in hydrological modelling in cold weather regions such as the
Athabasca River Basin (ARB) considered in this study. Cold weather regions such as the Taiga, Tundra,
and Alpine biomes are characterized by long, very cold winters, and short, cool summers with average
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temperatures generally in the range 30 ◦C and −25 ◦C. In cold regions, climatic conditions greatly
influence river flow—while there is no or very little contribution to the river from rainfall and snowmelt
during the winter, a large rainfall–runoff and snowmelt lead to considerable flow increases during the
spring and summer months, increasing the risk of flooding [4]. Moreover, the basin drainage density is
reduced during the colder months as creeks and minor watercourses tend to freeze as well as topsoil,
which does not provide any significant drainage capacity. Due to these reasons, accurate forecasting of
stream flows in cold climatic regions is highly challenging and often requires a large amount of input
data in the form of explanatory variables to capture the large variations in climatic regimes, resulting
in long computational times for calibration and, consequently, numerous calibration parameters [5].

Several types of hydrological models have been developed for river flow forecasting in cold
regions, among which two distinct classes can be identified: process-driven and data-driven models.
Process-driven models are deterministic in nature and aim to recreate the hydrological processes
in a physically realistic fashion, considering the internal sub-processes and mechanisms within
a watershed [1]. Such modelling approaches are based on elaborate frameworks and require multiple
variables depending on the underlying principles upon which they are developed. The cold regions
hydrological model (CRHM) is one platform specifically created for hydrological modelling in cold
weather regions that is widely adopted for simulation of hydrological processes in numerous catchments
in Canada. CRHM considers a comprehensive representation of physical processes including blowing
snow, interception and sublimation of snow, energy balance, snowmelt, canopy influence on radiation,
and infiltration to frozen soils. Bhuiyan et al. [6] used a similar process-based hydrologic modelling
system to forecast spring flooding in the Sturgeon Creek watershed, Manitoba, Canada. This approach
estimated runoff by relating weather parameters such as temperature and precipitation with snow
depth and soil infiltration capacity. The CRHM demonstrated a good level of performance in the
attempt of forecasting stream flow in agricultural areas similar to the ARB. However, the large number
of explanatory variables necessary to explain the complex physical processes led to falsifications of
snow sublimation, snow transport, and infiltration to frozen soil evaluations that, as consequence,
were very influential in stream discharge generation [7]. The snow cover duration (SCD) was found to
be a key component in the snowmelt-runoff model (SRM)—with increasing global temperatures, SCD
decreases, leading river flow forecasting to inaccuracies when models are overfitted on historical data
during calibration. Such data requirement implies that data availability and uncertainty within the
multiple explanatory variables pose major limitations to process-driven models [8].

Data-driven models, on the other hand, relate outputs and inputs through a set of mathematical
parameters, equations, or time series expressions [9]. Hill et al. [10] developed regression equations from
flow data that express discharge as function of the basin’s physical and meteorological characteristics.
The developed regression model was used for quantifying mean annual values, seasonal variation,
and interannual variability of runoff in an ungauged basin in the Gulf of Alaska. A statistical
modelling approach was adopted by Tsakiri et al. [11] for the estimation of water discharge in
Schoharie Creek, New York. The relationship between water discharge, climatic variables, and
groundwater level were evaluated to accurately estimate run-off in a network of interconnected
watersheds. These data-driven modelling approaches demonstrate the possibility of overcoming
the limitations associated with process-based models for hydrology applications [12–15]. Further,
data-driven models could also be location-independent and could be used for climatically similar
locations by adjusting the few model calibration parameters through a method called regionalization.
This method classifies basins or regions based on geomorphological (e.g., terrain characteristics, land
cover, hydrologic response) and climatology information by similarity, through a set of parameters.
This method could become challenging when attempting to transfer numerous explanatory variables,
often associated with process-driven models, to a new area of interest [16,17]. This is especially
important in cases where the area of interest has little or no data available for specific explanatory
inputs (i.e., groundwater levels and SCD) to use in the model calibration phase. Despite the advantages,
the use of data-driven models has seen very few applications for river flow forecasting in cold regions
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such as the ARB. Veiga et al. [18] forecasted the flow at the Bow River in the city of Calgary, Alberta,
Canada, using the base-difference model that only used the daily river flow values with 3 days advance
from three gauging stations located upstream as inputs. Although simplistic in its approach, the
model showed superior performance metrics based on the coefficient of determination (r2 = 0.93)
and root mean square error (RMSE = 14 m3/s). A single-input sequential adaptive neuro-fuzzy
inference system (ANFIS) was used by Belvederesi et al. [2] to forecast flows along the Athabasca
River in Alberta, Canada. The ANFIS-based model accurately estimated the river flow (r2 = 0.99,
Nash–Sutcliffe coefficient = 0.98) with a lead time of 6 days using a single input. The research work
by Veiga et al. [18] and Belvederesi et al. [2] substantiates the possibility of using simple data-driven
modelling frameworks for accurately forecasting river flows in cold regions such as the ARB.

Over the past 40 years, the lower reaches of the ARB have been disturbed by an extensive urban
and industrial development due to the extraction of energy resources (i.e., oil and gas). The impact of
these activities has been a growing concern for the environment and ecology of this area, which has led
to many scientific studies pertaining to long-term variations in surface water quality and quantity and
climate change impact assessments in this region [19–21]. This industrial development also implies
changes in land uses that increase spring runoff and, consequently, the risk of flooding. Because the
existing literature is limited in terms of short-term river flow forecasting applications in cold regions,
the present study aimed to enhance knowledge in the hydrological modelling field.

The main objective of this study was to develop a simplistic hydrological model that could be
used to make short-term river flow forecasting in cold regions. A novel flow difference model (FDM)
is proposed that estimates river flow at downstream stations based on daily flow differences observed
between stations. Moreover, two existing simplistic methods, the base difference model (BDM), firstly
described by Veiga et al. [18], and a regression model (RM), were compared to the performance of the
FDM. These models were applied to forecast the Athabasca River flow at Fort McMurray based on
the flows measured at three upstream hydrometric stations, namely, Jasper, Hinton, and Athabasca.
These methods were evaluated using two different calibration and validation dataset approaches
to understand if simplistic data-driven hydrological modelling could be affected by the selection of
time-dependent calibration and validation datasets.

2. Materials and Methods

2.1. Study Area

The Athabasca River is located in Alberta, Canada, and it originates from the Columbia Icefield
in Jasper National Park, flowing for over 1200 km into Lake Athabasca. The upper reaches of the
Athabasca River are characterized by a mountainous topography, including alpine, sub–alpine, and
montane ecoregions. The middle portion of the ARB contains industrial developments such as forestry,
open pit coal mines, limestone quarries, and agricultural areas. The lower reaches of the Athabasca
River range between the town of Fort McMurray and the confluence of the Peace and Athabasca
Rivers with Lake Athabasca, which forms a vast wetland called the Peace–Athabasca delta [22,23].
Fort McMurray is located about 1000 km away from the origin of the Athabasca River in the regional
municipality of Wood Buffalo, which is considered the focal point of Canada’s oil sands industry, being
the third largest oil deposit in the world and hosting local and foreign workers from the energy sector.
Consequently, there are increasing concerns regarding environmental protection issues, especially
related to water quality and quantity. Figure 1 shows the area of interest in this study.

Usually, this region experiences long, cold winters and short, mild summers. In Fort McMurray,
January represents the coldest month (−12.2 ◦C) and July the warmest (23.7 ◦C). The average rainfall is
highest in July (80.7 mm) and lowest in January (0.4 mm). As consequence, these climatic variables
lead to a great annual variation in river flow—in January, the average river flow at Fort McMurray is
170 m3/s, while it measures an average of 1376 m3/s in July, which is approximately 8 times larger than
January [4]. During the colder months (i.e., December to March), there is almost no contribution of



Water 2020, 12, 3049 4 of 18

rainfall and snowmelt, while large rainfall–runoff and snowmelt are observed in the warmer months
(i.e., April to November). In spring, the soil underneath the snow cover is still frozen, causing an
enhanced runoff of rainfall and thawing snow. The considerable annual variation of river flow in cold
regions poses a challenge to hydrological modelling. For this reason, a modelling technique that can
predict such variability and bypass the complex hydrological processes that influence the river flow
is preferred.
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Figure 1. Map of the study area showing the location of the four gauging stations of interest over the
Athabasca River.

