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Abstract: The estimation of the design peak discharge is crucial for the hydrological design of
hydraulic structures. A commonly used approach is to estimate the design storm through the
intensity-duration-area—frequency (IDAF) curves and then use it to generate the design discharge
through a hydrological model. In ungauged areas, IDAF curves and design discharges are derived
throughout regionalization studies, if any exist for the area of interest, or from using the hydrological
information of the closest and most similar gauged place. However, many regions around the globe
remain ungauged or are very poorly gauged. In this regard, a unique opportunity is provided by
satellite precipitation products developed and improved in the last decades. In this paper, we show
weaknesses and potentials of satellite data and, for the first time, we evaluate their applicability for
design purposes. We employ CMORPH—Climate Prediction Center MORPHing technique satellite
precipitation estimates to build IDAF curves and derive the design peak discharges for the Pietrarossa
dam catchment in southern Italy. Results are compared with the corresponding one provided by a
regionalization study, i.e., VAPI—VAlutazione delle Piene in Italia project, usually used in Italy in
ungauged areas. Results show that CMORPH performed well for the estimation of low duration and
small return periods storm events, while for high return period storms, further research is still needed.

Keywords: peak discharge; dam; ungauged site; satellite rainfall data; regionalization

1. Introduction

Peak flow estimation is of pivotal importance for the hydrological design of hydraulic structures.
An incorrect evaluation can lead to the failure of the structures themselves. In the case of dams,
the peak discharge is needed both for the design and for the evaluation of hydrologic safety of the
structures. An underestimation of the design peak discharge could lead to overtop the dam due to
insufficient drainage mechanisms [1,2]. Many of the approaches often adopted to define the design
peak discharge for dams rely on historical discharge observations (e.g., [3-6]). However, due to the
frequent lack of flow observations and thanks to the development of hydrometeorological models,
the focus has moved on the estimation of the design storm, which is the one that gives rise to the
design flood on the catchment [7]. Following this kind of approach, once the design storm is defined,
a hydrological model is applied to estimate the corresponding peak flow. The rainfall-runoff models
can be event-based, as in the case of the rational formula or the Natural Resources Conservation Service
(NRCS) method [8], or based on continuous simulations [9,10]. One of the most common approaches
adopted is the event-based one, with the design storm being associated to a certain return period
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TR, usually provided by national guidelines. The intensity of the design storm for a fixed Tg and
duration is defined through mathematical relationships that quantify the rainfall intensity of storms
with specific probability of occurrence at changing durations, known as intensity—duration—frequency
(IDF) curves [8] and intensity—duration—area—frequency (IDAF) curves [11]. IDF and IDAF curves
differ in the spatial scale of the information they provide; the former give a punctual rainfall intensity,
whereas the latter provide an areal intensity estimate. As precipitation is highly variable in space
and time, uncertainties in the definition of rainfall intensity at a catchment scale through IDF curves
arise [12]. IDAF curves are therefore needed when the design storm over an area is required, as for the
case of the design of a dam.

The rain-based approaches to derive the design peak discharge rely on the use of precipitation
records collected from rain gauges. Although rain gauge observations are more common than flow
records, some rural areas of the world, where it is more likely that new dams are built, are still poorly
gauged or totally ungauged [13]. In any case, rainfall monitoring networks in general have been
declining over the last several decades due to their high maintenance and operating costs [14].

In the case of completely ungauged basins, it is common to build the IDF/IDAF curves using
the parameters determined with previous regional studies, if any exist for the case study area, or to
consider the IDF/IDAF curves defined for gauged watersheds belonging to the same homogeneous
region or with similar climatic and topographic characteristics of the case study, according to the spatial
proximity and physical similarity principles, respectively [15].

However, in many regions around the globe, the lack of a rainfall monitoring network makes
the development of regionalization methods an impossible task. In this regard, a unique opportunity
is provided by satellite rainfall data. Many satellite precipitation products have been developed in
the last two decades, with different spatial (i.e., from 4 to 25 km) and temporal (i.e., from 30 min
to monthly) resolutions, with a quasi-global coverage. Among all the satellite products, the most
frequently employed in hydrologic applications are the following. The CMORPH—Climate Prediction
Center MORPHing technique [16], which combines data from geostationary infrared and passive
microwave satellites to provide rain rate estimates at a squared grid of 8 km with 30-min time resolution,
from 1998 to the present; PERSTANN—Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks [17], which provides precipitation rate on a squared grid of 0.25°
from an infrared brightness temperature image given by geostationary satellites, with different time
resolution (i.e., from hourly to monthly, and temporal availability, ranging from 1983 for the monthly
scale and from 2000 for the hourly scale to the present); TMPA—Tropical Rainfall Measuring Mission
Multi-satellite Precipitation Analysis [18], which combines data coming from multiple satellites to
produce rainfall estimates on a squared grid of 0.25° with a three-hour time scale for the period 1998-2015;
CHIRPS—Climate Hazards Group Infra-Red Precipitation with Station data [19], which incorporates
infrared satellite imagery with in situ data to produce precipitation estimates on a squared grid of
0.05° on a daily scale from 1981 to the present. Although satellite precipitation estimates are available
for remote and ungauged areas, their time series are usually short and their accuracy varies with the
precipitation type, topography, and climate of the region [20].

Satellite precipitation estimates have so far employed for many hydrological applications, such as
to model rainfall-runoff [21], to capture precipitation [22,23] and heavy rainfall events [20], and to create
IDF curves [12,24], but they have never been adopted to compute design discharge for a hydraulic
structure. This paper evaluates, for the first time, the performances of satellite observations on the
design of a hydraulic structure. This assessment can be extremely useful when applied to ungauged
areas whereby the satellite estimates represent the sole opportunity to design a hydraulic structure,
e.g., dam. Therefore, here, we compare the values of IDF/IDAF curves and design flow peaks obtained
using satellite precipitation estimates and using parameters from a previous regionalization study [25]
which is usually adopted in an ungauged or poorly gauged area in Italy. The main purpose is to
quantify the difference between the two data sources in order to verify if the use of satellite precipitation
employed to evaluate the design storm, and thus design discharge, can be a valid alternative in
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ungauged areas where no regionalization studies are actually available. The study method is applied
to the Pietrarossa dam catchment, located in Sicily, southern Italy. As to build IDFs/IDAFs, long time
series with fine temporal scale, at least hourly, are required; the satellite data set hereby employed
is the set of CMORPH rain rate estimates, which provides the longest time series at the lowest time
resolution, i.e., 30 min. To quantify the effect of the use of different rainfall data sets from a more
practical perspective, we compute the dimension of the spillway needed to ensure the hydrological
safety of the dam in the two analysed cases. The paper is organized as follows: in Section 2, we provide
information about the case study and data employed; in Section 3, we introduce the methods adopted
to first evaluate the satellite performances, to compute the design flood peak and to determine the
dimensions of the spillway; in Section 4, we present the results, and we discuss it in Section 5;
in Section 6, we draw the conclusions.

