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Abstract: There is an urgent need for industrial Internet of things (IoT) solutions to deploy a smart
hydrophone sensor grid to monitor pipeline health and to provide an accurate prediction in the event
of any leakage. One solution is to develop an IoT water leakage detection system consisting of an
interface to capture acoustic signals from aluminum nitride (AlN)-based micro-machined infrasonic
hydrophone sensors that are fed as inputs and predict an approximate leak location as a form of output.
Micro-electro-mechanical systems (MEMS) are particularly useful for IoT applications with low
power consumption and small device footprint. Data analytics including characterization, pre/post
processing are applied to determine the leaks. In this work, we have developed the process flow and
algorithm to detect pipe leakage occurrence and pinpoint the location accurately. Our approach can
be implemented to detect leaks for different pipe lengths, diameters and materials.
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1. Introduction

Water is one of most important natural resources, the availability of which directly impacts the
livelihood and survival of humankind. Using pipelines as a medium of transportation from water
sources has, in turn, become a large part of the infrastructure and ecosystem. While water leakage
during transport is not uncommon, water leakage has been, and continues to be, an important factor in
monetary loss worldwide, resulting in a loss of approximately 32 billion cubic meters each year [1,2].
Pipeline leakage detection has the potential to reduce water wastage and maintain stringent checks on
infrastructure integrity through an immediate alarm system.

There are many ways to detect water leakages in pipelines [3–6]. Almost all of these monitoring
techniques make use of onsite measurements which can be invasive or non-invasive. These non-invasive
techniques are also known as Non-Destructive Testing (NDT) techniques, whereby there is no contact
with the water medium and they do not affect the integrity of the pipes. Invasive techniques include
the use of tracer gases [7], ground penetrating radars [6], flow, pressure [8] and acoustics sensors [9]
which include hydrophones. Examples of non-invasive techniques include the use of visual image and
video sensors [10], soil humidity sensors [11], accelerometers [12] as well as acoustic sensors such as
microphones [13] or geophones that are placed on the pipes’ exterior. These can be further enhanced
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when coupled with wireless implementations using Internet of things (IoT) solutions, thereby allowing
real-time continuous monitoring.

Among all the different techniques, acoustic sensors such as hydrophones provide much better
sensitivities over long distances of up to 1 km or more [14], culminating in the preferential choice of use
particularly for leakage detection in extensive pipe networks [5]. Further, the hydrophone is suited for
use in both invasive and non-invasive applications since it can be used with or without contact with the
target detection medium when immersed in the medium or hosted on the pipe’s exterior, respectively.
Its supporting structure can also be designed to allow it to be versatile in virtually most hostile
environments [15]. The use of hydrophones also allows the exact location of the leakage source to be
determined through the use of time arrival of leak (TOA) calculations. The state-of-the-art hydrophones
that are currently available in the market are mostly piezoceramic-based [14–16], while our proposed
hydrophone is piezoelectric-based [17,18]. Hydrophones based on piezoceramics have high acoustic
impedances, and hence those based on purely piezoelectrics are preferred [17]. Compared to traditional
hydrophones, the use of micro-electro-mechanical systems (MEMS)-based hydrophone allows for
higher optimal sensitivity, and allowance for smaller size and lower cost. This, in turn, allows for
implementation in a smaller pipe system and ease of scalability to larger sensor node arrays for
large-scale IoT implementation, taking into account more extensive cost savings as compared to other
traditional hydrophones.

However, concerns about the reliability and accuracy of detection, as well as multigrid
implementation on a large scale involving many sensors, are a huge impediment to the adoption of
such sensing technologies. There is also a lack of well-defined process flow to govern the detection of
leaks from the collected acoustic signals. Most of existing leak detection methods make use of adaptive
thresholds [19], machine learning [20,21], all of which requires sufficient data for training before they
can be used for prediction. There are others who use multivariate statistical analysis [22,23] as well.
Much of these analytical methods serve only to detect the presence of the leaks and not the exact leak
location. In this work, we try to define a process flow to determine the presence of leaks and their
associated leak location, which can later be used as inputs or in tandem with existing machine learning
techniques to further improve the accuracy and reliability of detected leaks.

