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Abstract: This study compares multi model ensemble (MME) projections of rainfall using general
quantile mapping, gamma quantile mapping, Power Transformation and Linear Scaling bias
correction (BC) methods for representative concentration pathways (RCPs) 4.5 and 8.5 of the
Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models (GCMs). Using the
Global Precipitation Climatology Centre historical period (1961–2005) rainfall data as the reference,
projection was conducted over 323 grid points of Nigeria for the periods 2010–2039, 2040–2069 and
2070–2099. The performances of the different BC methods in removing biases from the GCMs were
assessed using different statistical indices. The computation of the MME of the projected rainfall
was conducted by aggregation of 20 GCMs using random forest regression method. The percentage
differences in the future rainfall relative to the historical period were estimated for all BC methods.
Spatial projection of the percentage changes in rainfall for Linear scaling, which was the best
performing BC method, showed increases in rainfall of 5.5–6.9% under RCPs 4.5 and 8.5, respectively,
while the decrease range was −3.2–−4.2% respectively during the wet season. The range of annual
increases in precipitation was 5.7–7.3% for RCP 4.5 and 8.5, respectively, while the decrease range
was −1.0–−4.3%. This study also revealed monthly rainfall within the country will decrease during
the wet season between June and September, which is a significant period where most crops need the
water for growth. Findings from this study can be of importance to policy makers in the management
of changes in hydrological processes due to climate change and management of related disasters such
as floods and droughts.

Keywords: power transformation; random forest; representative concentration pathways; multi model
ensemble; Nigeria

1. Introduction

Rainfall is an important component of the climatic and hydrological system as it is the primary
source that replenishes different water sources around the globe. There is natural variability in the
period and amount of rainfall received across the globe. However, the many decades of greenhouse
gases emissions (GHG) have aggravated the dynamism of the climate of the earth, which has in
recent times resulted in more erratic seasonal and annual rainfall in many parts of the globe [1–4].
This has subsequently affected the intensity, frequency and risk of disasters which have been projected
to increase in the future [5–10]. For example, the climatology of global drought conditions under
different global warming levels was investigated [11]. The study showed that, for drying areas, the
duration of droughts is going to rise at an increasingly rapid rate with warming, averaged globally
from 2.0 month/◦C to 4.2 month/◦C. These warming conditions are expected to affect two thirds of
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the global population. Therefore, there is a need for further understanding of the expected changes
regionally and particularly in understudied regions in parts of Africa where agricultural yields can be
affected by decrease in rainfall.

Recently, with advancements in artificial intelligence and machine learning, prediction of the
expected changes to the climate of the earth has been possible [12,13]. In general, climate projections
have been conducted using global climate models (GCMs), historical and future climate simulations at
global scales for understanding the expected changes in the climate. While they can be applied at global
scale in their original resolution, their direct application at regional or local scale can affect the outputs
of climate studies. It is therefore essential to downscale them using either statistical or dynamical
downscaling methods. The statistical downscaling method compared to the dynamical are widely used
due to their strength of incorporation of observations directly into methods, their computational and
cost effectiveness and their provision of point-scale climatic projections from GCM-scale output [14–16].

GCMs are produced by different organizations, so they have different configurations and module
characteristics, which give them variation in their temporal and spatial performances across the
globe [8,17,18] which makes a choice of GCMs to apply in climate studies arduous. On the other
hand, it has been reported that all climate models are treated as having equal performances due to the
similarity in their behaviors [19]. Ensemble prediction systems (EPS) are being increasingly applied in
atmospheric and hydrologic models [20]. Ensemble rainfall projections can be of significant interest in
decision making, due to provision of an explicit and dynamic assessment of the uncertainties associate
with the projections [21]. To further address the issue of uncertainties in climate and hydrological
projections, an approach that involves the generation of a multi model ensemble (MME) from a number
of models has been applied in many studies [17,22]. Aggregation of GCMs into MME can involve
selection of some number of models based on weighting [23,24] or the non-weighing approach in
which models are aggregated directly into an MME based on choices [22].