2. Study Area and Data

2.1. Study Area

The Pietrarossa dam is located in the central-eastern part of Sicily, the biggest island of Italy
(Figure 1a). It is located at the confluence of Acquabianca and Pietrarossa rivers, which merge after
the dam into the Margherito river. The dam construction started in 1989 with the main purpose of
irrigating the agricultural fields in the southern part of the Simeto catchment. However, only a few
years later, the construction was interrupted due to the discovery of archaeological remains of the
Roman era [26]. The structure is nowadays complete for the 97%, with the main structure in the rock-fill,
intake tower, and spillways already completed. The dam drains an area of 257 km?, which from now
on will be referred as the Pietrarossa catchment. The dam was built on a plan with average altitude of
170 m a.s.l. and it was designed to have a capacity of 32 millions m3, corresponding to the maximum
water level of 188 m a.s.l. The Pietrarossa catchment is located in the inner hilly area of the island
(Figure 1b) and it is characterized by a mean yearly precipitation of 485 mm, which is below the
corresponding mean regional value of 600 mm. Precipitation occurs mostly during autumn and winter
seasons (September to March).
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Figure 1. Case study: (a) catchment location (red) in Italy; (b) Pietrarossa catchment map.

For this study, precipitation observations from the regional rain gauge network and from the
CMORPH satellite product are employed. It has to be noted that there are two different available
ground-based networks in Sicily, one managed from Servizio Informativo Agrometeorologico Siciliano
(SIAS) and one from Osservatorio delle Acque. Although the latter was established in the 1920s and
was used to conduct the regionalization study used as a benchmark in this work, many of the stations
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were dismantled in the last two decades, i.e., the period of satellite observations availability. In order to
have both rain gauge and satellite observations referred to the same period, in this work, we employed
the data provided by SIAS.

2.2. Precipitation Data Sets

The ground-based data set consists in the 10-min resolution precipitation time series provided by
the tipping bucket rain gauges of the SIAS. The observations are available with a minimum resolution
of 0.2 mm for the period 2002-2017, even though with discontinuities for some stations. Because of
the lack of monitoring stations within the catchment and also to have a better understanding of the
CMORPH performance in the whole area surrounding the case study, we consider all the recording rain
gauges located within 40 km of distance from the barycentre of the watershed, for a total of 12 stations.

The Climate Prediction Center MORPHing (CMORPH) precipitation, selected for the case
study, has been developed by the National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC) to provide precipitation rate estimates on a quasi-global scale
(60° N-60° S), combining geostationary satellite infrared (GEO IR) consecutive images and passive
microwave (PMW) precipitation rate estimates [16]. Full-resolution IR satellites provide global
surface/cloud-top temperature consecutive images on a regular squared grid of 0.03635° of latitude
and longitude resolution (~4 km at the equator), every 30 min. The IR images are adopted to derive
cloud motion vectors through the cross-correlation technique. In the meantime, an ensemble of
low-Earth-observations (LEO) PMW satellites provide rain rate estimates with 30-min time resolution
on regular grids with spatial resolution varying according to the satellite, ranging from 4.6 to 15 km.
To take into account all the spatial scales of the different input data, the 0.0727° latitude and longitude
(8 km at the equator) grid resolution was selected as the definitive grid. To produce the global rate
field, PMW estimates are then mapped to the nearest point of the 8 km grid and for the locations
where no PMW estimates are available, cloud motion vector is adopted to propagate in time, in the
backward and forward direction, the PMW information. More details about the specific of satellites
and methodology adopted to derive CMORPH can be found in [16,27].

The technique just described is employed to produce the CMORPH version 0.X, which is given on
a grid with 8 km x 8 km spatial resolution and with 30 min of temporal resolution. Version 0.X has
been improved by bias correction to generate the version 1.0 [27], which is available with same spatial
and temporal resolution of version 0.X for the period 1998—present. A third CMORPH version is also
available, which is the bias corrected product blended with the daily gauge analysis [28], only available
on a 0.25° grid. For our study, both the fine spatial and temporal scale are required, therefore CMORPH
1.0 is employed, since it proved to give good performances at a fine spatial and temporal scale [29].

2.3. Data Pre-Processing

CMORPH provides rain rate estimates every 30 min, while the rain gauges give rainfall depth
observations every 10 min. Due to the differences in the two data sets, some preliminary operations
are therefore needed. First of all, rain gauge time series are aggregated at the 30-min scale, to be
consistent with CMORPH temporal resolution. Second, satellite rain rate estimates are transformed
into precipitation depths, multiplying each record for the corresponding time interval At = 0.5 h.
Third, CMORPH time series are filtered out to match the rain gauge minimum resolution of 0.2 mm:
each satellite record lower than 0.2 mm is set to 0 mm. Finally, a quality control on the missing data for
both data sets is performed. Only the stations and the pixels having time series with less than 20% of
missing observations are considered. Two rain gauges are excluded from the data set as a consequence
of the quality control, while all the satellite pixels are selected. The filtered precipitation data provided
by CMORPH and rain gauges were then aggregated also to the daily scale, to check the performance of
satellite observations at different time scales (see Section 3.1).
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3. Methodology

In the hydrological design of dams, spillway dimensions are calculated based on the flood peak
associated to a fix return period [30], which is evaluated via frequency analysis of the historical
observations. The traditional approaches for the estimation of frequency analysis are mainly two,
one relying on flow observations and the other on precipitation records [10]. River flow observations
are often not available; thus, in this work, we adopt the second of the two approaches, following a
commonly used procedure to derive peak discharges in ungauged catchments, i.e., the rational
method. It consists mainly in two steps: first, determine the design storm for the catchment, for fixed
durations and return periods, using the intensity—duration-area—frequency (IDAF) curves; second,
determine design peak flow associated to the critical rainfall intensity using the rational formula.