2.2. Methods

2.2.1. Data Selection Approaches

Historical daily flow records from 1971 to 2014 were acquired from the Water Survey of Canada
(WSC) at 4 hydrometric stations: Jasper (07AA002), Hinton (07AD002), Athabasca (07BE001), and Fort
McMurray (07DA001) [24]. These locations were selected based on data consistency and completeness
of records [2,25]. Two data selection approaches were used to address errors related to time-dependent
input variables that might arise during the modelling process [2]; approach 1 uses sequentially-clustered
data, and approach 2 uses data in regular intervals (e.g., odd/even years of records). For the sequentially
clustered data approach, we selected annual river flow data between 1971 and 2000 for calibration,
while data ranging between 2001 and 2014 was used for validation. For the second approach, we used
river flow data during odd years between 1971 to 2014 (i.e., 1971, 1973, · · · , 2013) for model calibration,
and data pertaining to even years for the same range of time period were used for validation of the
models. Subsequently, the performance of the BDM, FDM, and RM was evaluated on data selected
through either approach to determine the influence of time-dependent variables.

2.2.2. Estimation of Optimal Lead Time

A correlation analysis of data collected from each gauging station was conducted to estimate
the optimal lead time (OLT), which indicates the time (in days) taken for the mass of water to move
from one station to the other. The flow at Fort McMurray at time “t” was correlated to the flow at
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other gauging stations (i.e., Jasper, Hinton, and Athabasca) for different lag periods ranging between
1 and 10 days (i.e., t − 1, t − 2, · · · , t − 10). Among the coefficient of determination (r2) values
estimated for various lag periods, we identified the lag period corresponding to the highest value
of r2 as the optimal lead time between Fort McMurray and the other stations upstream. Daily flow
records acquired at Jasper, Hinton, Athabasca, and Fort McMurray were used for the optimal lead time
analysis. The estimated optimal lead time between stations also indicated the forecasting capability of
the models. More details regarding the method used in this study for the estimation of the optimal
lead time between stations (i.e., Jasper–Fort McMurray, Hinton–Fort McMurray, and Athabasca–Fort
McMurray) can be found in [2].

2.2.3. Model Development and Validation

This study adopted simplistic modelling methods for flow forecasting that imply the use of
a limited number of input variables and calibration parameters, as well as relatively inexpensive
and easy to use computational resources. There are several studies in the literature that have aimed
to forecast the Athabasca River flow at Fort McMurray. Sophisticated tools such as the variable
infiltration capacity (VIC) or the soil and water assessment tool (SWAT) have shown high performance
in hydrological modelling; however, they often require a large amount of input variables (i.e., climate
data, runoff estimates, topography layers) for model calibration, which generate a complex set of
calibration parameters. These tools are also relatively expensive and require knowledgeable operators.
To address these disadvantages, this study proposes three simplistic methods to forecast flow at
Fort McMurray: (1) a base difference model (BDM), (2) a novel flow difference model, and (3) linear
and nonlinear regression models. The BDM was firstly introduced by Veiga et al. [18] based on the
assumption that the difference in flow measured at separate locations along the river was generally
constant during the colder months, when the contribution of rainfall and snowmelt was negligible.
Hence, the BDM uses a base difference (BD) flow calculated as the average difference in discharge
between the upstream and the downstream gauging station during the colder period of the year. The
BD is calculated as follows:

Qbd =

∑n
1

(
Qds@t −Qstn@t−OLTp

)
n

(1)

where Qbd is the average base difference between the station downstream and the stations upstream,
Qds@t is the flow at a station downstream at time t (i.e., Hinton, Athabasca, or Fort McMurray),
Qstn@t−OLTp is the flow at one station upstream (i.e., Jasper, Hinton, or Athabasca) at time t–OLT, n is the
number of observations, and p represents each station pair (i.e., Jasper–Hinton, Jasper–Fort McMurray,
Hinton–Athabasca, Athabasca–Fort McMurray).

The flow at the downstream location is then forecasted using

Q̃ds@t = Qstn@t−OLTp + Qbd (2)

where Q̃ds@t is the forecasted flow at a station downstream (i.e., Hinton, Athabasca, or Fort McMurray)
at time t.

The FDM uses the daily difference (DD) between the upstream and downstream gauging stations
as follows:

DDi = Qds@ti −Qstn@ti (3)

Q̃ds = Qstn@t−OLTpi
+ DDi (4)

where DD is the daily flow difference between the station located downstream and the stations
upstream; i is the day of the year (i = 1, · · · , 365); Qds@ti is the flow at a downstream station at time t, on
day i; Qstn@ti is the flow at the upstream station (i.e., Jasper, Hinton, or Athabasca) at time t, on day i;
Q̃ds is the forecasted flow at a downstream station (i.e., Hinton, Athabasca, or Fort McMurray); and
Qstn@t−OLTpi i

is the flow at an upstream station at time t–OLT, on day i.
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The equation describing the RM based on simple linear regression is

Q̃ds@t = a·Qstn@t−OLTp + ε (5)

where Q̃ds@t is the flow at a station downstream at time t, Qstn@t−OLTp is the flow at one station upstream
(i.e., Jasper, Hinton, or Athabasca) at time t–OLT, and a and ε are the regression parameters described in
Equation (5). The performance of the BDM and the FDM was compared to both linear and non-linear
RM in terms of accuracy in forecasting. For the nonlinear RM, this study considered six polynomial
regression degrees, employing the following equations:

Q̃ds@t = a·Qm
stn@t−OLTp + · · ·+ b·Qstn@t−OLTp + ε (6)

where m is the polynomial degree, and a, b, and ε are the regression parameters.
The flow data from three hydrometric stations located upstream were used to forecast the flow

downstream at Fort McMurray using different combinations, i.e., (i) Jasper, (ii) Jasper–Hinton, and
(iii) Jasper–Hinton–Athabasca. The predictive performance of models was evaluated using quantitative
statistical metrics, such as the coefficient of determination (r2), the root mean square error (RMSE),
and the Nash–Sutcliffe coefficient of efficiency (ENS). The r2 indicates the goodness-of-fit between
measured and predicted flow values. Estimated values for r2 range between 0 to 1 and values closer to
1 indicate higher correlation and vice-versa. The RMSE is the normalized error represented by the
distance between the predicted and the measured flows. Higher estimates of RMSE indicate poorer fit
of observed values to model forecasts and lower values indicate better fit. The ENS is a widely used
parameter for specifically assessing the goodness of fit of hydrologic models. Estimates of ENS range
between −∞ to 1, while values closer to one indicate higher correlation between observed and model
predicted values; values closer to zero indicate no correlation and highly negative estimates indicate
antagonistic relation between model results and observations.

3. Results and Discussion

3.1. Optimal Lead Time

The optimal lead time was estimated by performing a correlation analysis of the flow observed
between upstream and downstream stations. This procedure was performed for approaches 1 and
2 to find the influence of time-dependent variability in the flow data. However, calculations using
both datasets returned similar optimal lead times, implying that the effect of variability in annual
flow patterns is insignificant. The highest r2 between Athabasca and Fort McMurray was found at
t − 2 (r2 = 0.923) for both approaches, indicating that the optimal lead time between these stations
is 2 days. This implied that flow forecasting for Fort McMurray using data from Athabasca station
could be made 2 days in advance. Between Hinton and Fort McMurray, the highest r2 of 0.58 was
estimated at t − 4, denoting an optimal lead time of 4 days between these stations. In the case of
Jasper–Fort McMurray, the optimal lead time corresponded to 5 days (r2 = 0.494). However, for
the Jasper–Hinton and Hinton–Athabasca station pairs, the estimated optimal lead times were 1
(r2 = 0.961) and 3 (r2 = 0.633), respectively. The total lead time between Jasper and Fort McMurray
estimated by summation of the optimal lead times between the upstream stations and Fort McMurray
(i.e., Jasper–Hinton = 1 day, Hinton–Athabasca = 3 days, and Athabasca–Fort McMurray = 2 days)
would be equal to 6 days according to Belvederesi et al. [2]. This might be due to the actual optimal
lead time between Jasper and Fort McMurray being in between 5 and 6 days. Because the r2 values for
the 5- and 6-day difference were close for the Jasper–Fort McMurray analyses (i.e., 0.494 and 0.491,
respectively), this study considered 6 days lead time between Jasper and Fort McMurray.
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3.2. Calibration and Validation Datasets

