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Abstract: Lakes have an important role in storing water for drinking, producing hydroelectric power,
and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise
prediction of the lake water level (LWL) is a main issue in water resources management. Due to
the existence of nonlinear relations, uncertainty, and characteristics of the time series variables,
the exact prediction of the lake water level is difficult. In this study the hybrid support vector
regression (SVR) and the grey wolf algorithm (GWO) are used to predict lake water level fluctuations.
Also, three types of data preprocessing methods, namely Principal component analysis, Random
forest, and Relief algorithm were used for finding the best input variables for prediction LWL by
the SVR and SVR-GWO models. Before the LWL simulation on monthly time step using the hybrid
model, an evolutionary approach based on different monthly lags was conducted for determining the
best mask of the input variables. Results showed that based on the random forest method, the best
scenario of the inputs was Xt−1, Xt−2, Xt−3, Xt−4 for the SVR-GWO model. Also, the performance of
the SVR-GWO model indicated that it could simulate the LWL with acceptable accuracy (with RMSE
= 0.08 m, MAE = 0.06 m, and R2 = 0.96).

Keywords: lake water level; prediction; data-driven techniques; hybrid model; support vector
regression; Titicaca Lake

1. Introduction

Lake water level fluctuations have important impacts on water resource management planning,
such as water supply management, irrigation and drinking, recharge of groundwater aquifers,
ecological and environmental changes, fishing, tourism, and many other forms of activities [1,2].
Changes in lake levels are affected by many factors such as precipitation, direct and indirect runoff from
adjacent basins, evaporation from the free surface of the lake, and interactions between the lake and
the groundwater table. The study of the lake water fluctuations was always of interest to hydrologists
and environmental experts [3]. The accurate prediction of a lake water level intervals, has always been
one of the challenges faced by hydrologists. Prediction of the lake water level (LWL) fluctuations at
various time intervals is a challenging task in water resources management, and forecasting it using
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the records of past time series provides useful data for planning, designing, and constructing water
resource projects. Hence, researchers are trying to predict the LWL through accurate and cost-effective
ways. Lake water level forecasting can be done using some complex models that include many relevant
parameters, but the sensitivity of the LWL to these factors may vary from one area to another [4].

Over recent decades, several theory-driven (e.g., conceptual hydrological models) and data-driven
techniques have been adopted and extended to the use for lake water fluctuations simulation [5].
The process-driven models, e.g., IHACRES [6], HSPF [7], SWAT [8], stochastic dynamic models [9],
are useful for understanding the physically-based hydrological process in a watershed. However,
the main constraint for the use of these models is their extensive data requirements which restrict
their implementation with intensively monitored watersheds. Generally, hydrologists are concerned
about the accurate prediction at specific locations with affordable time and cost. On the other
hand, the data-driven techniques are estimated not from the physically-based hydrological process,
but from the concurrent hydro-meteorological input-output data time series [10]. In comparison with
theory-driven techniques, fewer parameters are needed for data-driven models. Consequently, the data
requirement of these models is significantly less than those of theory-driven models. Various types
of data-driven techniques such as Support Vector Regression (SVR) [11], artificial neural networks
(ANNs) [12], adaptive neuro-fuzzy inference system [13], genetic expression programming and M5
model trees [14], have been extensively applied in hydro-environmental studies including prediction
of the hydrological variables.

In recent decades, artificial intelligence models have become a proven tool in modeling nonlinear
parameters and have been utilized by researchers in different hydrological studies [15–20]. Support
vector regression is one of the advanced models of machine learning that operates based on minimizing
error [21]. Although many studies show the ability of support vector regression (SVR) models to
predict hydrological variables [22], SVR performance can be enhanced by hybridization with the Grey
Wolf Optimizer algorithm (GWO) [23]. The GWO algorithm was first introduced by Mirjalili et al. [24]
and was used in hydrology and other associated areas [25].

Providing water needed for agriculture, industry, and beverage requires precise and long-term
planning. Hence, the prediction of hydrological variables in order to manage the utilization of water
resources is necessary, in which the level of lakes as a natural heritage is of special importance. To this
end, it is very important to use methods that achieve the most accurate result with the least time and
cost. Pillco and Bengtsson [26] used the water balance method to predict the water level of Poopo Lake
at a monthly scale. The main inflow water source of this lake is from the Desaguadero River, which is
an outflow of Titicaca Lake. They discussed the dynamic of water levels of Poopo Lake related to
climate variability, as well as climate change scenarios. Their results indicated that lowering the water
depth decreased one meter in a wet season; the Poopo lake will be dry in the dry season.