The methodology can be thus summarized in three macro-steps: first, we compare the goodness
of satellite observations against the ground-based ones by computing several continuous and
categorical evaluation indexes; second, we evaluate the design storm for different return periods,
using intensity—duration—area—frequency (IDAF) curves built both with satellite observations and the
parameters provided by a previous regionalization study, i.e., VAPI—VAlutazione delle Piene in Italia
(flood evaluation in Italy) project [31]; last, we compute the design flood peak for the catchment and
we determine the spillway dimensions as an applicative example. Further details are provided in the
following subsections.

3.1. Evaluation Indexes

Satellite precipitation estimates are affected by random and systematic errors, commonly referred
to as bias. Their accuracy is usually lower than that of rain gauge observations, since satellites provide
indirect estimates of precipitation, coming from IR and PWR satellites [32,33]. Even though previous
studies [20,23,34] evaluated CMORPH skills in capturing rainfall, a universal assessment cannot be
done, since performances change with the precipitation type, topography, climate of the region [20]
and temporal resolution [22]. Although the length of the available time series of rain gauges does not
allow for a reliable estimate of the IDAF curves, it is sufficient to estimate the CMORPH capacities in
precipitation capture [20,22,23].

In this study, a point-pixel evaluation is performed (e.g., [33,35], meaning that each punctual time
series recorded by a rain gauge is directly compared against the areal satellite observations referred
to the grid pixel where the rain gauge is located. It differs from the so-called pixel-pixel comparison
because in the latter, areal rainfall observations are compared. As precipitation observations coming
from rain gauge are punctual, they first need to be transformed into areal rainfall. The conversion
is usually done by interpolation of gauge data on a regular grid, with finer spatial resolution than
the one of the reference satellite data. All the interpolated information belonging to the same pixel
of the reference grid are then averaged to create the areal precipitation needed. Although there is
a scale mismatch between point rainfall measured by rain gauges and areal precipitation detected
by satellite [23], the point—pixel comparison is preferred over the pixel-pixel comparison to avoid
introduction of interpolation bias caused by the low density of the ground-based network [34,36].

The point—pixel comparison is conducted by the computation of some categorical and continuous
statistical metrics, as commonly done in previous literature works [22,23,33,37,38]. The employed
continuous indexes give information about the bias and correlations between satellite and rain
gauge observations. They are the mean absolute error (MAE), the root-mean-squared error (RMSE),
the normalized standard error (NSE), the correlation coefficient (CC), and the mean bias error (MBE).
The categorical metrics only distinguish two conditions, i.e., rain or no rain, but they do not quantify the
differences in terms of mm between the two data sets. The ones hereby adopted are the probability of
detection (POD), which represents the fraction of events correctly detected by satellite, the false alarm
ratio (FAR), which gives the fraction of events detected by satellite but not observed by rain gauges,
and the critical success index (CSI), which provides the overall performance of the satellite product.
A list of the metrics computed is given in Table 1, together with their range of values. In Table 1,
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for each of the indexes computed, the value which means a perfect match between satellite and rain
gauge records is marked in bold.

Table 1. List of statistical metrics computed. The values marked in bold stand for perfect match between
satellite and rain gauge observations. S; stands for the i-th satellite estimation, R; is the corresponding
rain gauge observation, N is the number of observations available for the station, H stands for the
number of times that both CMORPH and rain gauges detected rainfall, M represents the number of
times rainfall is observed in a rain gauge but it is not detected by the satellite product, F gives the
number of times precipitation is not observed in a rain gauge but it is detected by CMORPH, cov(S, R)
is the covariance between rain gauge and CMORPH time series, 0(S) and ¢(R) are the standard
deviation of satellite and rain gauge time series, respectively.

Statistical Metric Symbol Equation Range of Values Unit
N
Mean Absolute Error MAE I%] '21|S,- - Ryl [0, +0) mm
i=
N
Root Mean Squared Error RMSE % Y (Si— Ri)z [0, +0) mm
i=1
N 2
Normalized Standard Error NSE N Zn (SR [0, +0) -
% Zfil R;
N R
Mean Bias Error MBE Z:;,—SRR 100 [0, +00) -
i=1 "M
Correlation Coefficient cc ;:;))(i(RR)) [-1,1] -
Probability of Detection POD H+LM [0,1] -
False Alarm Ratio FAR =) [0,1] -
Critical Success Index CSI ﬁ [0,1] -

In addition, scatter plots between ground-based and satellite-based observations are also computed
for each station. Scatter plots are built considering only the records for which both rain gauges and
CMORPH detected rain. All the evaluation indexes are computed both on the 30-min and daily
time series.

3.2. Intensity—Duration—Area—Frequency (IDAF) Curves

Intensity—duration—area—frequency (IDAF) curves provide a mathematical relationship to link the
intensity of rainfall over an area and fixed duration to its probability of occurrence. They represent the
spatial extension of the intensity—duration—frequency (IDF) curves [39]. IDAFs are built to define the
characteristics of the design storm at a catchment scale, as required for the design of many hydraulic
structures, such as dams. In this work, IDAFs are built adopting two different methods, one for each
data set employed. The use of two different procedures is due to the differences in the two data
sets, since satellite observations provide areal precipitation estimates while the VAPI approach gives
punctual rainfall estimates.

