
water

Article

Buckley–Leverett Theory for Two-Phase
Immiscible Fluids Flow Model with Explicit
Phase-Coupling Terms

Dominique Guérillot 1,† , Mostafa Kadiri 2,† and Saber Trabelsi 2,*,†

1 Department of Petroleum Engineering, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar;
dominique.guerillot@qatar.tamu.edu

2 Science program, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar;
mostafa.kadiri@qatar.tamu.edu

* Correspondence: saber.trabelsi@qatar.tamu.edu
† These authors contributed equally to this work.

Received: 12 September 2020; Accepted: 22 October 2020; Published: 29 October 2020
����������
�������

Abstract: The theory of two-phase immiscible flow in porous media is based on the extension of
single phase models through the concept of relative permeabilities. It mimics Darcy’s law for a
fixed average saturation through the introduction of saturation-based permeabilities to model the
momentum exchange between the phases. In this paper, we present a model of two-phase flow, based
on the extension of Darcy’s law including the effect of capillary pressure, but considering in addition
the coupling between the phases modeled through flow cross-terms. In this work, we extend the
Buckley–Leverett theory to the subsequent model, and provide numerical experiments shading the
light on the effect of the coupling cross-terms in comparison to the classical Darcy’s approach.

Keywords: Darcy’s law; two-phase flows; phases coupling; fractional flow; Buckley–Leverett theory;
capillary pressure

1. Introduction

Undoubtedly, modeling multiphase flows in porous media is of major importance in many fields
of applications such as ground water storage, containment transport, geological CO2 sequestration,
and particularly in enhanced oil recovery applications of petroleum engineering. The classical
mathematical models for multiphase flows are based on a straightforward generalization of Darcy’s
law for a single-phase flow, as proposed in Muskat [1]. A natural question arises: How important
is the influence of a phase on the other phase? A rather intuitive expectation is that the effect will
depend on the properties of the contact area between the two phases, and of course on other properties
such as wettability, structure of the porous medium and the surface between the fluid and solid
phases. Indeed, it is known that, in chemical and nuclear engineering, the scenario of strong friction
between phases occurs when the contact area and the permeability are large; we refer for instance
to [2–5]. On the opposite side, in some applications, it is shown that the coupling effects are small,
and therefore negligible.

The idea of phases coupling in multiphase flows modeling has already been investigated by
several authors; we refer for instance to Rose [6–8], De Gennes [9], De La Cruz and Spanos [10],
Auriault and Scanchez-Palencia [11], Whitaker [12], Spanos et al. [13], Kalaydjian [2,3], Kalaydjian and
Legait [14], and Spanos et al. [15]. In particular, Kalaydjian and Legait [16] studied the effect of the
pore geometry and wettability for a counter-currant two-phase flow in a capillary tube and in porous
media to derive equations with coupling terms between phases. In Rose et al. [17], it was suggested
that the Darcian-based equations poorly model the reservoir’s transport processes events. They argued
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that the reason is that viscous and/or other related coupling effects for dynamic multiphase-saturated
media are not quantitatively accounted for in Darcy’s law. In Dullien et al. [18], it is assumed that, if the
pressure gradient of one of two phases fluids is equal to zero, the coefficient in the coupled equation
can be defined, and they experimented with this idea with oil/water in a sand pack to compute the
four transport coefficients with an enormous water saturation scale. They found coefficient values
ranging from 10 to 35% of the value of the effective permeability to water and from 5 to 15% of the
effective permeability to oil, respectively. Pasquier et al. [19] studied models of creeping flows that
include an explicit coupling between both phases by adding a cross-term in the generalized Darcy’s
law describing the multiphase flow.

For more than a half century, Buckley and Leverett [20] (1942) has been the reference to forecast the
behavior of flow in porous media for one-dimensional problems. Buckley and Leverett introduced the
fractional flow calculus and computed the sharp saturation front position to model the displacement of
fluids behavior through porous media. Welge’s graphic method was proposed [21] in 1952 to describe
the evolution of the saturation front. Sheldon and Cardwell [22] used an alternative method via the
characteristic technique to solve the Buckley and Leverett equation. More recently, scientific literature
as Mc-Whorter and Sunada [23] contributed to the developments of Buckley and Leverett theory.
In the context of phase-coupled Darcy equations, Guérillot and Kalaydjian [24] proposed a numerical
scheme based on the global pressure concept of Chavent et al. [25] through a mixed finite element
code to solve the subsequent system of coupled Darcy equations. To the best of our knowledge, such
numerical simulations, and therefore approximations, are mainly needed in applications because of
the lack of analytical solutions of the mathematical system .