Aside from the uncertainties associated with the different GCMs, downscaling methods used for
the removal of biases in GCMs have been found to be sources of uncertainties in climate studies [25,26].
For example, Sharma et al. [27] evaluated the uncertainty that arises during climate projection based
on the choice of the downscaling method with uncertainty found to be higher in dynamical than in
statistical downscaling. Therefore, there is the need for careful consideration of the uncertainties in the
resulting climate change projections for the proper framing and assessment of costs, benefits and risks
associated with the increases in GHGs and any preferred policies to mitigate them.

The area considered for this study is Nigeria. Like many other nations of the world, the country
has been experiencing changes in its climate. Previous studies have reported increasing dryness
and drought events due to climate change in Nigeria [28–31]. The changing patterns of rainfall
have also increased the frequency and intensity of floods in the country [32,33]. Climate change
has had significant impacts on agriculture and water resources in the country [34–36]. Most of the
rural populace of the country depends on rain fed agriculture for their livelihoods and the sector
accounts for about 20% of the GDP (World Bank Group) [37]. An understanding of the possible future
changes in rainfall in the area is therefore imperative for sustainable agricultural practices and water
resource availability.

In this study, MME of 20 bias corrected GCMs using gamma quantile mapping (GAQM),
general quantile mapping (GEQM), power transformation (PT), and linear scaling (LS) bias correction
(BC) methods were compared in their projections of rainfall over 323 grid points of Nigeria for the
periods 2010–2039, 2040–2069, and 2070–2099 under representative concentration pathways (RCPs)
4.5 and 8.5. The Global Precipitation Climatology Centre (GPCC) rainfall for the historical period
1961–2005 was used as a reference data. The performances of the different BC methods in removing
biases from the GCMs were assessed using different statistical indices. The computation of the MMEs
of the projected rainfall was conducted using random forest (RF) regression method. The MMEs from
the different BC methods were used in assessing the expected changes in rainfall over the country.
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The percentage differences in the future rainfall relative to the historical period (1971–2000) were
spatially assessed for the best performing BC method.

2. Study Area and Data

2.1. Study Area

The area of study, Nigeria, is located in Western Africa between Latitudes 4◦15′–13◦55′ N;
Longitude: 2◦40′ and 14◦45′ E 923,000 km2 area (Figure 1). The seasons in Nigeria are divided into
the wet (rainy) and the dry. The country receives more than 2000 mm rainfall in the southern region
starting in April and ending in October. The northernmost parts receive rainfalls below 500 mm which
mostly occur in June to September. Temperatures during the dry season range between 30◦ to 37 ◦C in
the south while temperatures in the north are higher and can reach as high as 45 ◦C in the northeastern
and northwestern parts. The harmattan season, which occurs between December and February in the
dry season, has the lowest records of temperatures in Nigeria. During this season, temperatures range
from 17–24 ◦C in the south and can reach lows of 12 ◦C in the north.
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Figure 1. Location of Nigeria in Africa and its topography and meteorological stations.

The ecology of Nigeria varies from the north to the south. The northern part has the Sahel and
Sudan savanna type ecology, the central has the Guinea savanna type while the Mangrove swamp is in
the southernmost part of the country. This can be attributed to variation in the climatic condition of
the country with warm desert and semi-arid climate in the north, the tropical savanna climate in the
center, and the monsoon climate in the south. Elevation within the country ranges from 0 m at the
Atlantic Ocean coast in the south to 2419 m at Chappal Waddi in the north.
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2.2. Data

2.2.1. Historical Rainfall Data

This study made use of the GPCC full data reanalysis rainfall product of the Deutscher
Wetterdienst [38] as the data of reference. The GPCC precipitation product amongst most similar
products offers the following advantages: (1) good quality of data for climate studies, (2) long time
data span for wider study period, (3) produced based on the highest number of precipitation record,
(4) time series completeness after January 1951 [39,40]. This study uses the monthly precipitation data
between the periods of 1961–2005 at 323 grid points over Nigeria.