3.2.1. VAPI Regionalization Approach

Extreme daily and sub-daily precipitation has been studied in Italy by the VAPI—VAlutazione
delle Piene in Italia (floods evaluation in Italy) project, which applies a regional frequency analysis
(RFA) approach to produce a robust statistical analysis of rainfall in the country. According to the results
obtained for Sicily [25], extreme precipitation in the region can be described by the two components
extreme value (TCEV) distribution to take both the usual and the extreme values of rainfall into account.
The regionalization procedure is hierarchical and it is made out of three different levels to evaluate the
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parameters of the TCEV distribution. At the end of it, three homogeneous areas are identified in the
region. The value of rainfall depth h(d, Tr), referred to a fixed duration d and return period Tr, can be
evaluated using the relationship proposed by Cannarozzo et al. [25] in the VAPI project and commonly
used in Italy (e.g., [31,40-43]):

h(d, Tr) = ' (d, Tr)-ur(d) @

The term h’(d, Tg) is the dimensionless rainfall of duration d and return period T, also known as
“growth factor”, and the term ug(d) is the mean rainfall depth for a fixed duration. It has been shown
by Cannarozzo et al. [25] that the growth factor can be computed using a mathematical relationship that
varies with the homogeneous sub-region. The same authors also provide three empirical relationship
found for each homogeneous sub-region of Sicily. In our case, the study area belongs to the sub-region
C and the growth factor is computed with the following;:

I (d, Tg) = 0.5015 - 0.003516 d + (0.0003720 d* + 0.00102 d + 1.1014) log T @)

Ferrari et al. [31] and Cannarozzo et al. [25] showed that the factor g (d) depends only on the
duration of the rainfall event and they propose the following power law for its evaluation:

pr(d) =ad" 3)

where the parameters a and 7 are constant for each time series. The VAPI project provides the values
of a and n for all the stations employed in the study, together with maps of iso-a and iso-n to derive
the parameters at ungauged locations. For the case study, parameters a and n are the mean values of
parameters 2 and 7 available for the stations surrounding the catchment [44].

Dividing both terms of Equation (1) for the duration of the rainfall event, we obtain the expression
of IDF curves given by the regionalization approach:

i(d, Tr) =i (d, Tr)-pr(d) @)

The values of rainfall intensity obtained following this procedure is a punctual intensity,
however for the design of hydraulic structures the rain intensity over the catchment, provided by
IDAF curves, is needed. Due to the high variability of precipitation characteristics over space and time,
approximating precipitation over a catchment using only one rain gauge, i.e., punctual observations,
can lead to limitations [45-47]. The effective rain intensity (or depth) over the watershed is usually
computed by multiplying the punctual intensity, given by IDF curves, for the Areal Reduction Factor
(ARF). The ARF is a corrective coefficient, in the range (0,1), defined as the ratio between areal
average rainfall and point rainfall. Many methods to compute ARF have been proposed in literature,
including empirical formulations and approaches based on rainfall observations [48]. Since no
previous studies about the ARF for the study area are available, the empirical formulation proposed by
Koutsoyiannis and Xanthopoulos [49] is adopted. According to the authors, the ARF depends only on
the duration 4 of the storm event and on the area A of the catchment, following the rule:

0.048.A40-36-0.01 In (A)

ARF(A,d) =1- % (5)

where area A is expressed in km? and the duration d in hours.

Once the ARF is computed for the catchment area, i.e., 257 km?, and for the fixed durations of 1, 3,
6,12 and 24 h, the IDAF curves are built by multiplying IDF curves obtained with the regionalization
approach (Equation (4)) and the ARF factor, as follows:

i (A,d,T) = i(d, Tg)-ARE(A, d) ©)
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3.2.2. CMORPH Observations

The CMORPH rainfall estimates are the average precipitation observed in each 8 km x 8 km cell
of the domain. For this reason, IDAFs are developed via frequency analysis of mean areal precipitation
depths over different durations, with no need for further corrections as in the case of punctual rainfall
observations (see Section 3.2.1). The time series of areal precipitation required are evaluated with a
weighted average of the precipitation estimates of all the cells of the satellite grid falling within the
watershed boundaries. The weights of the average are the Thiessen coefficients [50], as expressed by

the following:
N N
A
ha = Zhi' /\i:zhi'zl @)

In Equation (7), h is the mean areal precipitation depth over the catchment, #; is the precipitation
depth for the i-th cell in the catchment, A; is the area of influence for the i-th cell, A; is the Thiessen
coefficient for the i-th cell, N is the total number of cells for the catchment, A is the total watershed
area, i.e., 257 km?2.

Once that the areal precipitation time series are obtained, the frequency analysis to derive IDAF
curves is performed. First, the Annual Maxima Series (AMS) is built: for each year of records we select
the maximum value of precipitation depth obtained for the fixed durations of 1, 3, 6, 12 and 24 h. Second,
we use the method of moments proposed by Pearson [51] to fit the statistical model to the samples of
maxima. Extreme rainfall in Sicily has been previously described by Two-Component Extreme Value
(TCEV) probability distribution [25,41], however it is well known that, as TCEV distribution is defined
by four parameters, long samples of data are needed to have a robust estimate [52]. As in our case
study samples are of limited length, we selected as possible statistical models the Extreme Value (EV)
distribution types I and II, also known as Gumbel and Fréchet distributions respectively, as widely
suggested in literature for this kind of analysis (e.g., [53,54]). To detect the best fitting distribution,
the norm N1 test [55] is then performed.

Finally, the IDAF curves are derived for the return periods of 20, 50, 100, 500, 1000, 2000 and
3000 years. We are aware that the limited length of observations is not sufficient to produce robust
rainfall statistical estimates for high return periods. However, the aim of this work is to reproduce
the situation of completely ungauged areas, where reliable regionalization studies are not available
or cannot be developed due to the lack of precipitation observations [12,56], and to evaluate the
potentiality and the value of satellite products, with all their limits, in those areas.

The IDAFs are built using a simplified version of the power law proposed by Bernard [57]
and widely used in hydrology (e.g., [53,58]):

i=bml (8)

where i is the rainfall intensity, ¢ is the duration of the rainfall event, b and m are the parameters of the
curves, which are calibrated according to the sample data. The parameter b depends on the return
period and on the probability distribution selected, while m is the same for all the curves and can
assume values in the range (0, 1).

3.3. Peak Flow and Spillway Dimension

The peak discharge is evaluated using the rational model, which is a lumped hydrological model
widely used in small and ungauged catchments, thanks to its simplicity [11,59]. According to the
method, the flood peak discharge Qp can be evaluated using the following expression:

Qy=kCiA ©)
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where A is the drainage area of the catchment in km?Z; C is the dimensionless runoff coefficient; 7 is the
average areal rainfall intensity of the design storm, expressed in mm/h; k is a dimensional correction
factor equal to k = 1/3.6 to obtain Qp in m3/s. Rainfall intensity is computed applying Equations
(6) and (8) for t = t,, i.e., considering a duration of the event equal to the concentration time of
the catchment, in order to maximize the value of the peak discharge Qp. The concentration time of
a catchment can be defined as the time that it takes a drop to arrive from the most hydraulically
distant point of the catchment to the outlet section [60]. Many authors in literature proposed empirical
formulations to evaluate the concentration time of a catchment (e.g., [61-63]). Due to the characteristics
of the case study, we adopt the one proposed by Giandotti [61], which was developed using Italian
catchments with extension between 170 and 70000 km? and thus fits our case. It can be expressed as:

_4VA+15L
0.8 VAH

where ¢, is the concentration time in hours (h), L is the length in kilometres (km) of the main channel of
the catchment, A is the drainage area of the watershed in km? and AH is the difference in meters (m)
between the catchment average altitude and the outlet section elevation.