In this paper, we investigate the analysis and the numerical simulation of a coupled system of
Darcy’s equations through cross-flow terms. We consider several scenarios and study few particular
situations related to the coupling terms and the permeabilities. Eventually, we present a method
that allows for taking into account the cross-terms, and therefore the effect of one phase on the other,
using any classical reservoir simulation software solving the classical non-coupled Darcy’s multiphase
approach. The idea consists of solving the classical Darcy’s system with modified permeabilities (we
give the precise expression of these permeabilities), and, using the latter solution, we reconstruct
a solution of the coupled system. The paper is organized as follows: the next section is devoted
to the introduction of the mathematical Darcy’s equations governing the fluid domain and the
one-dimensional, coupling approach. Section 3 is dedicated to the associated Buckley–Leverett theory
and to the presentation of several numerical simulations. Section 4 is devoted to the discussion of
several aspects of the coupled Darcy’s equations and the study of few limiting and particular cases.
In addition, in this section, we present the method mentioned earlier regarding the calculation of the
solution of the coupled system from the solution of a classical Darcy’s type system that can be solved
using any existing software designed to solve the standard Darcy’s approach.

2. Mathematical Formulation

We are interested in the description of incompressible fluids displacement in a porous medium
reservoir. The mass conservation equation for the oil and the water phases, denoted with subscripts ·o
and ·w respectively, reads as

∂ ρoSoφ

∂t
+∇ · (ρovo) = 0,

∂ ρwSwφ

∂t
+∇ · (ρwvw) = 0,

(1)

where φ denotes the effective porosity of the reservoir, ρo, So and ρw, Sw denote the density and
saturations of oil and water, respectively. Moreover, vo, po and vw, pw denote the superficial velocity and
the pressure of the oil and the water phases, respectively. The system above is complemented with the
natural physical constraint So + Sw = 1. Observe that we intentionally neglect the residual saturations
for clarity of the presentation, since they do not bring any additional difficulty. Indeed, taking such
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saturation into account amounts to replace the saturation So by the reduced saturation S?
o = So−Smin

o
Smax

o −Smin
o

and, equivalently, for Sw. In the overwhelming majority of applications, particularly in reservoir
engineering, the oil and water phases velocities are assumed to obey Darcy’s law. That is, vo and
vw satisfy

vo = − ¯̄k
kro

µo
(∇po − ρo g) ,

vw = − ¯̄k
krw

µw
(∇pw − ρw g) ,

(2)

where g denotes the gravity acceleration vector, and µo and µw their respective viscosities. ¯̄k denotes
the absolute permeability tensor, and kro and krw denote the relative permeabilities of oil and water
phases, respectively. As mentioned in the Introduction, this approach clearly neglects the effect of the
water phase on the oil phase and vice versa. In this paper, we follow the argument of Kalaydjian [3] by
introducing an explicit coupling into system (2).

From now on, for the sake of clarity of the presentation, we shall assume that the flow is
one-dimensional, along an horizontal direction, say x−direction; that is, we set g = 0 and we consider
only the x−component of the velocities vo and vw. By abuse notation, we still denote the velocities vo

and vw, and consider the following extended Darcy’s system

vo = −k
kro

µo

∂po

∂x
− k

kro,w

µo

∂pw

∂x
,

vw = −k
krw

µw

∂pw

∂x
− k

krw,o

µw

∂po

∂x
.

(3)

In the sequel, all terms in system (3), more precisely kro, krw, kro,w, and krw,o, are assumed to be
functions depending only on the water saturation. Let us mention that krw, kro,w can be interpreted as
transport coefficients that can be determined experimentally as in [18]. Obviously, system (3) differs
from the traditional formulation (2) by the inclusion of the pressure cross-terms. In addition to this
extension, we shall consider the important concept of capillary pressure. Capillary pressure is defined
as the difference between the pressure of the non-wetting phase (the oil here) and the wetting phase
(water here) and given by

pc,o,w = po − pw. (4)

The capillary force in a porous media depends mainly on pore size, wettability, and interfacial
tension, and therefore on how the fluid is distributed in the pores. In practical situations, fluid and
rock properties can be considered as constant, and therefore the capillary pressure can be reasonably
assumed to be a function of the water saturation Sw only. In addition, the displacement system is
assumed to be incompressible, i.e., oil, water, and formation are all incompressible, which in turn
induces that ρo and ρw are constant (set = 1 for simplicity). Let us emphasize that this incompressibility
condition provides a good approximation in many applications, such as the one at hand, namely
the displacement of oil by water both in laboratory experiments and in field scale thanks to the very
small, and therefore negligible, compressibility of the involved fluids. Moreover, the porosity φ will be
assumed constant. These assumptions lead to the conclusion that the total velocity vt := vo + vw is
constant. Specifically, the total velocity is independent of the space variable x for all time. In addition,
the total volumetric flow rate Avt = Avo + Avw = qo + qw =: qt through the flow direction is also
independent of time. Indeed, summing up both PDEs of system (1), we obtain

φ
∂(So + Sw)

∂t
= −∂(vo + vw)

∂x
= 0.