2.2.2. CMIP5 Datasets

Historical and future simulations of the CMIP5 GCMs available from different modeling groups
under the Assessment Report (AR5) was used in this study [41]. The CMIP5 has significant
improvements over the previous CMIP3 offering larger number of models of higher resolutions
and improvements in models’ physics [41,42]. This study made a selection of 20 monthly rainfall
GCMs simulations of the CMIP5 for Nigeria based on RCPs (4.5 and 8.5) availability for the country.
The rainfall GCMs’ selected, their resolutions and the centers of modeling are presented in Table 1.

Table 1. Basic information of the global climate models (GCMs) selected for use of in this study.

No Model Name Resolution
(Lon × Lat) Institution

1 CESM1-CAM5 1.25 × 0.95 National Center for Atmospheric Research, USA
2 CCSM4 1.25 × 0.95

3 BCC-CSM1.1(m) 1.125 × 1.125 Beijing Climate Center, China Meteorological
Administration4 BCC-CSM1-1 2.8 × 2.8

5 FIO-ESM 2.8 × 2.8 The First Institute of Oceanography, SOA, China

6 CSIRO-Mk3-6-0 1.875 × 1.875 Commonwealth Scientific and Industrial Research
Organization, Australia

7 MIROC5 1.4 × 1.4 The University of Tokyo, National Institute for
Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology
8 MIROC-ESM-CHEM 2.8 × 2.8
9 MIROC-ESM 2.8 × 2.8

10 GISS-E2-R 2.5 × 2.0 NASA Goddard Institute for Space Studies
11 GISS-E2-H 2.5 × 2.0

12 IPSL-CM5A-MR 2.5 × 1.25 Institut Pierre-Simon Laplace, France
13 IPSL-CM5A-LR 3.75 × 1.875

14 HadGEM2-ES 1.875 × 1.25 Met Office Hadley Centre, UK
15 HadGEM2-AO 1.875 × 1.25

16 GFDL-CM3 2.5 × 2.0
Geophysical Fluid Dynamics Laboratory, USA17 GFDL-ESM2M 2.5 × 2.0

18 GFDL-ESM2G 2.5 × 2.0

19 NorESM1-M 2.5 × 1.875 Norwegian Meteorological Institute, Norway

20 MRI-CGCM3 1.25 × 1.25 Meteorological Research Institute

3. Methods

3.1. Bias Correction of GCMs

BC is the correction of biases involving the feeding of local climatic information into GCMs [43].
There are various BC methods including analog methods [44], multiple linear regression [2], delta change
method [45], monthly mean correction [46], gamma–gamma transformation [47], quantile mapping [48],
fitted histogram equalization [49], and scaling method [50]. The four methods that were used in this
study are discussed as follows. These four BC methods were selected based on their wide applicability
in correction of GCM rainfall biases.
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3.1.1. Gamma Quantile Mapping (GAQM)

GAQM [49] has its basis on the assumption that the observed and simulated intensity distributions
are well approximated by a gamma distribution. A model variable Pm is built by GAQM using
probability integral transform in a manner that the distribution that is newly built becomes equal to
the distribution of the observed variable Po.

P0 = F−1
0 (Fm(Pm)) (1)

where, Fm = Cumulative function of Pm, and F−1
0 = inverse cumulative function of Po. The probability

density function (PDF) of gamma distribution is defined as follows:

Pr(x) =
e(−

x
θ )x(k−1)

Γ(k)θk
(2)

where, x = Normalized daily precipitation; k = Form parameter; and θ = Scaling parameter.
In GAQM, the value of k is assumed >1 because if k = 0 (exponential distribution) or k < 1

(dry months), therefore when k = 0 or k = 1 GAQM cannot be applied.