The objective of this study is to examine the ability of new hybrid support vector regression (SVR)
model and the Grey Wolf Optimizer algorithm (GWO) for short-term prediction of lake water level.
To do that, the data of the Titicaca Lake was used as a case study for the training and testing model.
Finally, the performance of the hybrid SVR-GWO model was compared to the SVR model. Therefore,
in this study, the hybrid support vector regression model and a Grey Wolf Optimizer model is used to
improve the prediction of Titicaca lake water level at a monthly scale dataset during the 1973–2017
period. Also, in this research, we used three different pre-processing methods (principal component
analysis, random forest, and Relief algorithm) to find the best mask of inputs for the proposed model.

2. Materials and Methods

2.1. Study Area

Titicaca Lake (TL) is one of the most important water body resources on the South American
continent, plays an important role in the agriculture, habitat for animals, human being, and plant
species; as well as in ecology of the region, economic and industrial activities, and the environment [27].
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This lake is located at 68◦33′–70◦1′ W and 15◦6′–16◦50′ S between Peru and Bolivia (Figure 1). Titicaca
Lake is an international wetland, the largest, deepest, and the highest navigable water body in the
world; also, it is important from the point of view tourism for South America. Furthermore, this
lake feeds significantly to the second largest and shallow Poopó Lake in Bolivia, placed at 300 km
downstream from Titicaca [26]. The total lake surface is 8560 km2 at an elevation of 3810 m a.m.s.l,
with a mean depth of 105 m. The outlet is still at 3807 m a.m.s.l. [28].
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Figure 1. Location of Titicaca Lake in the study area.

2.2. Data Used

To conduct this research, the time series data of the water level which was measured in the
hydrometric station of Titicaca Lake (located in southeast Peru) were used. As shown in Figure 1,
this station is the closest representative station which present water level variations within the lake.
The monthly time series data was used for tuning the parameters of the investigated models. For this
aim, the selection dataset is from August 1973 to January 2017. 75% of the dataset (i.e., 392 data points)
used for the training phase from August 1973 to March 2006 and 25% of dataset (i.e., 130 data points)
used for the testing phase from April 2006 to January 2017. The average yearly precipitation of the
Titicaca Lake basin is 609.5 mm/year, the average yearly minimum air temperature is −0.08 ◦C, and the
average yearly maximum air temperature is 17.2 ◦C. Table 1 shows the statistical characteristics of
data used including length, minimum, maximum, mean, standard deviation, Skewness, Kurtosis,
and confidence level. Additionally, Figures 2 and 3 indicate the time series of the water level of Titicaca
for the duration of the study period (1973–2017) and also, monthly patterns of some years, respectively.
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Table 1. Water level data used for the duration of the study period (1973–2017).

Dataset Min (m) Max (m) Mean (m) SD (m) Skewness
(m)

Kurtosis
(m)

Confidence
Level (95%)

Total 3807.387 3811.277 3808.959 0.781 0.11 −0.584 0.067
Training 3807.387 3811.277 3809.059 0.834 −0.101 −0.743 0.082
Testing 3807.717 3809.797 3808.658 0.483 −0.054 −0.701 0.083
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2.3. Preprocessing Methods

Model input combination and proper training and testing data lengths are among the main
limiting factors on the predictive accuracy of any non-linear model [29]. In order to determine the best
mask of input variables, the Principal component analysis (PCA), Random forest (RF) and Relief (RL)
are used to abstract the most correlated variables.