Since So + Sw = 1, we infer the desired property.
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3. Buckley–Leverett Theory

3.1. Buckley–Leverett Equations

Following Willhite [26], we introduce the concept of fractional flow defined as the volumetric flux
fraction of the phase that is flowing at position x and time t. That is, the water fractional flow is given

fw =
qw

qt
=

vw

vt
,

and equivalently for fo. It is rather easy to see that fw + fo = 1. Therefore, in the sequel, we shall focus
on finding an explicit expression of the water fractional flow in terms of the water saturation and the
capillary pressure. For this purpose, let us first introduce the oil and water mobilities:

Mo =
kro

µo
, Mw =

krw

µw
, (5)

respectively. In addition, let us introduce the cross-mobilities Mo,w = kro,w
µo

and Mw,o = krw,o
µw

so that,

thanks to the definition (4), system (3) can be recast as follows:

vo = kMo,w∂x pc,o,w − k(Mo,w + Mo)∂x po,

vw = kMw∂x pc,o,w − k(Mw + Mw,o)∂x po.
(6)

Recalling that vt = vo + vw, we can write

∂x po =
k(Mo,w + Mw)∂x pc,o,w − vt

k(Mo,w + Mo + Mw,o + Mw)
. (7)

Substituting the expression of the pressure gradient (7) in system (6), we infer

vo =
k(Mo,w Mw,o −Mo Mw)∂x pc,o,w + (Mo + Mo,w)vt

Mo,w + Mo + Mw,o + Mw
,

vw =
k(Mo Mw −Mo,w Mw,o)∂x pc,o,w + (Mw + Mw,o)vt

Mo,w + Mo + Mw,o + Mw
.

(8)

Therefore, the water fractional flow is given by

fw =
Mo Mw −Mo,w Mw,o

Mo,w + Mo + Mw,o + Mw

k ∂x pc,o,w

vt
+

Mw + Mw,o

Mo,w + Mo + Mw,o + Mw
. (9)

Observe that neglecting the capillary pressure reduces the water fractional flow to an analytic
expression in terms of the water saturation since we assume all the permeabilities, Mo, Mw, Mo,w and
Mw,o depend only on the water saturation. By setting pc,o,w = 0, it follows from (9) that

fw =
Mw + Mw,o

Mo,w + Mo + Mw,o + Mw
. (10)

Therefore, neglecting the capillary pressure amounts to considering a modified classical Darcy
system. Indeed, in this scenario, it holds that ∂x po = ∂x pw because pc,o,w = 0 for all x, and therefore
the previous expression corresponds to the water fractional flow associated with the following
Darcy system:
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vo = −
k(kro + kro,w)

µo

∂po

∂x
,

vw = − k(krw + krw,o)

µw

∂pw

∂x
,

Obviously, this system is not physical, in the stricto sensu of Darcy’s law, since the permeabilities
are modified compared to the original system (2). This suggests that the coupling between phases
makes sense only when the capillary pressure is taken into consideration.

The Buckley–Leverett equation introduced by Buckley and Leverett in 1942 [20], also known as the
frontal-advance equation, is the simplest equation for the description of one-dimensional, immiscible
displacement in a linear reservoir. Indeed, it enables the recovery of the velocity of the water saturation
motion from the derivative of the fractional flow with respect to the water saturation; specifically,
it uses the fractional flow derivative to localize the movement of the sharp saturation front x through
the linear reservoir. This equation (referred to as front-advance equation) reads as follows:

dx
dt

∣∣∣∣
Sw

=
qt

Aφ

∂ fw

∂Sw

∣∣∣∣
t

(11)

This equation states that, in a linear displacement process, a particular water saturation moves
in the porous medium at a velocity that can be evaluated from the derivative of the fractional flow
with respect to the water saturation. It is worth mentioning that this equation infers that, if the water
fractional flow depends only on the water saturation, then this equation can be integrated to obtain
analytical solution. Now, let us introduce the notation

f̂w =
Mo Mw −Mo,w Mw,o

Mo,w + Mo + Mw,o + Mw
; f̃w =

Mw + Mw,o

Mo,w + Mo + Mw,o + Mw
. (12)

Thanks to (9) and the chain rule

∂pc,o,w

∂x
=

dpc,o,w

dSw

∂Sw

∂x
, (13)

we can write

∂ fw

∂Sw
=

k
vt

∂Sw

∂x

{
∂ f̂w

∂Sw

dpc,o,w

dSw
+ f 1

w
d2 pc,o,w

d2Sw

}
+

∂ f̃w

∂Sw
. (14)

It is worth mentioning that, although the capillary pressure and all mobilities are assumed to
depend only on the water saturation Sw, the expression (14) is not analytic in Sw because of the
derivative of the water saturation with respect to space ∂Sw

∂x . However, if the capillary pressure is
neglected, the first term on the right-hand side of (14) vanishes, and f̃w coincides with fw in (10).
Therefore, there is no contribution of ∂Sw

∂x to the derivative of the water fractional flow, and its
derivative is then analytic in Sw. Thus, the front advance Equation (11) can be integrated to obtain
an analytic expression of the water front position to be used for oil recovery calculation purposes,
EOR estimates etc.