The calculation is repeated varying rainfall intensity values, according to the return periods
considered (see Section 3.2). The runoff coefficient represents the percentage of rainfall that is converted
into runoff in the catchment, i.e., the excess rainfall. It is influenced by many factors (e.g., land use,

(10)

land cover, antecedent moisture conditions, return period, etc.) and it is the main limitation of the
method [59,64,65], due to its difficult estimation. As the main purpose of this study is to show the
uncertainties in the evaluation of design discharge and spillways dimensions due to the input rainfall
considered, and since the same runoff coefficient is applied to all the precipitation data, the influence
of the runoff coefficient on the peak discharge value can be considered negligible. For this reason,
we adopted the value C=0.7 as suggested in a previous study conducted in the catchment [66].

The flow peaks are computed throughout Equation (9), using both the rainfall intensity derived
from CMORPH and from VAPI project IDAF curves. To quantify the differences between the two cases,
Mean Bias Error is computed between satellite-derived and VAPI-derived peaks. To distinguish it
from the one evaluated for rainfall, the mean bias error associated to peak discharge from now on will
be referred as MBEg. It is computed as follows:

Qg(dr TR) - Qg(d/ TR)
QS(d, Tr)

MBEq = 100 (11)

where Qg (d, Tg) is the flow peak computed for a specific duration d and return period Tg
using CMORPH-based rainfall intensity and Qg(d, Tr) is the same quantity evaluated using the
regionalization approach.

An open channel spillway, placed on the side and with the Creager-Scimemi profile, releases water
to avoid dam overtopping. The design of the spillway consists in the determination of the length L of
the spillway itself, which is achieved using the fundamental equation of weirs, solved in terms of the
unknown dimension L as follows:

Qout

uH

In Equation (12), Q. is the discharge released by the spillway, u is the flow coefficient for the
structure and H is the total head over the weir crest. The length L is determined considering the outlet
discharge equal to the 3000-years return period flow peak [44] and H equal to the maximum head over

(12)

the weir. In other words, the spillway is designed to be able to release the maximum value of incoming
discharge, i.e., the design flood peak discharge, when the dam is already completely full of water.
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4. Results

In the first subsection, we show the evaluation indexes and the scatter plots resulting from
the point-pixel comparison of precipitation observations; secondly, we present IDAF curves; finally,
we show values of peak discharges and the dimensions of the spillway.

4.1. Evaluation Indexes

The continuous and categorical evaluation indexes, obtained by the point—pixel comparison
between the punctual rain gauge time series and the 8 km satellite pixel, are presented in Tables 2 and 3,
respectively. Each of the evaluation indexes is shown for both the temporal aggregations analyzed,
i.e.,, 30 min and 24 h. To assess the reliability of the results presented, in Tables 4 and 5 we show,
respectively, the sample sizes and the radius of the confidence interval referred to 95% of confidence,
for each indicator and for each station.

Table 2. Continuous evaluation indexes for CMORPH: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Normalized Standard Error (NSE), Mean Bias Error (MBE), Correlation Coefficient (CC).
The values represented are for each station and for the two temporal aggregations of 30 min and 24 h.

MAE RMSE NSE MBE cc
Station 30min Daily 30min Daily 30min Daily 30min Daily 30min Daily
Aidone 005 164 046 566 1177 301  -2934 -2943 030 0.2
Enna 005 144 045 494 1467 334 034 065 030  0.66
Caltagirone 005 140 044 506 1394 332 58 518 028 0.5
Caltanissetta 005 148 046 527 1316 316  -1048 -1038 030  0.66
Gela 004 136 045 493 148 336 599 —605 029  0.69
Mazzarino 005 143 045 509 1466 344 500 544 029 067
Mazzarrone 005 157 045 542 1196 300 -2626 -2623 029  0.64
Mineo 004 139 045 531 1458 356 665 663 026  0.65
Piazza 005 148 045 581 1278 346  -2113 2084 027  0.64
Armerina
Riesi 005 141 041 472 118 28  -2290 -2271 029  0.67

Table 3. Categorical evaluation indexes for CMORPH: Probability Of Detection (POD), False Alarm
Ratio (FAR), Critical Success Index (CSI). The presented values are for each station and for the two
temporal aggregations of 30 min and 24 h.

POD FAR CSI

Station 30 min Daily 30 min Daily 30 min Daily
Aidone 0.22 0.45 0.49 0.20 0.18 0.40
Enna 0.23 0.45 0.54 0.22 0.18 0.40
Caltagirone 0.22 0.45 0.51 0.20 0.18 0.40
Caltanissetta 0.23 0.46 0.49 0.22 0.19 0.41
Gela 0.25 0.45 0.50 0.23 0.20 0.40
Mazzarino 0.24 0.43 0.48 0.23 0.20 0.38
Mazzarrone 0.22 0.38 0.46 0.19 0.19 0.35
Mineo 0.25 0.41 0.49 0.22 0.20 0.37
Piazza 0.24 0.40 0.48 0.21 0.20 0.36

Armerina

Riesi 0.21 0.43 0.47 0.22 0.18 0.39
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Table 4. Sample size of each indicator for each station. Indicators are: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Normalized Standard Error (NSE), Correlation Coefficient (CC),
Mean Bias Error (MBE), Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success

Index (CSI).
Sample Size
MAE, RMSE, NSE, CC, MBE POD FAR CSI
Station 30 min Daily 30 min Daily 30 min Daily 30 min Daily
Aidone 271096 5606 10357 1713 10230 1138 12525 1908
Enna 277955 5771 9525 1736 9914 1175 12147 1953
Caltagirone 278038 5746 9809 1744 9900 1160 12106 1940
Caltanissetta 279339 5785 10127 1649 9995 1100 12335 1865
Gela 255197 5244 7589 1339 7618 915 9535 1523
Mazzarino 277846 5759 9565 1711 9362 1192 11661 1929
Mazzarrone 276200 5719 10564 1949 10217 1384 12541 2125
Mineo 276521 5700 8796 1673 8689 1181 10847 1869
Plazza 276542 5718 9676 1831 9467 1301 11782 2029
Armerina
Riesi 276562 5716 10748 1671 10483 1149 12745 1870

Table 5. Values of the radius of the confidence interval at 95% for each indicator and each station.
Indicators are: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Normalized Standard
Error (NSE), Correlation Coefficient (CC), Mean Bias Error (MBE), Probability Of Detection (POD),
False Alarm Ratio (FAR), Critical Success Index (CSI).