2.3.1. Principal Component Analysis (PCA)

The data dimension is the number of variables that are measured per view. Many of the data
sets may have a high-dimension space, and therefore their interpretation will be difficult. Therefore,
we tried to reduce the dimensions of data. Principal component analysis (PCA) is one of the most
common methods of reducing the dimensions with the minimum error between the original data set
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and the new obtained dimensions. PCA is an unsupervised learning method, is similar to clustering
methods [30], and can be used for extracting important variables (in the form of the component) of the
large set of variables in a dataset. In this method, the variables in a multimode correlated area are
considered to be a collection of non-correlated components. The PCA method reduces the number
of variables and finds the relationship structure between variables that are the same classification
of variables. By applying the PCA variables, the main input is converted to new variables that are
non-correlation. The PCA changes the input variables to the main components that are independent
and linear combinations of input variables. In this method, data will be provided with a minimum of
losses in the main components [10]. In this study, the first components of data sets, which has at least
80% of the total variance, are used as the input data for the predictive models.

2.3.2. Random Forest (RF)

Random Forests (RF) is a popular and powerful tool in order to select proper input variables to
build predictive models. This method is used extensively across a multitude of engineering fields.
It is also known as random decision forests. RF is one of the latest techniques which can be used
for classification and regression-based analyses [31]. In this technique, the number of trees with
different verity was used for forecasting or estimation. Tree predictors were used as random numerical
values to class labels in the random forest classifier. Random forest regression used in this study
contains an assembly of input parameters or arbitrarily chosen parameters at each node to grow a tree.
RF technique requires only two user-defined parameters, such as the number of parameters used at
each node and the number of trees [32].

2.3.3. Relief (RL)

Relief (RL) is an algorithm introduced by Kira and Rendell [33] that takes a filter-method approach
to feature selection that is notably sensitive to feature interactions. The RL method is a random search
method based on the filter model and no feedback on the learning algorithm is applied to assess
the subset of the selected features. The stages of the RL, as the algorithm for reducing input data
dimensions, are as follows: In the first step, each ranking correlation feature is given to the ultimate
goal. In the second step, the ranks are updated using randomly selected samples. Then these ratings
are sorted and the features with the lowest rank are removed, and the threshold is used to ranks the
feature. The remaining features are retained as the superior features are kept in the input of a batch
algorithm. The RL algorithm works fine for the noise characteristics or features of a good correlation,
and the complexity of the time is linear and functional of the number of features and the number of
exemplars the sample collection. It works well for both continuous and discrete datasets. The RL
algorithm uses an evaluation function that calculates the sum of a statistically significant criterion and
a criterion of complexity makes it a minimum. This algorithm finds the first feature to be able to make
classes even better. It then finds properties, which in combination with the selected features, increase
the separation of classes. This process is stopped when it gets to the least expected criteria for the
pending representation [33].

2.4. Predictor Methods

2.4.1. Support Vector Regression

Support vector regression (SVR) is a set of supervised learning methods and can be used for
classification and regression tasks. This method is based on binary classification in the space of arbitrary
properties and is, therefore, a suitable method for predictive problems [21]. SVR can learn and model
the nonlinear relation between the input and output data in the higher dimension, which minimizes the
observed training error and the distribution error extent to attain generalized regression efficiency [10].
In fact, support vector regression is an efficient learning system based on effective optimization theory.
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This technique implements the principle of inductive minimization of structural error in order to attain
a general optimal solution. The structure of the SVR is presented in Figure 4.
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This study used radial basis function (RBF) as the learning algorithm for SVR. Let the training
data set (x1, y1), (x2, y2), . . . (xn, yn) where xi(i = 1− n) and yi(i = 1− n) indicate the i-th input and
output vector, respectively, and n is regarded as the number of training data pairs. The SVR function
attempts to detect a suitable function f (x) by minimizing the distribution error limits to attain general
regression efficiency as follows:

f (x) = wT
× ϕ(x) + b (1)

where ϕ(x) represents the non-linear projection function which maps the input vector x into a
higher-dimensional feature space where the trained data show linearity. However, w and b are
the weight and constant coefficients, respectively, which are estimated by minimizing the arranged
risk function.