3.1.2. General Quantile Mapping (GEQM)

GEQM [51] is a form of parametric quantile mapping. The main difference is that in GEQM,
gamma distribution and Generalized Pareto Distribution (GPD) are applied. The general equation of
GEQM is given below.

Po = F− 1(Fm(Pm)) (3)

However, in this equation, the pdf is replaced with the gamma distribution and GPD. GPD is
heavily tailed with extreme value distribution [46].

Pr(X − u ≤ x |X > u) =

 1−
(
1 + ξx

σ̃

)− 1
ξ , if ξ , 0

1− exp
(
−
ξx
σ̃

)
, if ξ = 0

(4)

where u is a threshold given by the 95th percentile value, σ̃ = σ+ ξ(u− µ) in which σ̃ is the scale
parameter whereas, ξ is the shape parameter. In this method the gamma distribution is applied
on smaller threshold (values less then 95th percentile) and GPD is applied on values larger than
this threshold.

x =

 F−1
obs,gamma

(
FCCLM,gamma

)
,

F−1
obs,GPD(FCCLM,GPD),

if x < 95th percentile
if x ≥ 95th percentile

(5)

where FCCLM, gamma and FCCLM, GPD are the cumulative density functions for the gamma and GPD
distributions, respectively.

3.1.3. Power Transformation (PT)

The bias in the mean as well as the variance differences for the correction of data is considered by
the PT [52]. In the method, a non-linear correction in the exponential form such as aPb can be applied
in adjusting the variance. In this method, rainfall P is changed to a corrected amount of P∗ using the
expression below.

P∗ = aPb (6)

Parameter b is calculated by a distribution-free approach, in which b is firstly identified through
matching of the coefficient of variation (CV) corrected daily rainfall (Pb) with that of the observed daily
rainfall for the training period. The b value is iteratively determined. The data are grouped into every
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5-day periods of the year to reduce the sampling variability [53]. Using the value of b, the transformed
rainfall is calculated with

P∗ = Pb (7)

The parameter a has its basis on the mean of the observed and the mean of the transformed values.
Parameter a is dependent upon b, and b is dependent upon CV. The values of a and b are different for
every 5-day block of each year.

3.1.4. Linear Scaling (LS)

LS [54] uses the monthly correction values which are calculated by the difference in observed and
simulated daily data. The monthly scaling factor is used for the uncorrected daily data. The daily
rainfall P is corrected by the following equation.

P∗ = αP (8)

For the BC of rainfall, the scaling factor is calculated by

α = Po − Ps (9)

Po is the observed rainfall mean whereas Ps is the monthly mean of the simulated rainfall.
LS method is simple and requires less information such as only monthly data for calculation of the
scaling factor [55].

3.2. Performance Assessment of Bias Correction (BC) Methods

The performances of the BC methods in downscaling GCM rainfall at the GPCC grid points over
Nigeria were assessed using statistical metrics namely, relative standard deviation (RSD), percentage of
bias (Pbias), normalized root mean square (NRMSE), Nash-Sutcliffe efficiency (NSE), modified index
of agreement (MD) and volumetric efficiency (Ve) during the validation period (1993–2005). This was
able to show the individual contributions of the different GCMs to the uncertainties in the MME mean
rainfall from each of the BC methods. The PDFs of the individual models were used for the assessment
of the ability of the different GCMs to replicate the historical rainfall using the different BC methods.

3.3. Ensemble Projections

MMEs based on regression can preserve the variance in its average and has been widely applied
in recent times. Multiple linear regressions however have no ability of explicating the nonlinear
relationship existing between the dependent and the independent variables, even when significance is
in their relationship. However, RF has that ability of explicating the regression coefficient [56] and has
been applied in this study for the conversion of the selected rainfall GCMs into an ensemble.