The annual average daily flow for various gauging stations selected for calibration and validation
is shown in Figure 2. The plot in Figure 2a shows the annual average flow pattern at Jasper, Hinton,
Athabasca, and Fort McMurray for approach 1 over the time period 1971–2000, which was used for
model calibration. The corresponding validation dataset was based on the annual average flow at
stations over the period 2001–2014 (Figure 2b). Figure 2c,d shows the calibration and validation datasets
used for approach 2, which considered flow data at regular intervals (odd/even). Figure 2c shows the
annual average flows for the odd years (i.e., 1971, 1973, . . . , 2013) used for the calibration of the models.
The validation dataset for the second approach consisted of annual average flows for even years
between 1971 and 2014 (Figure 2d). A constant offset among the flow data for various stations could be
noted during the colder months, from day 1 to 105 (1 January to 15 April) and from day 335 to 365
(December 1st to December 31st), which denoted the base flows at these locations. This was consistent
between calibration and validation datasets considered for both approaches 1 and 2, respectively.
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3.3. Base Difference

The average BD between gauging stations was calculated between 1st December and 15th
April, as a constant offset in flow was observed among stations (Figure 2). This constant offset was
considered as the base flow as described by Veiga et al. [18]. The BD estimates between gauging
stations were observed to increase with respect to the distance between stations. For approach 1, the
BD estimates were 22.72, 83.63, and 75.52 m3/s for Jasper–Hinton (80 km), Hinton–Athabasca (504 km),
and Athabasca–Fort McMurray (383 km), respectively. The BD estimates using approach 2 did not
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vary to a large extent, signifying the consistency of flow data over the years considered in this study.
The BD using approach 2 returned 23.21, 73.84, and 68.62 m3/s for Jasper–Hinton, Hinton–Athabasca,
and Athabasca–Fort McMurray, respectively. The difference in BD between the two approaches was
0.49, 9.79, and 6.9 m3/s for the respective station pairs mentioned above. The BD estimated difference
in flow between Jasper and Fort McMurray (967 km) was 181.87 and 165.67 m3/s for approaches 1
and 2, respectively, with a difference of 16.2 m3/s. The difference in BD acquired using different data
selection approaches slightly increased with distance between the stations, which would be expected
due to the small variation in precipitations over the large region.

3.4. Performance of Models

To evaluate the capability of the models to forecast the river flow at Fort McMurray, we implemented
three model techniques, i.e., BDM, RM, and FDM, using daily flow data from Jasper, Jasper–Hinton, and
Jasper–Hinton–Athabasca stations in addition to the daily average flow over the validation time-period.
These analyses are synthesized in Table 1, Table 2, and Table 3 for the BDM, RM, and BDM, respectively.
Additionally, a graphical presentation of the modelled outputs using the daily average flow in relation
to the observed flow at Fort McMurray is discussed in Section 3.4.4.

3.4.1. BDM

Table 1 shows the relations between the modelled and observed daily flow at Fort McMurray using
the Jasper, Jasper–Hinton, and Jasper–Hinton–Athabasca flows as inputs. In approach 1, regardless
the input flow data combinations, similar agreements were found, i.e., the r2, ENS, and RMSE values
were in the ranges of (i) 0.18 to 0.77, −0.45 to 0.45, and 198.64 to 818.15 m3/s, respectively, using
Jasper flow records; (ii) 0.20 to 0.76, −0.49 to 0.43, and 199.94 to 816.07 m3/s, respectively, using
Jasper–Hinton flow; and (iii) 0.19 to 0.76, −0.37 to 0.62, and 198.27 to 817.40 m3/s, respectively, using
Jasper–Hinton–Athabasca flow. In approach 2, similar agreements were also observed in comparison
to approach 1, i.e., the r2, ENS, and RMSE values were in the ranges of (i) 0.33 to 0.84, −0.55 to 0.39,
and 205.06 to 874.04 m3/s, respectively, using Jasper flow; (ii) 0.29 to 0.83, −0.59 to 0.38, and 207.96 to
879.09 m3/s, respectively, using Jasper–Hinton flow; and (iii) 0.28 to 0.84, −0.46 to 0.67, and 206.35 to
880.00 m3/s, respectively, using Jasper–Hinton–Athabasca flow.

Additionally, the modelling was also performed as a function of daily average flows for the
period of interest, and was compared against the observed values at Fort McMurray. It revealed that
approach 1 provided similar agreements for each of the input combinations, i.e., the r2, ENS, and
RMSE values were (i) 0.73, −0.12, and 438.93 m3/s, respectively, using Jasper flow; (ii) 0.67, −0.11, and
438.60 m3/s, respectively, using Jasper–Hinton flow; and (iii) 0.72, −0.12, and 439.66 m3/s, respectively,
using Jasper–Hinton–Athabasca flow. In the case of approach 2, the agreements among the input
combinations were similar, i.e., the r2, ENS, and RMSE values were (i) 0.78, −0.34, and 491.71 m3/s,
respectively, using Jasper flow; (ii) 0.71, −0.36, and 495.35 m3/s, respectively, using Jasper–Hinton flow;
and (iii) 0.77, −0.34, and 492.27 m3/s, respectively, using Jasper–Hinton–Athabasca flow, which were
somewhat worse in comparison to approach 1 outcomes.

The results for approaches 1 and 2 demonstrated that the BDM could not capture the inter-annual
variability of the Athabasca River flow. The ENS values estimated for the BDM forecasted flows
were negative in approximately 60 and 83% of the cases in approaches 1 and 2, respectively, which
demonstrated the poor capability of the model to forecast the intra- and inter-annual variations in
river flow. The considerably large RMSE obtained for the BDM analyses suggested that this modelling
technique was unsuitable for large basins, independently of the calibration data approaches.

Note that the BDM was successfully implemented to forecast the Bow River flow in Calgary,
Alberta; however, it failed to provide reasonable results for the Athabasca River at Fort McMurray.
Although the two locations are geographically and climatically close, the Bow River Basin (BRB) and
the ARB are topographically different. The catchment area of ARB (i.e., approximately 159,000 km2)
is also much larger than that of BRB (i.e., approximately 26,200 km2). Due to these reasons, the flow
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that contributed to each station from their respective catchment area is not proportional and varies to
a large extent during certain seasons such as the spring, summer, and fall. These inferences indicate
that the BDM would not be suitable for flow forecasting in these types of scenario.

Table 1. Summary of the statistical performance indices estimated for daily flows forecasted at Fort
McMurray using the BDM for approaches 1 and 2 for individual validation years. The average
row indicates the values produced as a function of daily average flows for the period of interest
shown in Figure 2.

Approach 1: Calibration 1971–2000

Validation Year
Jasper Jasper–Hinton Jasper–Hinton–Athabasca

r2 ENS RMSE (m3/s) r2 ENS RMSE (m3/s) r2 ENS RMSE (m3/s)

2001 0.65 0.13 447.75 0.63 0.12 448.86 0.64 0.17 448.29
2002 0.70 0.45 198.64 0.69 0.43 199.94 0.71 0.62 198.27
2003 0.55 0.03 389.67 0.53 0.01 390.60 0.50 0.04 392.50
2004 0.61 −0.12 473.99 0.61 −0.16 475.21 0.62 −0.19 481.81
2005 0.63 −0.45 609.03 0.61 −0.49 610.26 0.61 −0.37 610.39
2006 0.62 −0.02 293.85 0.61 −0.04 295.13 0.63 0.06 294.09
2007 0.18 −0.25 635.44 0.20 −0.21 632.02 0.19 −0.19 632.64
2008 0.50 −0.08 437.71 0.47 −0.09 439.73 0.46 −0.09 440.28
2009 0.56 0.01 360.44 0.54 −0.01 362.63 0.54 0.05 362.99
2010 0.67 −0.01 303.83 0.66 −0.02 304.79 0.67 0.08 304.12
2011 0.67 −0.07 815.15 0.67 −0.09 816.07 0.65 −0.06 817.40
2012 0.77 0.03 614.94 0.76 0.01 616.78 0.76 0.04 616.85
2013 0.56 −0.15 797.72 0.55 −0.17 799.32 0.52 −0.12 801.22
2014 0.41 −0.17 536.61 0.40 −0.18 537.44 0.40 −0.18 538.03