2.4.2. Grey Wolf Optimizer

The grey wolf optimizer (GWO) algorithm is a nature-inspired swarm-based algorithm that
emulates the social hierarchy of wolves and their behavior in approaching, encircling, and attacking the
prey [24–44]. Each member in a grey wolf herd categorized as α, β, δ andω based on the effectiveness
and decision-making power in the group. The alpha wolf usually corresponds to the strongest and
dominant wolf who leads the herd, and his/her order should be enforced by the rest of the group.
The βwolves are the second group that plays the role of advisors for alphas. The beta wolves assist the
alpha wolves by reinforcing their commands through the rest of the wolves [24]. The δ wolves are
ranked below the α and β wolves and above the ω wolvess in terms of leadership hierarchy. They are
guards, sentinels, hunters, and caretakers of the group. Theω wolves are placed in the lowest order of
decision-making and have to submit to all other wolves. To address an optimization problem using
the GWO algorithm, the social behavior of the grey wolves in the hunting process is modeled in a
statistical framework. The hunting process of the grey wolves is followed in three stages: tracking,
encircling and attacking the prey [34]. The hunting process is organized by α, β and δ wolves. Theω
wolves follow α, β and δwolves [35]. The best solution is considered as α. The β, δ, andω are the next
subsequent solutions in terms of priority. In GWO iterations, the wolves evaluate the possible hunt
situation, and update their status according to that. The mathematical formulation of the encircling
process is as follows:

→

X(t + 1) =
→

XP(t) −
→

A ×
→

C ×
→

XP(t) −
→

X(t) (2)
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In the above equation, t denotes the current iteration,
→

XP and
→

X respectively implicates the

position vectors of the hunt and hunter (candidate solutions),
→

A = 2
→
a .
→
r 1 −

→
a and

→

C = 2
→
r 2 indicate

coefficient vectors with
→
r 1 and

→
r 2 being as random vectors (between 0, 1) that allow the wolves update

their status in the hunt space. Values of
→
a are linearly reduced from 2 to zero during the process

as follows:
a(t) = 2 −

2t∑
t

(3)

where t signifies the running iteration and
∑

t signify the total number of iterations. During the search
process,ωwolves update their status according to the best exploration factors i.e., α, β and δ, which
represented by the following equations:

→

X1 =
→

Xα −
→

A1 ×

∣∣∣∣∣→C1 ×
→

Xα −
→

X
∣∣∣∣∣ (4)

→

X2 =
→

Xβ −
→

A2 ×

∣∣∣∣∣→C2 ×
→

Xβ −
→

X
∣∣∣∣∣ (5)

→

X3 =
→

Xδ −
→

A3 ×

∣∣∣∣∣→C3 ×
→

Xδ −
→

X
∣∣∣∣∣ (6)

→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
(7)

2.4.3. Hybrid SVR-GWO Model

In the proposed method, the Grey Wolf optimization algorithm is coupled with support vector
regression (SVR-GWO). Indeed, the GWO used to optimize the SVR parameters. Figure 3 illustrates
adjusting the search between local and global optima. In the weight optimization process, the weights
are randomly assigned initially. The initial weights are changed and modified in each repetition as
long as the difference of support vector regression output and the output related to the actual inputs is
less than a specified limit.

In order to use the GWO for SVR weight updates, training SVR as a function should be highlighted
and the problem aims to optimize it in an n-dimensional space. In this regard, the SVR is considered a
grey wolf optimizer in d-dimensional space, d equals to the total number of weights and SVR bias.
In other words, the location of each grey wolf has a dimension, which is equal to the total number of
weights and SVR bias. This algorithm modifies each grey wolf location and returns the best wolf as
the answer. Then, the weight of SVR is updated based on the values obtained from the best position
of wolves. The best weight is acquired if one of two final conditions is established: first when the
network minimum squared errors is less than a certain threshold, and second the number of iterations
which is already known. Figure 3 displays a schematic view of the SVR model integrated with GWO
optimizer applied for predicting lake water lake by using data-driven techniques method for data
assimilation (Figure 5). It is an estimator hybrid procedure that utilizes the ANFIS capability together
with optimization algorithms robustness. It is already confirmed that predictor tools can predict more
successful results by coupling with optimization approaches [36–41].
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2.5. Performance Indexes

Various performance evaluation criteria such as root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R-squared) were utilized to evaluate the simulated
results of each model, as illustrated in Equations (8)–(11), respectively:

RMSE =

√
(
∑N

i=1(xi − y)2)

N
(8)

MAE =

∑(∣∣∣xi − yi
∣∣∣)

n
(9)

R2 =

1
n
×

∑
(xi − x)(yi − y)

(σx)
(
σy

) 
2

(10)

where xi is the observed value, x is the mean of observed values, yi is the estimated value, y is the
mean of estimated values, and σx and σy are the standard deviation of the observed and estimated
data, and n is the number of observations.