In the sequel, we consider the following relative permeabilities, as proposed by Brooks and
Corey [27]. In particular, for all Sw such that Swc ≤ Sw ≤ 1− Sor, we let

krw = kmax
rw

(
Sw − Swc

1− Swc − Sor

)nw

, kro = kmax
ro

(
1− Sw − Sor

1− Swc − Sor

)no

, (15)
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where Swc denotes the connate and Sor is the residual oil saturation. kmax
rw and kmax

ro denote the maximal
relative permeabilities for water and oil. nw and no denote real numbers to fit observed laboratory
data. The coupling terms in the system (3) are chosen as

kro,w = (Sw − Swc)
no,w (1− Sw − Sor)

nw,o , krw,o = (Sw − Swc)
no,w (1− Sw − Sor)

nw,o , (16)

where no,w and nw,o depend on laboratory observations. The capillary pressure is assumed to depend
only on the water saturation as follows (Van Genuchten capillary pressure [28]):

pc,o,w = τ(Se−1/m − 1)1−m; with Se =
Sw − Swc

1− Swc − Sor

Observe that the capillary pressure (Figure 1) is a decreasing function of Sw, and therefore its
derivative with respect to Sw is negative and is given for all Swc ≤ Sw ≤ 1− Sor by

dpc,o,w

dSw
= −1−m

m
τ

 S−1− 1
m

e
1− Swc − Sor

(S−1/m
e − 1)−m

 . (17)

Figure 1. Van Genuchten capillary pressure and its derivative with respect to water saturation versus
water saturation.

It is worth mentioning that the water fractional flow expression (9) involves the derivative with
respect to space of the capillary pressure. Using the chain rule (13), one can infer that ∂pc,o,w

∂x > 0 thanks
to the typical profile of the water saturation in terms of x as shown in Figure 2.

Figure 2. Typical water saturation profile versus space position x.
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Since the capillary pressure contributes to the water saturation dynamics, as per Equation (14),
one can expect that its maximum influence is reached at a maximum of its derivative with respect to
the water saturation, which corresponds to the zero of the expression (17), in particular at

Sw = Swc +
1− Swc − Sor

(1 + m)m

Therefore, one approach could be to neglect the capillary pressure and consider it only close to
the front where it is expected to have significant contribution. In addition, thanks to the sign of the
gradient of the capillary pressure, one can expect that this enhances the front penetration velocity
and introduces some diffusion to the system which in turn removes the sharp singularity at the front
of the Buckley–Leverett solution. Our main interest in this paper is the comparison between the
coupled system given by (3) and the classical Darcy’s approach described in (2), and therefore we both
respective solutions presented below are obtained numerically using a Runge–Kutta approach.

To determine the front position, the equation to be solved reads

dx
dt

∣∣∣∣
Sw

=
qt

Aφ

{
k
vt

∂Sw

∂x

{
∂ f 1

w
∂Sw

∂pc,o,w

∂Sw
+ f 1

w
∂2 pc,o,w

∂2Sw

}
+

∂ f 2
w

∂Sw

}∣∣∣∣
t

(18)

This equation can be solved using classical numerical methods by discretizing in time, space and
water saturation. It is rather well-known that the difficulty resides in the fact that the typical water
fractional flow curve has an inflection point, which provides two values of water saturation at the same
time, since d fw

dSw
will reach a maximum value ((see Figure 3) for typical examples with capillary pressure).

Figure 3. Typical fractional flow curve with respect to water saturation (left), and its derivative with
respect to water saturation (right) versus water saturation.

One of the most commonly used methods to estimate the position of the schok water saturation
front, solution of the Buckley–Leverett equation, is the simple and elegant Welge graphical method, [21].
The basic idea of the Welge’s method is based on the observation that, starting from the injection
point, traveling velocities of a saturation will increase, with an increase in saturation initially from
its connate value, until the curve of the derivative of the water fractional flow with respect to the
water saturation attains a maximum value. Therefore, the points where the curve of the fractional
flow indicates a decreasing velocity with increasing saturation, a significant change is needed that is
a schok is formed. From the graphical point of view, this method, using Welge’s method to localize
the front water saturation Sw f , amounts to determining the coordinates of to the point (Sw f , fw(Sw f ))

such that the line passing through this point and the connate water saturation point (Swc, 0) is tangent
to the fractional flow curve. Let us mention that we shall use the Welge’s method only for comparison
purposes between different scenarios to see graphically that the front water saturation position changes
when considering different values of the coupling cross-terms. However, for the the determination
of the breakthrough time, we solve Buckley–Leverett numerically. Observe that, in the presence of
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capillary pressure, there is no schok since the capillary pressure brings in some diffusion that removes
the sharp singularity at the front of Buckley–Leverett equation.

In the sequel, we consider a one-dimensional, flow direction simulation with an horizontal
reservoir which has a uniform cross-area A. We provide two scenarios

• Comparison: classical Darcy’s system vs coupled system with kro,w = krw,o (see (19))
• Effect of non-symmetric coupling: coupled system with kro,w = εkrw,o (we refer to ε as tolerance).