Average 0.73 −0.12 438.93 0.67 −0.11 438.60 0.72 −0.12 439.66

Approach 2: Calibration 1971–2014 Odd Years

1972 0.55 −0.25 733.39 0.52 −0.29 733.39 0.51 −0.25 733.79
1974 0.33 −0.50 874.04 0.29 −0.53 879.02 0.28 −0.34 880.00
1976 0.69 −0.41 571.68 0.65 −0.46 578.18 0.66 −0.42 577.66
1978 0.57 −0.55 681.00 0.57 −0.59 686.66 0.58 −0.45 686.37
1980 0.56 −0.50 690.25 0.52 −0.52 694.33 0.51 −0.46 694.52
1982 0.59 −0.15 641.82 0.57 −0.17 646.87 0.58 −0.17 546.21
1984 0.50 −0.36 495.29 0.47 −0.40 498.19 0.47 −0.40 498.73
1986 0.48 −0.26 717.74 0.65 −0.29 478.10 0.47 −0.25 714.37
1988 0.64 −0.05 439.78 0.39 −0.39 743.35 0.68 0.08 429.28
1990 0.54 −0.25 717.41 0.75 0.16 390.92 0.45 −0.24 722.17
1992 0.59 −0.10 330.87 0.64 −0.32 733.92 0.57 0.02 332.00
1994 0.65 −0.16 531.54 0.57 −0.15 331.73 0.65 −0.17 532.33
1996 0.66 −0.50 834.21 0.64 −0.15 527.70 0.65 −0.37 830.58
1998 0.64 −0.24 377.45 0.68 −0.55 839.42 0.64 −0.14 378.95
2000 0.84 0.11 377.91 0.83 0.09 380.63 0.84 0.21 380.20
2002 0.70 0.39 205.06 0.69 0.38 207.96 0.71 0.67 206.35
2004 0.61 −0.23 487.55 0.61 −0.21 485.62 0.62 −0.24 492.15
2006 0.63 −0.10 300.93 0.55 −0.12 305.78 0.63 0.13 304.77
2008 0.50 −0.15 450.40 0.47 −0.14 449.03 0.46 −0.08 449.57
2010 0.65 −0.10 315.97 0.66 −0.09 315.03 0.67 0.15 314.38
2012 0.77 −0.01 624.71 0.76 −0.02 626.37 0.76 −0.01 626.43
2014 0.43 −0.25 541.72 0.40 −0.22 546.85 0.40 −0.22 547.44

Average 0.78 –0.34 491.71 0.71 –0.36 495.35 0.77 –0.34 492.27
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Table 2. Summary of the statistical performance indices estimated for daily flows forecasted at
Fort McMurray using the RM for approaches 1 and 2 for individual validation years. The average
row indicates the values produced as a function of daily average flows for the period of interest
shown in Figure 2.

Approach 1: Calibration 1971–2000

Validation Year
Jasper Jasper–Hinton Jasper–Hinton–Athabasca

r2 ENS RMSE (m3/s) r2 ENS RMSE (m3/s) r2 ENS RMSE (m3/s)

2001 0.58 0.54 282.58 0.63 0.52 332.95 0.61 0.50 337.74
2002 0.73 −0.48 321.38 0.72 0.56 330.16 0.76 −0.75 349.23
2003 0.52 0.25 340.25 0.57 0.46 289.38 0.51 0.22 346.98
2004 0.63 0.56 291.86 0.64 0.63 269.05 0.63 0.57 290.63
2005 0.65 0.64 299.20 0.66 0.65 295.45 0.65 0.64 300.77
2006 0.61 −0.12 305.64 0.58 0.31 239.43 0.62 −0.06 297.88
2007 0.19 0.09 549.71 0.20 0.11 542.72 0.20 0.09 548.31
2008 0.51 0.38 331.34 0.52 0.38 330.42 0.49 0.36 337.84
2009 0.54 0.29 303.89 0.50 0.43 271.95 0.53 0.27 308.34
2010 0.71 0.24 263.40 0.76 0.59 193.33 0.73 0.27 257.11
2011 0.67 0.60 496.65 0.66 0.59 500.53 0.66 0.58 533.80
2012 0.76 0.75 310.37 0.62 0.60 390.17 0.78 0.77 298.78
2013 0.55 0.54 499.00 0.57 0.55 495.93 0.54 0.53 508.34
2014 0.41 0.33 404.73 0.46 0.37 392.85 0.39 0.32 407.20

Average 0.73 0.66 241.46 0.61 0.60 264.09 0.72 0.65 246.11

Approach 2: Calibration 1971–2014 Odd Years

1972 0.52 0.48 466.37 0.50 0.47 467.30 0.50 0.49 463.04
1974 0.32 0.22 628.63 0.34 0.23 624.31 0.32 0.22 627.27
1976 0.69 0.68 271.33 0.68 0.67 276.16 0.69 0.67 273.60
1978 0.64 0.59 347.51 0.63 0.59 349.21 0.63 0.59 349.06
1980 0.55 0.53 387.80 0.55 0.53 387.29 0.54 0.53 387.85
1982 0.59 0.59 382.23 0.59 0.58 385.22 0.60 0.59 380.85
1984 0.52 0.43 317.47 0.54 0.46 310.19 0.52 0.39 330.25
1986 0.52 0.50 447.43 0.46 0.43 475.66 0.54 0.49 451.54
1988 0.68 0.57 279.71 0.74 0.50 301.00 0.69 0.59 273.01
1990 0.53 0.52 443.84 0.54 0.53 439.59 0.52 0.51 447.28
1992 0.60 0.02 306.60 0.61 0.04 303.08 0.60 −0.05 317.33
1994 0.67 0.66 287.22 0.67 0.66 287.25 0.67 0.65 289.70
1996 0.72 0.57 443.82 0.72 0.56 445.74 0.66 0.62 416.11
1998 0.65 0.39 267.38 0.66 0.40 265.24 0.64 0.34 276.99
2000 0.85 0.75 201.06 0.84 0.74 203.14 0.86 0.74 203.92
2002 0.73 −0.48 321.38 0.72 −0.47 320.66 0.75 −0.86 359.98
2004 0.63 0.56 291.86 0.63 0.57 288.02 0.62 0.54 299.02
2006 0.56 0.45 310.85 0.59 −0.13 307.54 0.62 −0.13 307.17
2008 0.51 0.38 331.34 0.52 0.40 326.50 0.49 0.34 342.97
2010 0.71 0.24 263.40 0.70 0.23 264.10 0.71 0.23 264.36
2012 0.76 0.75 310.37 0.77 0.76 306.77 0.78 0.78 293.81
2014 0.41 0.33 404.73 0.42 0.35 400.31 0.40 0.31 411.77

Average 0.80 0.78 198.99 0.74 0.70 231.82 0.79 0.76 208.17



Water 2020, 12, 3049 11 of 18

Table 3. Summary of the statistical performance indices estimated for daily flows forecasted at Fort
McMurray using the FDM for approaches 1 and 2 for individual validation years. The average
row indicates the values produced as a function of daily average flows for the period of interest
shown in Figure 2.