3. Results and Discussion

3.1. Implementation of the Preprocessing Methods

The predictive accuracy of the machine learning approaches relies significantly on the proper
input combination and efficient size of training data. In this regard, three methods of the PCA, RF and
RL, were implemented to find the best mask of the input variables. The predictor inputs in this study
are selected among the time lags of the output series, as a time series prediction problem. This approach
is applicable for forecasting the variable for one step (in this study one month) ahead. Table 2 lists the
result of the PCA method to investigate the effective input variables. For this aim, the PCA method
was employed to analyze the monthly time lags of water level. This method was implemented for
12 months of time lags and results show that PCA1 (component 1) covered 84.98% of all variances so
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that PCA1 is selected as the best mask of the input variable for the predictor models. Also, PCA1 as
the most effective input by PCA method introduced (PCA1 = 0.1117 × L1 + 0.1138 × L2 +0.1155 × L3
+0.1169 × L4 + 0.1179 × L5 + 0.1183 × L6 +0.1183 × L7 + 0.1179 × L8 +0.1169 × L9 + 0.1155 × L10 +

0.1138 × L11 + 0.1117 × L12 − 5287.7).

Table 2. Result of the PCA method for the pre-processing of Titicaca lake water level data.

Component % of Variance Cumulative %

1 84.98 84.98
2 8.05 93.03
3 5.24 98.27
4 1.05 99.32
5 0.38 99.7
6 0.18 99.88
7 0.05 99.93
8 0.03 99.96
9 0.01 99.97

10 0.01 99.98
11 0.01 99.99
12 0.01 100

Figures 6 and 7 show the results of the Random Forest (RF) (Figure 6) and Relief (RL) (Figure 7)
method for pre-processing of the lake water lake dataset, respectively. Based on the results of these
figures, RF have selected 4-months’ time lag (i.e., L (t − 1), L (t − 2), L (t − 3), L (t − 4)), and RL have
selected 5-months’ time lag (i.e., L (t − 1), L (t − 2), L (t − 3), L (t − 4), L (t − 5)) for the best mask of the
input variable which can be used for models. In addition, upper the line (green points) are effective lag
numbers and below of line (red points) are not effective lag times.
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After implementation of the pre-processing methods on historical lake water level data, three
scenarios were defined for the predictor models (SVR and SVR-GWO) to be implemented. Table 3
shows three scenarios defined according to the selected input variables.

Table 3. Scenarios defined according to the selected input variables by PCA, RF, and RL pre-processing
methods.

No. Preprocessing Method Input Combinations
Model Designation

SVR SVR-GWO

1 Principal component analysis PCA1 SVR1 SVR-GWO1
2 Random forest L (t − 1), L (t − 2), L (t − 3), L (t − 4) SVR2 SVR-GWO2
3 Relief L (t − 1), L (t − 2), L (t − 3), L (t − 4), L (t − 5) SVR3 SVR-GWO3

3.2. Performances of the SVR and SVR-GWO Models

The SVR-GWO, meta-optimized hybrid version of the base SVR with the GWO algorithm, was
utilized for the simulation of Titicaca lake water lake in monthly scale. The training and testing of the
SVR-GWO model were done with that measured data. The parameter settings of the SVR-GWO model
have selected by trial and error method; whereas, the population size set to 20 and the max number of
iterations is set to 500. The statistical results of the performance evaluation of the investigated models
are also provided in Table 4. As shown in Table 4, when used, the SVR model and the GWO algorithm
improved the SVR model efficiency in terms of RMSE, MAE, and R2. The SVR-GWO model in the
testing period and in the best scenario (with input of L (t − 1), L (t − 2), L (t − 3), L (t − 4)) with the
RMSE = 0.087 m, MAE = 0.066 m, and R2 = 0.967 outperformed the ordinary SVR model (with input of
L (t − 1), L (t − 2), L (t − 3), L (t − 4), L (t − 5)) with the RMSE = 0.1 m, MAE = 0.082 m, and R2 = 0.961.

Table 4. Performance evaluation of the SVR and SVRGWO models by different pre-processing methods
in train and test stages.