For more examples, see (see (20))

In what follows, we shall use two sets of data. The first is theoretical and aims at showing the
difference between both models. The second set of data is dedicated to a physically realistic case.
In particular, we shall consider the following data:

(a) First set of data

Parameters Value Unit

Length of formation, L 1000.0 [m]
Cross-area of reservoir, A 104 [m2]
Absolute permeability, k 2.96 ×10−13 [m2]
Oil phase viscosity, µo 5 ×10−3 [Pa.s]
Water phase viscosity, µw 10−3 [Pa.s]
Oil density, ρo 0.8 ×103 [kg/m3]
Water density, ρw 103 [kg/m3]
Initial water injection rate, qt 400 [m3/s]
Porosity, φ 0.30 [-]
Residual oil saturation, Sor 0.25 [-]
Connate water saturation, Swc 0.20 [-]
Maximal relative permeability for oil, kmax

ro 0.8 [-]
Maximal relative permeability for water, kmax

rw 0.5 [-]
Power index of water relative permeability nw 2.00 [-]
Power index of oil relative permeability, no 2.00 [-]
Power index of first coupling term kro,w, no,w 2.00 [-]
Power index of second coupling term krw,o, , nw,o 2.00 [-]

(b) Second set of data

Parameters Value Unit

Length of formation, L 3280 [ft]
Cross-area of reservoir, A 10, 764× 104 [ft2]
Absolute permeability, k 300 [mD]
Oil phase viscosity, µo 5 [cP]
Water phase viscosity, µw 1 [cP]
Oil density, ρo 22.653 [kg/ft3]
Water density, ρw 28.316 [kg/ft3]
Initial water injection rate, qt 2515.924 [bbl/s]
Porosity, φ 0.30 [-]
Residual oil saturation, Sor 0.25 [-]
Connate water saturation, Swc 0.20 [-]
Maximal relative permeability for oil, kmax

ro 0.8 [-]
Maximal relative permeability for water, kmax

rw 0.5 [-]
Power index of water relative permeability nw 2.00 [-]
Power index of oil relative permeability, no 2.00 [-]
Power index of first coupling term kro,w, no,w 2.00 [-]
Power index of second coupling term krw,o, , nw,o 2.00 [-]
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We shall consider the following two cases:

1. The case of kro,w = krw,o, we choose

kro,w = krw,o = (Sw − Swc)
2 (1− Sw − Sor)

2 (19)

2. The case of kro,w = εkrw,o we choose:

kro,w = (Sw − Swc)
2 (1− Sw − Sor)

2 , krw,o =
7
5
(Sw − Swc)

2 (1− Sw − Sor)
2

kro,w = (Sw − Swc)
2 (1− Sw − Sor)

2 , krw,o = 2 (Sw − Swc)
2 (1− Sw − Sor)

2
(20)

3.2. Numerical Results

In this section, we present few numerical simulations aiming at comparing the introduced coupled
system (3) and the classical Darcy’s approach given by (2). The initial data, total constant velocity, and
the system’s parameters are chosen as in the previous tables. The first example describes a comparison
between the solution of the classical Darcy’s system (2) and the solution on the coupled Darcy’s
system (3) by varying the tolerance ε. For the first scenario of krw,o = ε kro,w, we choose the following
values for the tolerance ε,

ε = {2, 4, 6}.

Figure 4 shows the classical graph of kro, krw, and (krw,o)i, i = 1,...,3, corresponding to the
tolerances above.

Figure 4. (Left) Relative permeability kro and krw in terms of water saturation. (Right) Coupling term
permeability krw,o versus water saturation.

Figure 5 shows the fractional flow graph associated with the classical Darcy’s system together
with the one associated with the coupled system for three values of tolerances as indicated above.
For instance, if one chooses to use the Welge approach to locate the front, that is, if we trace a line
passing through the saturation Swc, corresponding to the beginning of the water injection, and tangent
to the fractional flow, we observe different values of Sw f clearly affecting the water front position and
therefore its advance.

The associated water saturation profiles are shown in Figure 6. We observe a more advanced
water saturation front position compared to the one corresponding to system (2) for all values of
tolerances. The front position is in advance of approximatively 1.77%, 3.55%, and 5.14% after 1500 days,
respectively to the chosen tolerances, compared to the classical Darcy’s one. Such differences clearly
impact the volume of oil recovered from the reservoir.
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Figure 5. Fractional flow fw in terms of water saturation (Time = 1500 days).

Figure 6. Water Saturation profile Sw in terms of the distance from the inlet (Time = 1500 days).

To emphasize the effect of coupling terms on the displacement of the two phase flow, a second
scenario is considered. We assume that the permeabilities kro,w and krw,o are equal, and we consider the
second set of data given in the table above. Figure 7 represents the graph of the water fractional flow
for both systems (classical and coupled). The figure shows a difference in the water saturation front
Sw f obtained by Welge’s method, [21]. Therefore, one can see that, even in the case of kro,w = krw,o,
a difference in the water saturation front position between both systems appears. Observe that, in this
case, the cross-terms are not equal (see below for equal cross-terms). Such difference can be clearly
seen in the graph of the respective water saturation profiles presented in Figure 8.
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Figure 7. Fractional flow curve in terms of water saturation Sw (Time = 1500 days).