Approach 1: Calibration 1971–2000

Validation Year
Jasper Jasper–Hinton Jasper–Hinton–Athabasca

r2 ENS RMSE (m3/s) r2 ENS RMSE (m3/s) r2 ENS RMSE (m3/s)

2001 0.92 0.83 180.79 0.92 0.85 159.70 0.96 0.89 155.94
2002 0.90 0.86 173.75 0.89 0.82 174.21 0.90 0.45 195.59
2003 0.93 0.89 156.34 0.92 0.87 147.38 0.94 0.89 131.68
2004 0.90 0.84 160.88 0.93 0.75 190.20 0.93 0.90 139.71
2005 0.91 0.83 172.80 0.94 0.83 180.50 0.94 0.94 117.99
2006 0.91 0.80 179.77 0.91 0.89 149.73 0.88 0.79 133.23
2007 0.92 0.89 157.88 0.85 0.81 193.30 0.92 0.91 171.36
2008 0.92 0.81 173.20 0.89 0.91 166.09 0.93 0.90 130.85
2009 0.95 0.85 161.45 0.91 0.93 156.77 0.95 0.92 104.36
2010 0.94 0.86 167.83 0.93 0.85 184.61 0.94 0.93 80.92
2011 0.92 0.84 165.26 0.91 0.85 186.42 0.98 0.97 138.95
2012 0.90 0.93 138.31 0.83 0.73 232.24 0.96 0.95 139.01
2013 0.92 0.90 141.47 0.89 0.80 183.30 0.89 0.81 323.77
2014 0.93 0.89 155.02 0.92 0.89 161.15 0.92 0.91 146.59

Average 0.94 0.86 156.51 0.95 0.86 153.44 0.94 0.86 157.58

Approach 2: Calibration 1971–2014 Odd Years

1972 0.88 0.89 117.78 0.92 0.91 124.05 0.94 0.94 153.37
1974 0.90 0.93 112.71 0.86 0.87 144.98 0.97 0.95 151.59
1976 0.95 0.96 90.58 0.92 0.91 125.10 0.85 0.83 194.39
1978 0.92 0.94 107.69 0.95 0.95 105.04 0.91 0.90 168.71
1980 0.91 0.84 118.41 0.96 0.96 95.07 0.92 0.91 173.15
1982 0.96 0.90 104.19 0.88 0.88 142.40 0.96 0.95 128.82
1984 0.95 0.92 103.75 0.92 0.90 122.82 0.88 0.88 147.67
1986 0.85 0.78 124.36 0.91 0.89 118.76 0.97 0.97 111.39
1988 0.92 0.85 114.04 0.95 0.97 97.63 0.95 0.94 105.82
1990 0.97 0.97 88.16 0.90 0.90 130.73 0.93 0.92 181.80
1992 0.87 0.92 113.43 0.94 0.94 108.53 0.92 0.89 102.80
1994 0.95 0.94 98.90 0.92 0.91 125.27 0.97 0.95 105.94
1996 0.95 0.91 102.93 0.95 0.95 105.96 0.93 0.91 203.46
1998 0.94 0.93 105.23 0.93 0.90 122.55 0.87 0.81 150.29
2000 0.91 0.89 110.78 0.90 0.92 113.48 0.94 0.86 150.25
2002 0.93 0.85 115.25 0.88 0.88 137.21 0.91 0.45 195.34
2004 0.90 0.92 103.50 0.86 0.85 145.10 0.93 0.90 138.85
2006 0.88 0.88 113.54 0.95 0.97 98.70 0.88 0.79 133.61
2008 0.92 0.91 106.37 0.93 0.94 109.94 0.93 0.91 128.56
2010 0.86 0.89 114.30 0.92 0.92 127.24 0.93 0.91 88.44
2012 0.95 0.94 97.18 0.91 0.90 119.52 0.96 0.95 135.95
2014 0.93 0.92 102.10 0.90 0.89 118.98 0.93 0.93 133.48

Average 0.97 0.95 90.98 0.97 0.97 83.40 0.97 0.95 99.77

3.4.2. RM

Table 2 shows the relations between the modelled and observed daily flow at Fort McMurray
using the Jasper, Jasper–Hinton, and Jasper–Hinton–Athabasca flows as inputs. In approach 1,
regardless the input flow data combinations, similar agreements were found, i.e., the r2, ENS, and
RMSE values were in the ranges of (i) 0.19 to 0.76, −0.48 to 0.75, and 263.40 to 549.71 m3/s, respectively,
using Jasper flow records; (ii) 0.20 to 0.76, 0.11 to 0.65, and 193.33 to 542.72 m3/s, respectively, using
Jasper–Hinton flow; and (iii) 0.20 to 0.78, −0.75 to 0.77, and 257.11 to 548.31 m3/s, respectively, using
Jasper–Hinton–Athabasca flow. In approach 2, slightly better agreements were observed in comparison
to approach 1, i.e., the r2, ENS, and RMSE values were in the ranges of (i) 0.32 to 0.85, −0.48 to 0.75,
and 201.06 to 628.63 m3/s, respectively, using Jasper flow; (ii) 0.34 to 0.84, −0.47 to 0.76, and 203.14 to
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624.31 m3/s, respectively, using Jasper–Hinton flow; and (iii) 0.32 to 0.86, −0.86 to 0.78, and 203.92 to
627.27 m3/s, respectively, using Jasper–Hinton–Athabasca flow.

Further, the modelling was also performed as a function of daily average flows for the period
of interest and was compared against the observed values at Fort McMurray. This revealed that
approach 1 provided similar agreements for each of the input combinations, i.e., the r2, ENS, and
RMSE values were (i) 0.73, 0.66, and 241.46 m3/s, respectively, using Jasper flow records; (ii) 0.61,
0.60, and 264.09 m3/s, respectively, using Jasper–Hinton flow; and (iii) 0.72, 0.65, and 246.11 m3/s,
respectively, using Jasper–Hinton–Athabasca flow. In case of approach 2, the agreements among the
input combinations were similar, i.e., the r2, ENS, and RMSE values were (i) 0.80, 0.78, and 198.99 m3/s,
respectively, using Jasper flow records; (ii) 0.74, 0.70, and 231.82 m3/s, respectively, using Jasper–Hinton
flow; and (iii) 0.79, 0.76, and 208.17 m3/s, respectively, using Jasper–Hinton–Athabasca flow, which
were better in comparison to approach 1 outcomes.

Generally, the RM showed better performance than the BDM. The RM using approach 2 consistently
produced more accurate results than approach 1. The lowest average RMSE was obtained by the model
that used Jasper inputs for approaches 1 and 2. Thus, the use of multiple stations as input did not
generally improve the models’ forecasting capabilities. Similar to the BDM, the RM demonstrated
higher forecasting performance when flow inputs from Jasper were employed in the model. The second
order regression consistently provided higher r2 and ENS, and lower RMSE estimates using approach 2.

3.4.3. FDM

Table 3 shows the relations between the modelled and observed daily flow at Fort McMurray using
the Jasper, Jasper–Hinton, and Jasper–Hinton–Athabasca flows as inputs. In approach 1, regardless the
input flow data combinations, similar agreements were found, i.e., the r2, ENS, and RMSE values were
in the ranges of (i) 0.90 to 0.95, 0.80 to 0.93, and 138.31 to 180.79 m3/s, respectively, using Jasper flow
records; (ii) 0.83 to 0.94, 0.73 to 0.93, and 147.38 to 232.24 m3/s, respectively, using Jasper–Hinton flow;
and (iii) 0.88 to 0.98, 0.45 to 0.97, and 80.92 to 323.77 m3/s, respectively, using Jasper–Hinton–Athabasca
flow. In approach 2, slightly better agreements were observed in comparison to approach 1, i.e., the
r2, ENS, and RMSE values were in the ranges of (i) 0.85 to 0.97, 0.78 to 0.97, and 88.16 to 124.36 m3/s,
respectively, using Jasper flow; (ii) 0.86 to 0.96, 0.85 to 0.97, and 95.07 to 145.10 m3/s, respectively, using
Jasper–Hinton flow; and (iii) 0.85 to 0.97, 0.45 to 0.97, and 88.44 to 203.46 m3/s, respectively, using
Jasper–Hinton–Athabasca flow.

In addition, the modelling was also performed as a function of daily average flows for the period
of interest and was compared against the observed values at Fort McMurray. This revealed that
approach 1 provided similar agreements for each of the input combinations, i.e., the r2, ENS, and RMSE
values were (i) 0.94, 0.86, and 156.51 m3/s, respectively, using Jasper flow records; (ii) 0.95, 0.86, and
153.44 m3/s, respectively, using Jasper–Hinton flow; and (iii) 0.94, 0.86, and 157.58 m3/s, respectively,
using Jasper–Hinton–Athabasca flow. In the case of approach 2, the agreements among the input
combinations were similar, i.e., the r2, ENS, and RMSE values were (i) 0.97, 0.95, and 90.98 m3/s,
respectively, using Jasper flow records; (ii) 0.97, 0.97, and 83.40 m3/s, respectively, using Jasper–Hinton
flow; and (iii) 0.97, 0.95, and 99.77 m3/s, respectively, using Jasper–Hinton–Athabasca flow, which were
better in comparison to approach 1 outcomes.