Partition Models Name RMSE
(m)

MAE
(m) R2

Train phase

SVR1 0.395 0.312 0.774
SVR2 0.11 0.082 0.982
SVR3 0.108 0.08 0.983

SVR-GWO1 0.304 0.208 0.877
SVR-GWO2 0.084 0.06 0.989
SVR-GWO3 0.079 0.052 0.99

Test phase

SVR1 0.329 0.276 0.558
SVR2 0.101 0.084 0.96
SVR3 0.1 0.082 0.961

SVR-GWO1 0.27 0.223 0.727
SVR-GWO2 0.087 0.066 0.967
SVR-GWO3 0.089 0.064 0.966

Among the pre-processing used methods (i.e., PCA, RF and RL), the RL method has been the
most successful method compared to the PCA and RF methods for determining inputs. Based on
statistical indices, the third combination of data (SVR-GWO3) was selected as the best input data for
prediction of the lake water level. The main reason for that was that this method introduced fewer
inputs; furthermore, the performance of SVR-GWO3 was better than the other scenarios, while the
RF method in SVR2 model selected more inputs and had weaker results. In general, the new hybrid
model (SVR-GWO) had better result with less input than the ordinary SVR models. Also, it can be
perceived that the GWO algorithm attained the best fitness values compared to ordinary SVR trainers’
optimizers. So, in Table 4, the MAE’s index for the training part of SVR model is 0.312 m (for SVR1),
0.082 m (for SVR2), and 0.08 m (for SVR3), respectively. The same magnitude for the training part of the
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SVR-GWO model is 0.208 m (for SVR-GWO1), 0.06 m (for SVR-GWO2), and 0.052 m (for SVR-GWO3).
This suggests that combining the grey wolf optimization algorithm with the support vector regression
model can create a new hybrid model with high learning ability, which is a powerful tool (SVR-GWO)
for estimating the level of lake water. The optimal parameters of the SVR ranged between γ (Radial
basis function parameter) = 0.45 - 20.2 and C (Trade-off parameter) = 1.68 - 19.14. Also, for running the
GWO used 500 as the maximum number of iterations, 50 as the number of agents.

As the comparison between results of Table 4 shows that using data with four lag times in model
SVR-GWO2 and with five lag times in SVR-GWO3 model would not further increase the prediction
accuracy. In other word, increasing lag times would not improve the accuracy of the model and the
results have been converged. Also, this topic shows lag number 5 is not very effective in lake water
level for Titicaca Lake. Then, by ignoring some minor errors, this study suggests using less inputs for
models. Figure 8 reported the scatter plots of the predictions by the SVR and SVR-GWO models versus
the actual values in the training and testing stages. Based on the presented graphical variation between
the observed lake water level and predicted values, the SVR-GWO model attained the distinguished
correlation with the highest value at all scenarios compared to the ordinary SVR model. This is
evidenced by the potential of the SVR-GWO predictive model to capture the variance observations
of the water level of Titicaca Lake with a couple of scattered observations. Indeed, using the GWO
optimizer improved the performance of hybrid SVR-GWO compared to the original SVR model in all
scenarios. Also, according to Figure 7, the PCA pre-processing method has a weak performance in
determining the input variables for prediction of the lake water level, while pre-processing methods
RF and RL have been successful in determining inputs.
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Figure 8. Scatter plot of the predicted lake water level from the SVR and SVR-GWO models versus the
corresponding measurements for the testing stage.

Figure 9 shows the box plot of the measured and the predicted values by the SVR and SVR-GWO
models for the testing stage. Based on these figure results obtained by the RL and RF with SVR-GWO
model, it shows the highest similarities with observation so that the SVR-GWO2 and SVR-GWO3 can
accurately simulate the minimum, maximum, 25% range and 75% range intervals. Based on the results
of this study, the SVR-GWO model has been performing better and more accurately in predicting lake
water level. Finlay, SVR1 is the weakest model and SVR-GWO2 is a strong model for the prediction of
lake water level.
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Figure 9. Box plot of observed and predicted lake water level for the testing period of the SVR and
SVR-GWO models in all scenarios.

In Figure 10, the best output of each model has plotted versus measured values for four years
(2013, 2014, 2015, and 2016). This figure is drawn up to better understand the ability of each model to
predict LWL for the testing period. The hybrid SVR-GWO2 model has better overlap with observational
values and its disagreements with observational values are significantly less than the ordinary SVR
model. Also, based on the results of this figure, most of the forecast errors in four years were from
March to July in both models.
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four years of 2013, 2014, 2015 and 2016.