Figure 8. Water Saturation profile Sw in terms of distance from inlet (Time = 1500 days).

Eventually, let us consider the case of the specific tolerance ε given by

ε =
µw

µo
,

which implies that the cross-terms coefficients are equal (cross-mobilities). In this scenario, Figure 9
shows that there is no difference in the water saturation front position which is rather intuitive
and expected.

All in all, for a given displacement system with constant water injection rate, the solution
of the Equation (11), corresponding to the coupled system (3) that is the water saturation front,
depends clearly on the amplitude of the cross-terms and not only on the pressure gradients. Indeed,
Figures 6 and 8 show a consequent difference, compared to the classical Darcy’s system (2) in terms of
water front position compared to Figure 9.
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Figure 9. Water Saturation profile Sw in terms of distance from inlet (Time = 1500 days).

As an application of the previous results, we compute the breakthrough time for both scenarios
using the following formula:

tL =
AφxL

qt
∂ fw

∂Sw

∣∣∣∣
Sw f

(21)

For the first scenario:

Classical Darcy Tolerance ε = 0.8 Tolerance ε = 1.4 Tolerance ε = 2

tL = 2.7219× 103 days tL = 2.5843× 103 days tL = 2.5397× 103 days tL = 2.5024× 103 days

For the second scenario:

Classical Darcy Coupled Darcy with krw,o = kro, w

tL = 2.7219× 103 days tL = 2.7071× 103 days

4. Discussion

4.1. On the Fractional Flow

As shown in the previous section, the cross-terms affect the water front position in the reservoir,
and therefore play a role in the description of the flow dynamic when compared to the classical
multiphase Darcy’s approach (2). In this section, we make few comments on the fractional water flow
expression associated with the coupled system (3), and given by (9). It is rather clear that (9) can be
reformulated as follows:

fw =

[
1− Mo,w

Mo

Mw,o
Mw

]
k Mo

vt
∂x pc,o,w +

[
1 + Mw,o

Mw

]
(

1 + Mo
Mw

) [
1 + Mo,w+Mw,o

Mo+Mw

] . (22)

The classical Darcy’s approach can be seen as a limiting, or particular case, of the coupled
multiphase approach we developed in this paper. Indeed, setting Mo,w = Mw,o = 0 reduces
system (3) to the classical Darcy’s system (2) (with g = 0), and the fractional flow Formula (22)
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reduces to the well-known water fractional flow expression associated with system (2). More precisely,
setting Mo,w = Mw,o = 0 in (9), we get

f Darcy
w =

Mo Mw
k ∂x pc,o,w

vt
+ Mw

Mo + Mw
=

k Mo
vt

∂x pc,o,w + 1

1 + Mo
Mw

. (23)

This is a well-known formula when capillary pressure is considered in the classical Darcy’s
approach (2). Clearly, when the capillary pressure is neglected, the formula reduces to

f Darcy
w =

1
1 + Mo

Mw

. (24)

Comparing the expressions (22) and (23), we see that the contribution of the coupling cross-terms
in system (3) is described through the three terms between the square brackets. The expression (22)
raises the natural question of the choices Mw,o = Mw, and Mo,w = Mo leading to

fw =
Mw

Mo + Mw
=

1
1 + Mo

Mw

, (25)

corresponding to the classical Darcy’s water fractional flow (24) when the capillary pressure is neglected
or equal zero. This formula can be justified using a rescaling argument. Indeed, in the case of
Mw,o = Mw, and Mo,w = Mo, system (3) turns out to be

vo = −kMo∂x po − kMo∂x pw,

vw = −kMw∂x pw − kMw∂x po.

Using the capillary pressure definition, we can write

vo = −2kMo∂x po + kMo∂x pc,o,w = −kMo ∂x (2po − pc,o,w) ,

vw = −2kMw∂x pw − kMw∂x pc,o,w = −kMw ∂x (2pw + pc,o,w) .

Denoting p̃o := 2po − pc,o,w, and p̃w := 2pw + pc,o,w, this system turns out to be the classical
Darcy’s system with oil and water phases velocities given by vo and vw, respectively, but with oil and
water phases pressures given by p̃o and p̃w, respectively. Therefore, the associated water fractional
flow is given by the classical formula:

f Darcy
w =

1 + k Mo
vt

∂x p̃c,o,w

1 + Mo
Mw

=

1 + k Mo
vt

∂x (2po − pc,o,w − 2pw − pc,o,w)︸ ︷︷ ︸
=0

1 + Mo
Mw

,

which justifies the Formula (25). In particular, this infers that one can perform post calculation based
on the classical Darcy’s system (2) (with g = 0) to include the effect of each phase on the other in the
case of cross-terms chosen such that Mw,o = Mw, and Mo,w = Mo, which is in the case of

krw,o = krw and kro,w = kro,
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under the assumption that the capillary pressure depends only on the water saturation. Indeed, let
(vo, po) and (vw, pw) be as in system (2) (with g = 0), thus (vo, p̃o =

po+pc,o,w
2 ) and (vw, p̃w = pw+pc,o,w

2 )

satisfy the system
vo = −kMo∂x p̃o − kMo∂x p̃w,

vw = −kMw∂x p̃w − kMw∂x p̃o,

and we refer to Section 4.2 for a general algorithm scheme allowing to take into account any cross-terms
that is independent of Mo and Mw (that is, kro and krw).