Confidence Interval Radius (95%)

MAE, RMSE, NSE, MBE cc POD FAR CSI
Station 30 min Daily 30min Daily 30min Daily 30min Daily 30min Daily
Aidone 0.001 0.124 0003 0016 0007 0020 0008 0020 0006 0018

Enna 0.001 0.107 0003 0014 0007 0020 0008 0020 0006 0018
Caltagirone  0.001 0.110 0003 0015 0007 0020 0008 0019 0006 0018
Caltanissetta  0.001 0.114 0003 0015 0007 0020 0008 0021 0006 0019

Gela 0.001 0.112 0004 0014 0008 0022 0009 0023 0007  0.021

Mazzarino 0.001 0.110 0003 0014 0007 0020 0008 0020 0006 0018

Mazzarrone  0.001 0.117 0003 0015 0007 0018 0008 0017 0006 0017
Mineo 0.001 0.116 0003 0015 0008 0020 0009 0020 0006 0018
Piazza 0.001 0.126 0003 0015 0007 0019 0008 0019 0006 0018

Armerina

Riesi 0.001 0.102 0003 0014 0006 0020 0008 0020 0006 0019

Looking at both Tables 2 and 3 reveals that at the 30-min scale, CMORPH does not perform well
over rain gauge observations, with poor skills in detecting rain, as emerges from the low values of
POD and CSI, and high values of FAR (Table 3). By the analysis of Table 2, however, we can notice
that the mean absolute error (MAE) has an average value of 0.05, which can be considered close to its
optimum value since it is lower than the rain gauge minimum resolution, i.e., 0.2 mm. Although this
may appear in contrast with what found for the categorical indexes, it can be explained reminding that
MAE evaluates the average error on the entire time series, while the categorical indexes evaluate the
performance in each observation. In other words, CMORPH and rain gauges do not detect rainfall
contemporarily. Mean bias error (MBE) varies in a wide range according to the location.

In all the locations, excluding Enna and Riesi, CMORPH underestimates precipitation when
compared to rain gauge records, as enlightened by negative MBE values. No link between topography
nor distance to sea and the bias error can be found, since stations with same characteristics show
different MBE value.

Unsurprisingly, CMORPH performance in detecting rainfall improves when the temporal scale
increases (Tables 2 and 3), as already found in previous studies (e.g., [22]). The average correlation
coefficients (CC) for the daily scale raises to 0.65, getting closer to its optimal value and to what found
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by Stampoulis [67]. Conversely, MAE and RMSE increase with temporal aggregation. As the two
indexes provide the mean error for each observation, when the number of observations decreases
because of temporal aggregation, it is expected to see them raising.

In Figure 2 we present the scatterplots giving rainfall depth as detected by satellite over the
corresponding quantity observed by the reference rain gauge. For the sake of clarity, in the scatterplots
we show only the points representing the daily observations, while the interpolant lines are shown for
both the temporal scales analysed. In each graph, the red continuous line is the interpolant line of the
daily data, while the red dashed line is the interpolant for the 30-min resolution data and the black line
represents the bisect.

The more the interpolant is distant from the bisect, the more the two data sources provide different
precipitation depths; the angular amplitude between the two lines provides the bias between CMORPH
and rain gauges. As the scatterplots are built taking into account only the Hits (H), i.e., the observations
in which both satellite and rain gauge detected rain, the angular amplitude differs from the MBE
already computed. Looking at all the interpolant lines it is evident that, as already happened for
the other evaluation indexes, the scatterplots improve when increasing the temporal aggregation
of the observations. Even though the angular amplitude between the bisect and the interpolants
differs from station to station, it can be observed that in all the locations and for both temporal scales,
CMORPH underestimates precipitation depth, since the interpolant lines are below the bisect. It is
worth noting that the best station in terms of fitting, i.e., Riesi, is not the same station which had the
best MBE value, i.e., Enna. Once again, no clear link can be identified between the topography nor
distance to the sea and the match of satellite and rain gauge observations.

4.2. Intensity—Duration—Area—Frequency (IDAF) Curves

The intensity—duration—area—frequency (IDAF) curves are derived for different return periods,
both using CMORPH observations and VAPI regionalization procedure. In the former case, IDAFs were
modelled with Gumbel probability distribution, which resulted to fit best the sample. In the latter
approach, the areal reduction factor (ARF) has been applied to rainfall intensity to convert from
punctual to areal precipitation. The IDAF curves derived for different return periods and with both
methods are shown in Figure 3. The colour of the curves changes for each return period, while the line
style varies with the data source, having the continuous line for the curves built with VAPI procedure
and the dashed line for satellite-based IDAFs. Moreover, IDAFs related to VAPI regionalization
approach are marked with letter V in the legend, while CMORPH-based curves are identified with
letter C. The analysis of IDAFs revealed that, for each return period Tr, CMORPH-based IDAFs provide
lower values of precipitation intensity, with the only exception of Tg = 20 years and duration d =1
h. This general tendency to underestimate rainfall intensity, however, varies with the return period:
for low return periods, IDAF curves built with the two approaches are almost overlapping, but the
more the return period increases, the more the curves distance increases.
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Figure 2. Scatter plots of 30-min and daily observations of rain gauges and CMORPH. The blue points
stand for the daily observations, the black line represents the bisect, the red continuous line stands
for the interpolant of the daily observations and the red dashed line is the interpolant of the 30-min
observations. Each scatter plot is referred to a station: (a) Aidone; (b) Caltagirone; (c) Caltanissetta;
(d) Enna; (e) Gela; (f) Mazzarino; (g) Mazzarrone; (h) Mineo; (i) Piazza Armerina; (1) Riesi.
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Figure 3. Intensity—duration-area—frequency (IDAF) curves built for different return periods using
CMORPH time series (dashed lines, identified by C letter in the legend) and VAPI regionalization
approach (continuous lines, identified with V letter in the legend).