The FDM demonstrated the best results among the three modelling techniques. The higher
forecasting accuracy obtained by the FDM using daily average flows was also validated by the results
of the inter-annual analyses. More than 90% of model forecasts for individual years had ENS values
higher than 0.80, indicating excellent performance for both approach 1 and approach 2. In all cases,
the FDM produced lower RMSE estimates than the BDM and RM. Although the lowest RMSEs were
observed for the models using Jasper–Hinton daily average flow in both approach 1 (i.e., 153.44 m3/s)
and approach 2 (i.e., 83.40 m3/s), the use of only Jasper daily average flow provided similar outcomes
(i.e., 156.51.44 and 90.98 m3/s for approaches 1 and 2, respectively). As a result of these negligible
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differences, the FDM using the inputs from Jasper could still be considered the highest performing
model due to the reduced number of calibration parameters.

3.4.4. Graphical Presentation of the Modelled Outputs Using Daily Average Flow

Figure 3 shows the dynamics of the modelled and observed flow at the Fort McMurray station
using daily average flows for the period 2001–2014 (approach 1) and the even years during the period
1971–2014 (approach 2). The agreements between them in terms of r2, ENS, and RMSE values are
shown in the “average” rows in Tables 1–3 for the BDM, RM, and FDM, respectively.
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Figure 3. Comparison of the observed and modelled daily average flows at Fort McMurray using
base difference model (BDM) (a,b), regression model (RM) (c,d), and flow difference model (FDM)
(e,f) techniques for the period 2001–2014 (approach 1) and the even years during the period 1971–2014
(approach 2).

In general, the BDM outputs for approaches 1 and 2 demonstrated good performance in forecasting
river flow during the colder months (i.e., December to April). However, poor forecasting ability
was detected during spring, summer, and fall, as illustrated in Figure 3a,b for approaches 1 and
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2, respectively. The BDM using approach 1 consistently overestimated the winter baseflow (i.e.,
days 1 to 105 and days 335 to 365) and greatly underestimated river flow between day 106 to 335.
The use of approach 2 led to more accurate outputs for the winter baseflow; however, the forecasted
flow between day 106 to 334 remained substantially underestimated. The spring freshet, which
showed as the increase in observed river flow between day 101 and 140 in Figure 3, represents the
contribution of the snowmelt from almost the entire catchment, as Fort McMurray is located towards
the lower reaches of the Athabasca River. This contribution could not be captured by the BDM,
independent of the approach adopted in the calibration phase. In fact, the modelled output for
approaches 1 and 2 detected the first spring increase in flow at day 140, while the observed increase
occurred between day 95 and 101. The modelled daily average flow using BDM resulting from the
Jasper–Hinton and Jasper–Hinton–Athabasca analyses erroneously identified peaks between day 160
and 280, while the Jasper resulted in a more continuous trend. A similar conclusion could be obtained
by observing the results shown in Figure 3c,d for the RM output using approaches 1 and 2, respectively.
More continuous outputs were obtained using the inputs from Jasper only, while the Jasper–Hinton and
the Jasper–Hinton–Athabasca largely mis-quantified the ranges of the peaks, especially in approach 1.
Similar to the BDM in approach 1, the RM failed in forecasting the winter flow, the spring increase,
and the late summer/fall decrease. The use of approach 2 did not improve model accuracy for these
periods. However, the ranges in the forecasted peaks were greatly reduced in approach 2. Generally,
more consistent results were obtained using the FDM, as shown in Figure 3e,f for approaches 1 and 2,
respectively. The FDM demonstrated better performance in forecasting the Athabasca River flow
between day 101 and 140 in Figure 3, as opposed to the BDM and RM. Better model performance was
also observed in the peak flow detection, although the peak estimates were, in most cases, considerably
overestimated. This indicated that the FDM could not capture substantially large rainfall and snowmelt
events occurring between the Jasper and Fort McMurray stations. The results obtained from approach 1
showed that the FDM overestimated flow for over 90% of the year, and a larger error between modelled
and observed values could be noted during the second half of the year. Precisely, the FDM in approach
1 was unsuccessful in accurately forecasting the late summer/fall decrease in flow (i.e., day 215 to 335).
However, the use of approach 2 considerably improved the models’ performance over this period of
the year, and could be considered the best option in this study.

The findings from this present study using simplistic modelling techniques to forecast river flow in
the ARB region is highly comparable with estimates produced by more sophisticated process- and data-
driven models. The literature offers two studies that aimed at forecasting the Athabasca River flow
at Fort McMurray using data-driven models presented by Rood et al. [23] and Belvederesi et al. [2].
While Rood et al. opted for a simple interpolation approach (ENS = 0.79), Belvederesi et al. adopted
an adaptive neuro-fuzzy inference system (ANFIS) based on machine learning modelling technique
(ENS = 0.98). ANFIS has shown the highest accuracy among the process- and data-driven techniques
presented in the literature. In general, artificial intelligence (AI) techniques such as ANFIS have
been broadly applied to hydrological modelling for their high performance [26,27]. At the same
time, AI models are often complex to calibrate due to numerous calibration parameters, requiring
specialized personnel to properly operate the software. In their study, Belvederesi et al. [2] also
investigated whether the calibration–validation data selection could affect a model’s forecasting
accuracy. The authors demonstrated that the performance of a model could be influenced by the
selection of calibration and validation datasets due to variability of data over time. As such, the selection
of calibration and validation datasets plays a crucial role in the evaluation of the models’ performance.
Zheng at al. [28] elaborately investigated the influence of datasets used for validation and showed that
model accuracy could be affected by the selection of time-dependent datasets. From this present study,
results demonstrated that the use of sequentially clustered calibration datasets (i.e., approach 1) over
consecutive years might introduce bias in modelling performance due to gradual changes in river flow,
which is potentially due to climate change and/or the increasing water uptake for agricultural and
industrial uses.
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Process–driven models have also been adopted for hydrological purposes in the ARB, mainly for
long-term river flow forecasting. Toth et al. [29] investigated the annual variability of the Athabasca
River using WATFLOOD, a widely used physical-based hydrological model [30–34]. Historical river
flow records along with topography information, rainfall, and temperature were employed to forecast
flow regimes at Fort McMurray. The ENS indicated a model accuracy of 0.72 [29]. Eum et al. [35]
used a variable infiltration capacity (VIC) model coupled with the global circulation model (GCM) to
forecast the Athabasca River flow at Fort McMurray, which employed historical flow, climate, and
vegetation–soil–runoff data as inputs in different combinations (ENS = 0.84). Eum et al. [36] and
Droppo et al. [37] have also used VIC to forecast flow at Fort McMurray, considering hydrometric
and climate data (temperature and rainfall), snow accumulation, snowmelt, potential infiltration into
frozen ground, land cover, and three different soil drainages. The VIC performance in these studies
are very similar, as an ENS value of 0.74 was reported by both studies. The soil and water assessment
tool (SWAT), a physically based model that often requires numerous input variables [38–41], has also
been applied for hydrometric modelling in the ARB. Shrestha et al. [42] demonstrated the use of the
SWAT to achieve highly accurate estimates of flow at Fort McMurray (ENS = 0.91). However, this
required numerous input variables, including snowpack, elevation band, groundwater, soil drainage,
soil–vegetation slope, and pond/reservoir hydraulic conductivity data. Because of the successful
application of process-driven models for their long-term forecasting capability and the improved
performance achieved by data-driven models, further efforts should be dedicated to the investigation
of hybrid modelling techniques in order to provide highly reliable river flow and flood forecasting
models with prolongated forecasting abilities in cold regions. In summary, the simplistic data-driven
FDM proposed in this study shows on-par performance when compared to more complex mechanistic
models. However, while mechanistic models could make long-term predictions in river flows capturing
the effects of climate change and other influencing factors, the FDM is limited to short-term river flow
and flood forecasting.