A situation that might be physically relevant is to consider the Mw,o = 0 and Mo,w 6= 0 leading to
the following semi-coupled system:

vo = −kMo∂x po − kMo,w∂x pw,

vw = −kMw∂x pw.

Thanks to (22), the associated water fractional flow expression reads

fw =
1[

1 + Mo,w
Mo+Mw

] k Mo
vt

∂x pc,o,w + 1

1 + Mo
Mw

<
k Mo

vt
∂x pc,o,w + 1

1 + Mo
Mw

,

for all water saturation Sw since 1 + Mo,w
Mo+Mw

> 1. Since the right-hand side of the latter inequality
corresponds to the water fractional flow associated with the classical Darcy’s approach, one can argue
that the derivative of fw with respect to the saturation Sw will reach a smaller maximum than any
classical Darcy’s system fractional flow. In particular, this means that, if we consider the same value for
Swc for both systems, and use Welge’s approach, then the slope of the tangent to fw passing through
Swc is smaller than the slope of Darcy’s classical system, suggesting a larger value for Sw f in the case
of the semi-coupled system. This is coherent with the fact that, if Mo,w << Mo + Mw (in the sense of
Mo,w is very small compared to Mo + Mw), then the factor (1 + Mo,w/(Mo + Mw))−1 is very close to 1,
and therefore the effect of the semi-coupling term is minimal compared to the classical Darcy’s system.

In addition, observe that Formula (22) suggests, at least formally, that, if Mo,w << Mo and
Mw,o << Mw at any space position x in the reservoir and time t, then the graph of the water fractional
flow of the coupled system (3) will be very close to the graph of the water fractional flow corresponding
to the classical Darcy’s approach (2). Thus, one can reasonably expect that the slope of their respective
tangents passing through Swc will be very close, and therefore so is the value of Sw f . This observation
makes sense from the physical point of view, since such small coupling cross-terms are expected to
have a very small effect and impact on the dynamic of the system, and can be seen as a very small
perturbation of the classical Darcy’s system (2) (with g = 0).

4.2. Solution of Coupled System by a Decoupling Approach

Most of the industrial codes use the classical Darcy approach (2) to model multiphase flows,
and any deviation from this scenario will be immediately termed “non Darcy flow”. In this section,
we present a method allowing any classical existing code or software based on the classical Darcy’s
approach to take into account the coupling between phases. The idea consists of solving the classical
Darcy’s system (2) with modified permeabilities (or mobilities), and use the latter solution to obtain
a second solution taking into account the effect of every phase on the other. Below, we present the
idea in the case of two phases flow, for simplicity, but obviously it can be generalized to the case
of more involved phases and higher dimensions. Following the notation of the previous section,
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we aim to solve system (1) where the oil and water velocities are described by the following modified
Darcy’s system:

vo = −kMo ∂x po,

vw = −kMw ∂x pw,
(26)

where we used the notation Mo = Mo + Mw,o and Mw = Mw + Mo,w. This is nothing but Darcy’s
classical system (2) (with g = 0) with modified permeabilities, that is, Mo and Mw are replaced by
Mo and Mw, respectively. Therefore, following the classical approach, a straightforward calculation
shows that

∂x po =
kMw∂x pc,o,w − vt

k(Mo + Mw)
, and ∂x pw = − kMo∂x pc,o,w + vt

k(Mo + Mw)
, (27)

inferring the following water and oil velocities’ expressions

vo =
−kMw∂x pc,o,w + vt

1 + Mw
Mo

, and vw =
kMo∂x pc,o,w + vt

1 + Mo
Mw

.

Specifically, the water fractional flow expression reads

fw =
k Mo

vt
∂x pc,o,w + 1

1 + Mo
Mw

. (28)

Since all the mobilities and the capillary pressure are assumed to depend only on the water
saturation, using this fractional expression the system (11) can be solved and a Buckley–Leverett
solution obtained using, for instance, Welge’s approach or any numerical scheme.