4.3. Peak Flow and Spillway Dimension

The flow peak discharges are computed by the mean of the rational formula (Equation (9)),
for fixed durations and return periods. The rainfall intensity that appears in Equation (9) is derived
from IDAF curves, built both with CMORPH observations and with the VAPI regionalization procedure.
The design peak is found setting the duration of the rainfall event equal to the concentration time of
the catchment, which resulted to be t. = 9 h, and for a 3000-year return period [44]. Nevertheless,
as lower return periods are usually needed for the design of other components of the dam and for
other kind of dams (e.g., concrete dams) [44], the peak discharges are computed also for the return
periods of 20, 50, 100, 200, 500, and 1000 years.

The results are presented in Tables 6 and 7, respectively. The flow peaks values obtained confirmed
that, in general, using satellite-based IDAF curves leads to an underestimation with respect to the
regionalization approach. The only exception is represented by the 20-years return period and 1-h
duration event, for which CMORPH-based rainfall intensity overestimates the flow peak.

Table 6. Peak flow computed from CMORPH-based IDAF curves.

Q (m®/s)
d (hours)
Tr =20 (years)  Tg =50 (years) Tg =100 (years) T =200 (years) Tr = 500 (years) Tgr =1000 (years)  Tgr = 3000 (years)
1 1866.2 2160.2 2380.5 2600.0 2889.6 3108.5 3455.3
3 937.0 1084.6 1195.3 1305.5 1450.9 1560.8 17349
6 606.7 702.3 773.9 845.3 939.4 1010.6 1123.3
9 470.5 544.6 600.1 655.5 728.5 783.7 871.1
12 392.8 454.7 501.1 547.3 608.2 654.3 727.3
24 254.3 2944 324.4 354.3 393.8 423.6 470.9
Table 7. Peak flow computed from VAPI-based IDAF curves.
3
d (hours) Q (m/9)
Tr =20 (years)  Tr =50 (years) Tg =100 (years) Tg =200 (years) Tg =500 (years) Tg =1000 (years) Tg = 3000 (years)
1 1862.9 2276.3 2589.0 2901.7 3315.1 3627.8 3940.5
3 986.8 1206.9 1373.4 1540.0 1760.1 1926.6 2093.1
6 649.1 795.2 905.7 1016.2 1162.4 12729 1383.4
9 508.4 624.1 711.6 799.1 914.8 1002.3 1089.9
12 429.7 528.7 603.5 678.4 7774 852.2 927.1
24 303.4 377.2 433.1 489.0 562.8 618.7 674.5

These outcomes are more evident observing Table 8, where the mean bias error (MBE() is computed
for each flow peak referred to a specific duration and return period. MBE is computed considering the
discharges derived with the regionalization approach as the benchmark. Looking at Table 8 it can be
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noticed that, for a fixed Tg, the MBE associated to the peak discharge increases (in absolute terms)
when rainfall duration grows. On the other hand, for the same duration 4, the error increases for
higher return periods. The lowest (absolute) error is obtained for 20-years return period and one-hour
duration rainfall event (MBEg= 0.18). Unsurprisingly, the highest bias is found for 3000-years return
period and 24-h duration event.

Table 8. Mean Bias Error between peak discharges estimated with CMORPH data and VAPI project.

MBEg (%)
d (hours)
Tr =20 (years) Tk =50 (years) Tg =100 (years) Tg =200 (years) Tg =500 (years) Tg =1000 (years) Tg = 3000 (years)
1 0.2 =51 -8.1 -10.4 -12.8 -14.3 -15.6
3 -5.0 -10.1 -13.0 -15.2 -17.6 -19.0 -20.2
6 -6.5 -11.7 -14.6 -16.8 -19.2 -20.6 -21.8
9 -7.5 -12.7 -15.7 -18.0 -20.4 -21.8 -23.0
12 -8.6 -14.0 -17.0 -19.3 -21.8 =232 -24.5
24 -16.2 -22.0 -25.1 -27.5 -30.0 =315 -32.8

The spillway length is computed using Equation (12) and adopting the 3000-years return period
flow peak as the design discharge. It is therefore evaluated employing both the CMORPH and the
VAPI-based discharges. The maximum head over the weir crest H is set equal to 2.65 m and the flow
coefficient p for the maximum head is 0.485. The resulting length of the spillway, as expected, is higher
when using the design peak given by the regionalization approach, since the design discharge is greater
for VAPI than for satellite-based IDAFs. The corresponding lengths of the spillway are Lc = 94 m for
the satellite-based design discharge and Ly = 124 m for the VAPI-based design peak, with a difference
of 30 m between the two approaches.

5. Discussion

CMORPH performances across the globe have been extensively studied in the past years,
with different technique, i.e., point—pixel [33,35], pixel-pixel [22,23], using different statistics and
different spatial and temporal resolution of the data set. The results found are thus site specific,
nevertheless some major conclusions can be drawn. As CMORPH is based on passive microwave
(PMW) satellite information, its estimates are influenced by topography, climatology, complexity of the
terrain e proximity to water bodies, as enlighted, for instance, by Tian and Peters-Lidard [68], Kidd [69]
and Stampoulis [67]. Moreover, CMORPH was found to perform better during warm seasons rather
than in cold ones, with an underestimation of precipitation [68,69], as PMW estimates suffer for snow
and ice contaminations [67,68]. This tendency was confirmed in different parts of the globe, such as in
the South-East of United States of America, where CMORPH had higher probability of detection (POD)
values, higher correlation and poorer root squared mean error (RMSE) [70], over the Amazon basin,
where it better detects rainfall in summer [71], and over continental Europe [67]. The satellite data set
was also found to perform differently according to rainfall intensity, with increasing underestimation
for higher rainfall intensity [12,67]. To this regard, Marra et al. [12], when analysing CMORPH
skills in deriving IDF curves, found that satellite performance varies with climate: for an area with
Mediterranean climate, satellite underestimates rain rate at different durations; where the climate is
arid, CMORPH tends to overestimate precipitation at the low return periods and tend to converge to
the rain gauge estimate when return period increases; for a basin with semi-arid climate, however,
satellite underestimates rainfall rain rate for low return periods and tend to converge to the rain
gauge-based intensity when return period increases.