RF has many advantages of being effective and robust in generating MMEs including (1) avoiding
over-fitting, (2) possible implementation of different types of input variables without need for deleting
any or regularization and (3) flexibility in its analysis and operations. Therefore, the building of
regression models for precipitation relating to a number of predictors covering different spatial scales is
possible in this study. The projection of rainfall during 2010–2039, 2040–2069 and 2070–2099 analyzed
against the historical period 1971–2000 for Nigeria was estimated using the average variances of the
MME rainfalls of the different BC methods. The best performing BC method was selected for the
spatial projection of rainfall in the study area.
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4. Results

4.1. Performance Evaluation of Bias Corrected Models

The results of the performances of the downscaling models for the four BC methods used in this
study are presented in Figure 2 for some of the GCMs used in this study (Table 1). The comparisons
show that there are variations in the performances of the downscaling models depending on the GCM
and the BC methods. For example, while the GEQM BC method was able to reproduce the properties
of the observed rainfall for the GCMs CESM1-CAM5, the method had lesser performance to reproduce
the properties for the GCMs BBC-CSM1.1 (m) and FIO-ESM. The PDFs showed that the PT BC method
was able to replicate the rainfall best followed by the LS and the GAQM methods.
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4.2. Performance Assessment of Bias Correction Methods

The averages of the performances of the twenty GCMs for the different BC methods using six
statistical indices are presented in Table 2. The LS method generally performed better in bias correcting
the models as compared to the other methods. The PT and the GAQM have close performances while
the GEQM was the least performing of all methods.

Table 2. Average of the performance metrics of the downscaling methods from GCMs.

NRMSE RSD NSE MD VE Pbias

GAQM 47.19 0.97 0.70 0.81 0.69 12.44
GEQM 91.45 0.47 0.12 0.63 0.3 −40.11

PT 53.93 0.97 0.72 0.75 0.69 10.36
LS 24.87 0.98 0.90 0.89 0.83 −0.36
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For assessment of the efficiency of the LS method, which was the best performing BC method in
the correction of the biases in the GCMs as seen in Table 2, scatter plot was used. The scatter plots for
some of the GCMs are presented in Figure 3. There are stronger relations between the bias corrected
rainfalls and the observed, compared to the rainfall of raw GCMs as seen in the figure.
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Nigeria during 1961–2005.

4.3. Rainfall Projection

The mean monthly changes in projected rainfall for the MMEs of GCMs using the four BC methods
were compared to the observed GPCC rainfall (1971–2000) as shown in Figure 4. The projection of
rainfall was performed for the different periods of 2010–2039, 2040–2069 and 2070–2099 for RCPs
4.5 and 8.5. The figure shows that during the period 2010–2039, rainfall increased in the dry season,
November to after April, with the least increments for the MMEs of the LS and the GAQM for both
RCPs 4.5 and 8.5. In the same period, the results of GEQM shows the highest increments and it was
followed by the PT method. However, during the wet season (June–September), the GEQM and the
PT MMEs projected decrease in rainfall up to about 20 mm. While there were no changes in rainfall
during this period (2010–2039) under RCP 4.5 for the LS and the GAQM MMEs, there were projections
of decrease under RCP 8.5. The projections during the periods 2040–2069 and 2070–2099 showed
that there would be more decrease in rainfall for the wet season compared to the period 2010–2039.
The highest decreases in rainfall are projected for 2070–2099 under RCP 8.5.
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Figure 4. Projected changes (mm) in monthly rainfall of Nigeria for the periods 2010–2039, 2040–2069,
and 2070–2099 for RCPs 4.5 and 8.5.

The mean annual wet season (June–September) rainfalls (mm) for the future periods under RCPs
4.5 and 8.5 for the different BC methods are presented in Figure 5. The figure shows that the least mean
monthly rainfall expected in the future over Nigeria was estimated by the PT BC method. This will
occur during 2070–2099 under RCP 8.5. In comparison to the other methods, the GEQM method gave
the highest estimate of the mean monthly rainfall over the country. From the method, the rainfall
will be the highest under RCP 4.5 during 2040–2069. Estimation of the monthly mean rainfall for the
GAQM and the LS were observed to be similar for both RCPs and for the three periods.