In the sequel, using a velocity rescaling argument, we show that the fractional flow (28) determines
uniquely the fractional flow associated with the coupled system (3). Hence, in order to solve (3),
any existing code or software can be used to determine the fractional flow (and its graph) associated
with the modified Darcy’s system (26), and therefore obtain the fractional flow (and its graph)
associated (3), and eventually apply, Welge’s method, for instance, can be used to determine the
water front. Indeed, we have the following

Lemma 1. If (vo, po) and (vw, pw) satisfy system (26), then (ṽo, po) and (ṽw, pw) given by
ṽo = vo +

k
(

Mo,w Mo + Mw,o Mw
)

∂x pc,o,w + (Mo,w −Mw,o)vt

Mo + Mw
,

ṽw = vw −
k
(

Mo,w Mo + Mw,o Mw
)

∂x pc,o,w + (Mo,w −Mw,o)vt

Mo + Mw
,

(29)

satisfy the following system
ṽo = −kMo∂x po − kMo,w∂x pw,

ṽw = −kMw∂x pw − kMw,o∂x po.
(30)

Proof. First, observe that ṽo + ṽw = vo + vw = vt which is constant as per the incompressibility
property preserved by the flow. On the one side, thanks to (27), we can write

kMw∂x pc,o,w

Mo + Mw
= k∂x po +

vt

Mo + Mw
, and

kMo∂x pc,o,w

Mo + Mw
= −k∂x pw −

vt

Mo + Mw
.
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On the opposite side, following (29)1, we have

ṽo = vo + Mo,w
kMo∂x pc,o,w

Mo + Mw
+ Mw,o

kMw∂x pc,o,w

Mo + Mw
+

Mo,w −Mw,o

Mo + Mw
vt

= −kMo ∂x po + Mo,w

(
−k∂x pw −

vt

Mo + Mw

)
+ Mw,o

(
k∂x po +

vt

Mo + Mw

)
+

Mo,w −Mw,o

Mo + Mw
vt

= −kMo ∂x po − kMo,w∂x pw + kMw,o∂x po

= −k(Mo + Mw,o)∂x po − kMo,w∂x pw + kMw,o∂x po

= −kMo∂x po − kMo,w∂x pw,

which is the desired result. The calculation for ṽo uses the change of variable given by (29)1 and the
same argument we used above, then we omit it.

In particular, the previous lemma allows us to write a relation between fractional flows of both
system. In fact, using the Formula (28), we have

f̃w = fw −
(

Mo,w Mo + Mw,o Mw
)

Mo + Mw

k∂x pc,o,w

vt
− Mo,w −Mw,o

Mo + Mw

= fw −
(

Mo,w Mo + Mw,o Mw
)

Mo + Mw

(
Mo + Mw

Mo Mw
fw −

1
Mo

)
− Mo,w −Mw,o

Mo + Mw

=
Mo Mw −Mo,w Mwo

(Mo + Mw,o)(Mw + Mo,w)
fw +

Mw,o

Mo + Mw,o
. (31)

Now, any existing code or software can easily solve system (1) with the oil and water velocities
given by system (26), by only modifying the permeabilities input, which are assumed to depend
analytically on the water saturation. Next, the value of the fractional flow of the coupled system (3)
can be post calculated using the Formula (31). Eventually, any standard method, for instance analytical
or Welge’s method, can be used to find the water front corresponding to the coupled system (3).

Observe that, setting formally the cross-terms Mo,w = Mw,o in (31), we obtain f̃w = fw given
by (28) (corresponding to (23) by setting Mw,o = 0 in (28) since system (26) turns out to be the classical
Darcy’s system now). Furthermore, observe that, if the cross-terms are chosen such that Mo = Mo,w

and Mw = Mw,o, then we get

f̃w =
1

1 + Mo
Mw

,

which is the same formula as (24) corresponding to the classical Darcy’s system (2) (with g = 0).
Eventually, let us point out that one cannot expect a physical interpretation from the expression (31)
since the system (26) is not physical, but rather an artificial mathematical system that can be solved
using standard petroleum solutions and its artificial solution manipulated to obtain a solution of the
physical system (3).

5. Conclusions

In this paper, a mathematical model describing the behavior of a multiphase flow system taking
into account the effect of one phase on the other, through a mathematical coupling between the
phases, was considered. The coupling is modeled through cross-terms involving the pressure gradients
multiplied by respective pseudo-mobilities. In comparison to the classical Darcy’s approach, we
showed that a significant impact of such a coupling can occur in particular scenarios. This was
shown by solving the associated Buckley–Leverett equations using a basic Runge–Kutta technique.
In particular, the water front position is clearly shown to be significantly different from one model
to the other. Obviously, several other aspects need to be investigated such as the injection rate, the
effect of gravity, etc. Eventually, we investigated the mathematical relation between the coupled model
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and the decoupled one—namely, a classical Darcy’s type approach. Indeed, we were able to identify
and introduce an artificial classical Darcy’s type model, with modified permeabilities (and therefore
non-physical permeabilities), that has the advantage to be solvable by any existing software designed
to solve the Classical Darcy’s system. Once the latter system was solved, and the velocities and the
pressure obtained, we provided an explicit expression allowing a direct calculation of the solution of
coupled system. More precisely, we proposed a method allowing to take into account the coupling
between phases using any classical software able to solve classical Darcy’s system.
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