4. Conclusions

The findings from this study showed that highly accurate river flow estimates in cold regions
could be obtained using simple models. The performance of three simple methods, i.e., the BDM,
FDM, and RM was investigated over the Athabasca River, Alberta, Canada, as a case study. Three
station pairings (i.e., Jasper, Jasper–Hinton, and Jasper–Hinton–Athabasca) and two dataset selection
approaches were employed to understand (i) the incremental benefit derived from the inclusion of
each hydrometric station, and (ii) the effect of time-dependent calibration–validation inputs on the
modelling process. The BDM was found to be unsuitable for river flow forecasting in large basins such
as the ARB. Although better estimates were obtained using the RM, this modelling technique could not
capture the base flow during the colder months, the spring melt contribution, and the late summer/fall
decrease. Finally, the FDM demonstrated the best results consistently for all the different data selection
and station pairing approaches. The r2, ENS, and RMSE values of flow estimates at Fort McMurray
using the FDM indicated that this technique would be suitable for river flow forecasting in cold regions.
However, it could be subject to bias when time-dependent inputs would be employed in the model
calibration phase, as demonstrated by approach 2 over approach 1. The use of multiple hydrometric
stations for model calibration did not lead to considerable enhancements in the model forecasting
capability. Thus, the flow data from one single upstream hydrometric station at Jasper was sufficient to
achieve adequate model performance. This study also demonstrated that the predictive performance
obtained from the newly developed FDM was on par with AI-based models such as ANFIS. The
simplistic modelling techniques here proposed would require fewer calibration parameters and lower
computational effort and time when compared to more sophisticated AI approaches. However, further
efforts should be dedicated to increase the forecasting time capability of such simplistic modelling
techniques. Moreover, the models should be improved to better capture substantially large rainfall and
snowmelt events occurring between the Jasper and Fort McMurray stations as they demonstrated low
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performance to predict extreme peaks in annual flow. A combination of different simplistic approaches
and seasonal analysis would also provide insight in this direction. As such, the FDM model proposed
in this study showed promise for short-term river flow and flood forecasting in cold regions based on
the observed flow at upstream stations.

Author Contributions: Conceptualization, C.B., J.A.D., Q.K.H, A.G., and G.A.; methodology, C.B., J.A.D., and
Q.K.H.; formal analysis, C.B., J.A.D., Q.K.H, A.G., and G.A.; writing—original draft preparation, C.B. and J.A.D.;
writing—review and editing, Q.K.H, A.G., and G.A.; supervision, G.A. and Q.K.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded by a Natural Sciences and Engineering Research Council of Canada
Discovery Grant to Q. Hassan.

Acknowledgments: The authors would like to thank the Water Survey of Canada for providing us the historical
average daily water flow data during the 1971 to 2014 period.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Renji, R.; Jimson, M. Hydrological Data–Driven Modeling; A Case Study Approach. In Earth Systems Data
and Models 1; Springer: Heidelberg, Germany, 2015; ISBN 978-3-319-09235-5.

2. Belvederesi, C.; Dominic, J.A.; Hassan, Q.K.; Gupta, A.; Achari, G. Predicting River Flow Using an AI-Based
Sequential Adaptive Neuro-Fuzzy Inference System. Water 2020, 12, 1622. [CrossRef]

3. Hayat, H.; Akbar, T.A.; Tahir, A.A.; Hassan, Q.K.; Dewan, A.; Irshad, M. Simulating Current and Future
River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP
Scenarios. Water 2019, 11, 761. [CrossRef]

4. Government of Canada. Historical Climate Data. Available online: https://climate.weather.gc.ca/ (accessed
on 23 October 2020).

5. Shah, M.I.; Khan, A.; Akbar, T.A.; Hassan, Q.K.; Khan, A.J.; Dewan, A. Predicting Hydrologic Responses
to Climate Changes in Highly Glacierized and Mountainous Region Upper Indus Basin. R. Soc. Open Sci.
2020, 7, 191957. [CrossRef] [PubMed]

6. Bhuiyan, H.A.K.M.; McNairn, H.; Powers, J.; Merzouki, A. Application of HEC-HMS in a Cold Region
Watershed and Use of RADARSAT-2 Soil Moisture in Initializing the Model. Hydrology 2017, 4, 9. [CrossRef]

7. Cordeiro, M.R.C.; Wilson, H.F.; Vanrobaeys, J.; Pomeroy, J.W.; Fang, X. Simulating Cold-Region Hydrology in
an Intensively Drained Agricultural Watershed in Manitoba, Canada, Using the Cold Regions Hydrological
Model. Hydrol. Earth Syst. Sci. 2017, 21, 3483–3506. [CrossRef]

8. Aygün, O.; Kinnard, C.; Campeau, S. Impacts of Climate Change on the Hydrology of Northern Midlatitude
Cold Regions. Prog. Phys. Geogr. Earth Environ. 2020, 44, 338–375. [CrossRef]

9. Singh, V.P.; Woolhiser, D.A. Mathematical Modeling of Watershed Hydrology. J. Hydrol. Eng. 2002, 7, 270–292.
[CrossRef]

10. Hill, D.F.; Bruhis, N.; Calos, S.E.; Arendt, A.; Beamer, J. Spatial and Temporal Variability of Freshwater
Discharge into the Gulf of Alaska. J. Geophys. Res. Ocean. 2015, 120, 2. [CrossRef]

11. Tsakiri, K.G.; Marsellos, A.E.; Zurbenko, I.G. An Efficient Prediction Model for Water Discharge in Schoharie
Creek, NY. Int. J. Climatol 2014, 2014, 284137. [CrossRef]

12. Darwen, P.J. Bayesian Model Averaging for River Flow Prediction. Appl. Intell. 2018, 49, 103–111. [CrossRef]
13. Delgado-Ramos, F.; Hervas–Gamez, C. Simple and Low–Cost Procedure for Monthly and Yearly Streamflow

Forecasts during the Current Hydrological Year. Water 2018, 10, 1038. [CrossRef]
14. Tourian, M.J.; Schwatke, C.; Sneeuw, N. River Discharge Estimation at Daily Resolution from Satellite

Altimetry over an Entire River Basin. J. Hydrol. 2017, 546, 230–247. [CrossRef]
15. Najafi, M.R.; Moradkhani, H. Ensemble Combination of Seasonal Streamflow Forecasts. J. Hydrol. Eng.

2016, 21, 04015043. [CrossRef]
16. Spence, C.; Whitfield, P.H.; Pomeroy, J.W.; Pietroniro, A.; Burn, D.H.; Peters, D.L.; St-Hilaire, A. A Review

of the Prediction in Ungauged Basins (PUB) Decade in Canada. Can. Water Resour. J. 2013, 38, 253–262.
[CrossRef]

http://dx.doi.org/10.3390/w12061622
http://dx.doi.org/10.3390/w11040761
https://climate.weather.gc.ca/
http://dx.doi.org/10.1098/rsos.191957
http://www.ncbi.nlm.nih.gov/pubmed/32968496
http://dx.doi.org/10.3390/hydrology4010009
http://dx.doi.org/10.5194/hess-21-3483-2017
http://dx.doi.org/10.1177/0309133319878123
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)
http://dx.doi.org/10.1002/2014JC010395
http://dx.doi.org/10.1155/2014/284137
http://dx.doi.org/10.1007/s10489-018-1232-0
http://dx.doi.org/10.3390/w10081038
http://dx.doi.org/10.1016/j.jhydrol.2017.01.009
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001250
http://dx.doi.org/10.1080/07011784.2013.843867


Water 2020, 12, 3049 17 of 18

17. Spence, C.; Burn, D.H.; Davison, B.; Hutchinson, D.; Ouarda, T.B.M.J.; St-Hilaire, A.; Weber, F.; Whitfield, P.H.
A Canadian Viewpoint on Data, Information and Uncertainty in the Context of Prediction in Ungauged
Basins. Hydrol. Res. 2013, 44, 419–429. [CrossRef]

18. Veiga, V.B.; Hassan, Q.K.; He, J. Development of Flow Forecasting Models in the Bow River at Calgary,
Alberta, Canada. Water 2014, 7, 99–115. [CrossRef]

19. Leong, D.N.S.; Donner, S.D. Climate Change Impacts on Streamflow Availability for the Athabasca Oil Sands.
Clim. Chang. 2015, 133, 651–663. [CrossRef]

20. Hwang, H.T.; Park, Y.J.; Sudicky, E.A.; Berg, S.J.; McLaughlin, R.; Jones, J.P. Understanding the Water Balance
Paradox in the Athabasca River Basin, Canada. Hydrol. Process. 2018, 32, 729–746. [CrossRef]

21. Sauchyn, D.J.; St-Jacques, J.M.; Luckman, B.H. Long-Term Reliability of the Athabasca River (Alberta,
Canada) as the Water Source for Oil Sands Mining. Proc. Natl. Acad. Sci. USA 2015, 112, 12621–12626.
[CrossRef] [PubMed]

22. Athabasca River Basin Research Institute, Athabasca University: About the Athabasca River Basin. Available
online: http://arbri.athabascau.ca/About-the-Athabasca-River-basin/Index.php (accessed on 23 October 2020).