Due to the high variability of CMORPH performance with terrain complexity, proximity to
water bodies and climate, a quantitative comparison of the evaluation indexes computed in this work
and the same metrics found in other works, with different case studies, cannot be made. To the
authors’ knowledge, there are two works which involved the evaluation of CMORPH performance
in Sicily, one carried out by Lo Conti [22] et al. and the other by Stampoulis [67]. In the former,
the authors compute several evaluation metrics varying the temporal aggregation of the satellite data
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set, adopting the pixel-pixel comparison method. Their results show that all the indexes improve with
increasing aggregation time and CMORPH performed best in the central part of Sicily, in terms of
correlation coefficient (CC), as it is the furthest area from the Mediterranean Sea. For the daily scale,
the authors provide average values over Sicily for the evaluation indexes. The values they obtained,
i.e.,, POD and FAR around 0.45, CC slightly below 0.6, confirmed our results.

In the latter study, Stampoulis et al. [67] employed daily satellite observations and evaluated them
against rain gauge data. It resulted that both for the warm and the cold season, the correlation coefficient
of the central-eastern part of the island is around 0.6, confirming, also in this case, our findings.

The rainfall intensity values provided by the satellite-based intensity—duration-area—frequency
curves differ from the corresponding values given by the VAPI project (Figure 3). The differences
between the two curves, for the same duration, grow with increasing return period and, for same
return period, grow with increasing duration of the rainfall event. One of the factors responsible for
the differences with increasing return period is the different length of time series employed to build
IDAF curves, as already found also by Marra et al. [12]. The statistical analysis of the VAPI project
was conducted with the regionalization procedure, which ensures a robust estimation for high return
periods. Conversely, CMORPH provides time series with 22 years of data due to the fact that this
rainfall product is available only starting from 1998. Therefore, it is clear that the higher is the return
period of the estimation, the more the estimation is affected by uncertainties and results should be
handled with caution.

When comparing the IDAF curves obtained with the two methods (Figure 3), it should also be
noted that they are obtained employing two different probability distributions, which could cause
differences in the rainfall intensity values obtained.

Despite the uncertainties related to the high return periods estimates, the satellite-based IDAF
curves provide similar results to the VAPI-based curves at the low return periods, especially for
short duration events. CMORPH could be, therefore, successfully employed for the design of low
return period structures in ungauged catchments. On the other hand, for the design of hydraulic
structures with high return period, as in this case for the spillway of a dam, caution is needed when
satellite observations are employed for the statistical analysis of hydrological data. For the case study,
for instance, the error in the peak discharge computation is —23.7% for 3000 years of return period,
which determines a considerable variation, i.e., 30 m, in the design length of the spillway.

CMORPH observations could be employed to identify the design storm and, thus, the design
flow peak together with a corrective coefficient, which operates to adjust the estimated flow peak
value. As this method should be used in ungauged areas, it should be possible to compute the
corrective coefficients without the comparison between regionalization studies and satellite observations.
This study represents a pivotal work, future research should investigate more case studies, with different
topography and climate to establish, if possible, a general relationship or a range of variation for
the corrective coefficient, which allows for the correct evaluation of the design discharge. Moreover,
satellite data will increase their length over time as their main limit is their availability from 1998 only.
Over time a more robust time series will be available and a more comprehensive comparison with
precipitation from rain gauges will be possible.

6. Conclusions

Satellite precipitation products could be an alternative valuable source of hydrological data to
design hydraulic structures in remote and ungauged areas. In this paper, we use CMORPH rainfall
estimates to derive design peak flows for different return periods and we compare them with the
corresponding quantities computed from the VAPI regionalization project, used in ungauged areas
in Italy. The design peak flows are computed throughout the rational method: the design storm is
identified throughout the intensity—duration—-area—frequency (IDAF) curves, built for both satellite
observations and applying the VAPI method. To assess weakness and potential of the satellite products,
the design flow is estimated from the design storm. Then, to quantify the effects of the use of satellite
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data for design purposes, we provide an applicative example for the calculation of the design length of
a spillway of a dam. The study is applied to the Pietrarossa catchment, in southern Italy, where a rockfill
dam is located and a regionalization study, i.e., VAP, is available. A prior evaluation of CMORPH
estimates performance against the rain gauge observations for the case study is also conducted,
using both categorical and continuous statistical metrics. Our findings showed that the satellite data
set correlates poorly with rain gauges for the 30-min temporal scale, but its performance increase
with increasing temporal aggregation, reaching an average correlation coefficient of 0.65. The skills in
detecting rainfall also improve, reaching an average probability of detection equal to 0.43. Our findings
are in line with previous studies conducted in Sicily.

Results also revealed that CMORPH observations tend to underestimate precipitation intensity for
each duration and each return period, with the exception of the 1-h duration and 20-years return period
rainfall event, for which using satellite data slightly overestimates rainfall intensity. The storm design
underestimation in turns implies the underestimation of design peak flows, which increases with
growing of return period and event duration. The main factors responsible for these differences are to
be found in the different length of hydrological time series employed and in the different probability
distribution adopted to describe rainfall intensities. We therefore suggest to use with caution rainfall
from satellite to design hydraulic structures as the uncertainty is high especially for high return
periods. For instance, in the applicative example provided, using satellite-based design storm led to an
underestimation of the design peak discharge that increases with return period, ranging from 7.5%
for 20-years return period to 23% for 3000-years return period. The underestimation of the design
discharge in turns determines the underestimation of the spillway length equal to 30 m, which cannot
be neglected.

Despite the uncertainties in the estimation of design storms at high return periods,
CMORPH performed well at low return periods and durations. It could be thus adopted for
hydraulic structures characterized by low return period.

The caveats of this work are to be found in the limited length of satellite records, as they are
available only from 1998. As CMORPH performance varies with terrain complexity, proximity to
water bodies and climate, the site choice can affect results. To untangle the latter limit, future studies
could be aimed at investigating several catchments, with different climate and topography. A further
development could be the definition of mathematical relationships or range values for a corrective
coefficient to be applied to the CMORPH estimates, in order to be able to successfully employ the
satellite data sets for the design of high return period structures in ungauged areas.
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