The percentage changes in projected annual rainfall under RCPs 4.5 and 8.5 for the different BC
methods referenced to the base rainfall (GPCC) (1971–2000) were compared and results presented in
Figure 6. For estimation of the changes in rainfall, the average of the GPCC rainfall during 1971–2000,
323 grid points were subtracted from those of the projected rainfalls for the future periods, 2010–2039,
2040–2069 and 2070–2099 for the four BC methods. The expected changes in future rainfall and the
levels of uncertainty were estimated using the MME mean from the different BC methods and its 95%
confidence band. The highest percentage changes in rainfall were projected by the GEQM method
followed by the PT method. The LS and the GAQM methods have almost the same percentages
of changes in rainfall in the future. There are variations in uncertainties among the BC methods,
the periods and between the RCPs. Uncertainty was highest for the GEQM method during 2040–2069
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period. The least uncertainty was observed for the LS method under RCP 8.5 during 2010–2039.
Uncertainties in the rainfall projection were generally higher under RCP 8.5 than under RCP 4.5.
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Figure 6. Changes (%) of annual average precipitation with 95% level of confidence for different BC
methods during three future periods for RCPs 4.5 and 8.5.

4.3.1. Spatial Changes in Wet Season Rainfall for LS

The spatial patterns of the changes (in percentage) of the mean annual wet season rainfall for the
periods 2010–2039, 2040–2069 and 2070–2099 for the MME of the LS method are presented in Figure 7
for RCP 4.5 and 8.5. Figure shows for RCP 4.5, rainfall will decrease by up to −3.2% mostly in the south
east and central parts of the country. Rainfall is expected to increase at the northeast of the country
under this RCP by up to 5.5%. Projections under RCP 8.5 show that increases in rainfall are expected in
the north east of the country up to 6.9% while rainfalls will decrease by up to 4.2% also mostly at the
south east of the country.
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4.3.2. Spatial Changes in Annual Rainfall

The spatial patterns of the changes (in percentage) of the mean annual rainfall for the periods
2010–2039, 2040–2069 and 2070–2099 for the MME of the LS method are presented in Figure 8 for RCP
4.5 and 8.5. For the annual projections under RCP4.5, the expected increases in rainfall are up to 5.7%.
Under RCP 8.5, rainfall decreases are expected to occur at lesser areas during 2040–2069 and 2070–2099
compared to the RCP 4.5. However, decreases are expected to be higher at the south west parts of the
country compared to RCP4.5 during 2010–2039.
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5. Discussion

Lesser than usual rainfall can significantly affect several sectors including energy, agriculture,
water resources and industrial, which subsequently have debilitating impacts on the socio-economic
and environmental aspects. Many studies have shown the risks of possible droughts that could arise
from decreases in rainfall in some parts and risk of increasing flood as a result of increasing rainfall in
other parts. Manawi et al. [57] reported the risks posed by flooding in the urban areas of northern
Kabul city, Afghanistan, due to excessive precipitation during the monsoon seasons. Flood events
were reported in many parts of West Africa due to above normal precipitation during June–September
compared to the last 35 years due to an overall increase in the intensity of rainfall during the monsoon
season [58]. Homsi et al. [59] showed that there would be a decrease of annual rainfall in the range of
−30–−85% over Syria under all RCPs during the wet seasons. During the dry season, the decreases
are expected to be −12–−93%, indicating drier conditions for the country. Sa’adi et al. [22] projected
the spatial temporal changes of rainfall in the Sarawak area of Borneo Island using the CMIP5 GCMs.
The study revealed both increases and decreases in mean annual rainfall in the study area. The CMIP5
was used in the United States for projection and identification of spatial hotspots of precipitation
changes [60]. The study revealed there are region-specific hotspots of future changes in precipitation
and larger changes should be expected under RCP 8.5 than under RCP 4.5 during 2040–2095. In South
America, Palomino-Lemus et al. [61] projected precipitation using CMIP5, and the study showed that
as the radiative forcing increases from RCP2.6–8.5, the changes in rainfall range from moderate (±25%)
to intense (from ±70% to ±100%). Droughts have also been projected to increase in some parts of the
globe under the CMIP5 GCMs [62,63]