Figure 11 shows the prediction error of the SVR and SVR-GWO models for the testing period.
According to this figure, the SVR-GWO2 and SVR-GWO3 models predict the LWL with low error,
and subsequently they reduce the average error by 27% and 28% compared to the SVR1, SVR2, SVR3,
and SVR-GWO1 models for testing stages, respectively. Accordingly, two models of the SVR-GWO2
and SVR-GWO3 models offer much better performance in terms of prediction of the high and the low
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values of the Titicaca Lake water level dataset. Also, the combination of different models indicates that
using the integrated of the SVR model and GWO algorithm increased the accuracy of predicting the
lake water level. In addition, Figure 11 shows that two methods of the Random forest and Relief have a
good ability for LWL data pre-processing and these methods can find the best mask of input variables.Water 2020, 12, x FOR PEER REVIEW 14 of 19 
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Histogram plot is another method of evaluation ability of models. Figure 12 shows the histogram
diagram for the testing period of all scenarios. Based on the result of this figure, the PCA method is a
weak method for identifying effective variables for the perdition lake water level, so that both the SVR1
and SVR-GWO1 models had a poor performance, while RL and RF methods had better performance in
identifying effective variables for lake water level prediction, because the SVR2, SVR3, SVR-GWO2
and SVR-GWO3 had better performance. Overall, the pre-processing of the RF method was more
successful in identifying input variable to predict Titicaca lake water level compared the RL and PCA
methods, and using this method improved the efficiency of the SVR-GWO model.
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data comparison intervals were selected from 3807.6 m to 3810 m.

There are some similar studies to discuss regarding the current study’s results. An SVR model
was used to predict the water level of Poyang Lake in China [42], which showed similar results.
In Li et al. [42] the R2 value of SVR predictions were about 0.95 & 0.96 and approved the high capability
of this model in lake water level prediction; which is in line with the results of the current research,
despite the lakes being located in two completely different areas. To evaluate the positive effect of
merging SVR with GWO, there are no studies about lake water level prediction. However, in other
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areas such as monthly streamflow forecasting, this was a successful and efficient combination; so that in
hybrid forms of SVR, the GWO was superior in competition with the algorithms such as Particle Swarm
Optimization (PSO), Multi-Verse Optimization (MVO) and Shuffled Complex Evolution (SCE) [43].

4. Conclusions

In the present study, support vector regression (SVR) integrated with the grey wolf optimizer
algorithm (GWO) has been adopted for the forecasting of the lake water level (LWL). The historical water
level data of Titicaca Lake for the period of 1973–2017 were used as a case study. Three types of data
preprocessing methods (PCA, RF, and RL) were used for finding the best input variables for prediction
the water level of Titicaca Lake by the SVR and hybrid SVR-GWO models. Based on the results of three
preprocessing methods, six scenarios are considered for developing these models. The results have
been evaluated with several statistical score metrics (i.e., RMSE, MAE, and R2) and visual displays (i.e.,
scatter plot, box plot, etc.). Comparing the results of six scenarios from the implementation of the SVR
and SVR-GWO models showed that the performance of the RF pre-processing method was better than
PCA and RF methods for finding the best input for predictor models. The results demonstrated that the
meta-optimized hybrid model (SVR-GWO) enhanced the capability of the original SVR model for the
reproduction of the monthly lake water level. The SVR-GWO model with inputs of L (t − 1), L (t − 2),
L (t − 3), L (t − 4) was found to be the most suitable model for prediction LWL. The results of this study
suggest that the Grey Wolf Optimizer algorithm is a useful add-on tool for enhancing the accuracy of
forecasting SVR model to predict LWL. Also, this research provided evidence for the effectiveness of the
hybrid model, which can be utilized and investigated in hydrology for forecasting time series data such
as lake water level (LWL). The results show that the models can be used to represent a 1-month (ahead)
prediction of the lake water level. This can be applicable for the agricultural, industrial, environmental
and urban sectors and systems related to Titicaca Lake and their managers and planners, to inform
about the lake’s water level status in the coming month.
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