23. Regional Aquatics Monitoring Program (RAMP). Overview of Athabasca River Basin Landscape. Available
online: http://www.ramp-alberta.org/river/geography/basin+landscape.aspx (accessed on 23 October 2020).

24. Government of Canada. Water Survey of Canada. Available online: https://www.canada.ca/en/environment-
climate-change/services/water-overview/quantity/monitoring/survey.html (accessed on 23 October 2020).

25. Rood, S.B.; Stupple, G.W.; Gill, K.M. Century-Long Records Reveal Slight, Ecoregion-Localized Changes in
Athabasca River Flows. Hydrol. Process. 2014, 29, 805–816. [CrossRef]

26. Khazaee Poul, A.; Shourian, M.; Ebrahimi, H. A Comparative Study of MLR, KNN, ANN and ANFIS Models
with Wavelet Transform in Monthly Stream Flow Prediction. Water Resour. Manag. 2019, 33, 2907–2923.
[CrossRef]

27. Moradi, A.M.; Dariane, A.B.; Yang, G.; Block, P. Long-Range Reservoir Inflow Forecasts Using Large-Scale
Climate Predictors. Int. J. Climatol. 2020, 2020, 1–22. [CrossRef]

28. Zheng, F.; Maier, H.R.; Wu, W.; Dandy, G.C.; Gupta, H.V.; Zhang, T. On Lack of Robustness in Hydrological
Model Development Due to Absence of Guidelines for Selecting Calibration and Evaluation Data:
Demonstration for Data–Driven Models. Water Resour. Manag. 2018, 54, 1013–1030. [CrossRef]

29. Toth, B.; Pietroniro, A.; Conly, F.M.; Kouwen, N. Modelling Climate Change Impacts in the Peace and
Athabasca Catchment and Delta: Hydrological Model Application. Hydrol. Process. 2006, 20, 4197–4214.
[CrossRef]

30. Muhammad, A.; Stadnyk, T.A.; Unduche, F.; Coulibaly, P. Multi-Model Approaches for Improving Seasonal
Ensemble Streamflow Prediction Scheme with Various Statistical Post-Processing Techniques in the Canadian
Prairie Region. Water 2018, 10, 1604. [CrossRef]

31. Unduche, F.; Tolossa, H.; Senbeta, D.; Zhu, E. Evaluation of Four Hydrological Models for Operational Flood
Forecasting in a Canadian Prairie Watershed. Hydrol. Sci. J. 2018, 63, 1133–1149. [CrossRef]

32. Awol, F.S.; Coulibaly, P.; Tsanis, I.; Unduche, F. Identification of Hydrological Models for Enhanced Ensemble
Reservoir Inflow Forecasting in a Large Complex Prairie Watershed. Water 2019, 11, 2201. [CrossRef]

33. Bomhof, J.; Tolson, B.A.; Kouwen, N. Comparing Single and Multi–Objective Hydrologic Model Calibration
Considering Reservoir Inflow and Streamflow Observations. Can. Water Resour. J. 2019, 44, 319–336.
[CrossRef]

34. Stadnyk, T.A.; Holmes, T.L. On the Value of Isotope–Enabled Hydrological Model Calibration. Hydrol. Sci. J.
2020, 65, 1525–1538. [CrossRef]

35. Eum, H.-I.; Yonas, D.; Prowse, T. Uncertainty in Modelling the Hydrologic Responses of a Large Watershed:
A Case Study of the Athabasca River Basin, Canada. Hydrol. Process. 2014, 28, 4272–4293. [CrossRef]

36. Eum, H.-I.; Dibike, Y.; Prowse, T. Climate-Induced Alteration of Hydrologic Indicators in the Athabasca
River Basin, Alberta, Canada. J. Hydrol. 2017, 544, 327–342. [CrossRef]

37. Droppo, I.; Prowse, T.; Bonsal, B.; Dibike, Y.; Beltaos, S.; Krishnappan, B.; Eum, H.; Kashyap, S.;
Shakibaeinia, A.; Gupta, A. Regional Hydroclimatic and Sediment Modeling: Oil Sands Monitoring Program;
Technical Report Series; Government of Alberta: Edmonton, AB, Canada, 2018; ISBN 978-1-4601-4030-7.

38. Golmohammadi, G.; Rudra, R.; Dickinson, T.; Goel, P.; Veliz, M. Predicting the Temporal Variation of Flow
Contributing Areas using SWAT. J. Hydrol. 2017, 547, 375–386. [CrossRef]

http://dx.doi.org/10.2166/nh.2012.055
http://dx.doi.org/10.3390/w7010099
http://dx.doi.org/10.1007/s10584-015-1479-y
http://dx.doi.org/10.1002/hyp.11449
http://dx.doi.org/10.1073/pnas.1509726112
http://www.ncbi.nlm.nih.gov/pubmed/26392554
http://arbri.athabascau.ca/About-the-Athabasca-River-basin/Index.php
http://www.ramp-alberta.org/river/geography/basin+landscape.aspx
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey.html
http://dx.doi.org/10.1002/hyp.10194
http://dx.doi.org/10.1007/s11269-019-02273-0
http://dx.doi.org/10.1002/joc.6526
http://dx.doi.org/10.1002/2017WR021470
http://dx.doi.org/10.1002/hyp.6426
http://dx.doi.org/10.3390/w10111604
http://dx.doi.org/10.1080/02626667.2018.1474219
http://dx.doi.org/10.3390/w11112201
http://dx.doi.org/10.1080/07011784.2019.1623077
http://dx.doi.org/10.1080/02626667.2020.1751847
http://dx.doi.org/10.1002/hyp.10230
http://dx.doi.org/10.1016/j.jhydrol.2016.11.034
http://dx.doi.org/10.1016/j.jhydrol.2017.02.008


Water 2020, 12, 3049 18 of 18

39. Chilkoti, V.; Bolisetti, T.; Balachandar, R. Multi–Objective Autocalibration of SWAT Model for Improved Low
Flow Performance for a Small Snowfed Catchment. Hydrol. Sci. J. 2018, 63, 1482–1501. [CrossRef]

40. Qi, J.; Zhang, X.; Lee, S.; Moglen, G.E.; Sadeghi, A.M.; McCarty, G.W. A Coupled Surface Water Storage and
Subsurface Water Dynamics Model in SWAT for Characterizing Hydroperiod of Geographically Isolated
Wetlands. Adv. Water Resour. 2019, 131, 131. [CrossRef]

41. Muhammad, A.; Evenson, G.R.; Stadnyk, T.A.; Boluwade, A.; Jha, S.K.; Coulibaly, P. Impact of Model
Structure on the Accuracy of Hydrological Modeling of a Canadian Prairie Watershed. J. Hydrol. Reg. Stud.
2019, 21, 40–56. [CrossRef]

42. Shrestha, N.; Du, X.; Wang, J. Assessing Climate Change Impacts on Freshwater Resources of the Athabasca
River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/02626667.2018.1505047
http://dx.doi.org/10.1016/j.advwatres.2019.103380
http://dx.doi.org/10.1016/j.ejrh.2018.11.005
http://dx.doi.org/10.1016/j.scitotenv.2017.05.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Methods 
	Data Selection Approaches 
	Estimation of Optimal Lead Time 
	Model Development and Validation 


	Results and Discussion 
	Optimal Lead Time 
	Calibration and Validation Datasets 
	Base Difference 
	Performance of Models 
	BDM 
	RM 
	FDM 
	Graphical Presentation of the Modelled Outputs Using Daily Average Flow 


	Conclusions 
	References