In Africa, Obuobie et al. [64] analyzed the changes in downscaled rainfall over the Volta River
Basin of West Africa and found that annual rainfall is expected to increase by between 3–4% and 3–5%
at all the three climatic zones within the basin under the A1B and A2 scenarios, respectively. In Nigeria,
Abiodun et al. [65] under emission scenarios B1 and A2 assessed the possible global warming impacts
on future climate and extreme events on the future climates for the period 2046–2065 and 2081–2100.
The study showed increases in temperature should be expected at all ecological zones of the country.
These changes may aggravate extreme rainfall events and their frequencies in the southeast and the
south, and there may be annual reduction in rainfall in the northeast causing floods and droughts,
respectively. Though this present study corroborates some of the findings from their study, it does not
support expected increase in rainfall in the southeast of the country. Rather, rainfall is expected to
decrease in the south east of the country. The northeast, where the study reported expected decreases
in rainfall, is projected in this present study to have increased rainfall except for the average annual
projection under RCP8.5 during 2010–2039. This difference in the findings can probably be attributed
to the GCM data applied in the studies. The expected decrease in rainfall, particularly in the central
parts of the country, which constitutes the major contributor to agricultural production and projected
temperature increases [24] in the country, will have significant impacts on the area and the country
at large.

Although, improvements of climate models, e.g., of CMIP5 have been reported [41], climate projections
even with such models are characterized by uncertainties originating from various sources including
those arising from exclusive sources like different emission/concentration scenarios, parameterization
and GCMs’ structures, and boundary and initial conditions [66,67]. In addition, studies have found that
the BC method of downscaling used for the removal of bias in GCMs can be an additional uncertainty
source in any resulting climate ensemble [25,26]. The methodology and data applied in this study
were carefully evaluated in the projections of the climate for the study area. The quantification of
uncertainties relating to data used was not assessed in this study as they are inherent, such as in
GCMs, during their preparations [68]. The projections from the best performing BC method can be a
guide to the possible expected changes in precipitation and their impacts on disasters risks evaluation.
Furthermore, evaluations such as comparing results presented here to those from future studies such
as those using of the CMIP6 are crucial.
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6. Conclusions

This study compares the rainfall projections from MMEs of 20 GCMs for four BC methods:
GAQM, GEQM, PT and LS. The rainfall projections were conducted for Nigeria during 2010–2039,
2040–2069 and 2070–2099 for RCPs 4.5 and 8.5. The study uses the GPCC data of the historical period
1961–2005 and the historical and the future simulations of the GCMs of the CMIP5. The performances
of the different BC methods in removing biases from the GCMs were assessed using different statistical
indices. The computation of the MME mean of the projected rainfall was conducted using the random
forest regression method. The spatial distributions of projected rainfall using the best performing BC
method were conducted for RCP4.5 and 8.5 for the aforementioned three periods.

The study revealed that of the four BC methods, the LS method was the best in removing the
biases from the GCMs. The spatial distributions of rainfall using the MME of LS method show that
the southeast down to the south–south part of the country will experience decrease in rainfall. In the
northeast part of the country, rainfalls are expected to increase according to the spatial projections from
the LS BC method. The monthly rainfall within the country will decrease during the wet season between
June and September, which is a significant period where most crops needs the water for growth.

This study has demonstrated that while some parts of Nigeria will experience an increase in
rainfall in the future, other parts are expected to experience decreases. Most populace of the rural
areas are dependent on rainfall agriculture, which is their primary source of income. The decrease in
future rainfall in some areas, particularly the central and some southern parts of the country where
agriculture is extensively practiced, jeopardizes their source of income and food security in the country.
It is anticipated that the outcomes of this study can be a guide in the development of adaptation and
mitigation measures for the country in combating the menace of climate change.
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