The proposed water leakage detection system in this work will illustrate to the industry that it is
possible to isolate the leak location, showcase the potential to scale up and demonstrate deployment
feasibility in a multigrid sensor environment. This technology and derivative solutions will become an
important building block to a smart nation with industry 4.0-ready pipeline systems in smart factories
and smart estates.

In this work, we made use of a MEMS-based hydrophone coupled with a microcontroller
that is IoT-enabled for communication with the backend server on which the collected signals are
pre/post-processed in accordance with a well-defined process flow. Making use of cross-correlation
algorithms, we tested the IoT water leakage detection system on a 30 m pipeline testbed, where the leak
location can be accurately identified within tolerable limits. We were able to establish leakage detection
in a sensor network with allowance for automatic detection and real-time monitoring, prompting alerts
only with the onset of abnormal events.

2. MEMS Hydrophone Device Structure and Fabrication

The MEMS hydrophone used in this study is a piezoelectric aluminum nitride (AlN)-based
micro-machined infrasonic hydrophone sensor. Its cross section is as shown in Figure 1a, and it has
been shown that the MEMS hydrophone sensor is capable of achieving a flat sound sensitivity of
−182.5 ± 0.3 dB (Referenced to 1 Vrms/µPa) over an industry-standard hydrophone verification unit
with reference value of −194.5 ± 0.6 dB over the operation bandwidth 10 Hz~100 Hz, as shown in
Figure 1b [24].
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Figure 1. Piezoelectric AlN-based micro-machined infrasonic hydrophone sensor. (a) Cross-sectional 
view. (b) Hydrophone acoustic measurement. (c) Non-linearity measurement obtained by sweeping 
the sound pressure up to 640 Pa at 26 Hz. (d) Measured noise performance. 

The piezoelectric AlN-based micro-machined infrasonic hydrophone sensor, to the best of our 
knowledge, is the highest noise resolution of micro-machined hydrophones reported to date. A non-
linearity of 0.11% with a noise resolution of 57.5 dB referenced to 1 μPa/√Hz within an ultra-low 
operation bandwidth is observed in Figure 1c,d, respectively. The hydrophone was fabricated based 
on an in-house complementary metal oxide semiconductor (CMOS)-compatible AlN-on-SOI (silicon-
on-insulator) platform [25,26]. 

Figure 2 further explains the AlN-on-SOI MEMS hydrophone fabrication processes. In step a, 
the wafer is double-sided polished (DSP) and alignment marks are etched on to the backside of the 
wafer. This is followed by patterning the cavity and etching silicon on the front side of the DSP wafer 
with alignment key on the backside of the wafer. If pillars within the cavity are needed, double 
etching steps are required if the pillars are not the same height as the cavity, as shown in step b. 

A different SOI wafer is used, and the dielectric layer can be produced using microfabrication 
technique (thermal oxidation). Wafers are bonded together to create a vacuum-sealed cavity (fusion 
bonding) in steps c and d. The second-stage manufacturing starts with the deposition and patterning 
of aluminum nitride (AlN) and the moly (Mo) layers. This multilayer composite structure comprises 
of a silicon support layer and a Mo/AlN/Mo piezoelectric stack. First, we deposited a 0.02 μm AlN 
seed layer at high temperature and a 0.2 μm bottom Moly layer, followed by a 1.0 μm AlN at high 
temperature deposition and a 0.2 um top Moly layer, as shown in step f. Alignment marks are also 
transferred from the back to the front side to ensure further alignment during subsequent lithography 
steps. A 0.2 μm oxide HM deposition and patterned top Moly defines the device structure and 
another layer of oxide is deposited using plasma-enhanced chemical vapor deposition (PECVD). This 
oxide layer is subsequently patterned and etched to the bottom electrode while a thick PECVD oxide 
layer is deposited and patterned to open up contacts for both top and bottom electrodes. Finally, a 
metal layer is deposited and patterned on the front side to form metal pads. The resultant fabricated 
array of MEMS hydrophone sensors is shown in Figure 3. 

Figure 1. Piezoelectric AlN-based micro-machined infrasonic hydrophone sensor. (a) Cross-sectional
view. (b) Hydrophone acoustic measurement. (c) Non-linearity measurement obtained by sweeping
the sound pressure up to 640 Pa at 26 Hz. (d) Measured noise performance.

The piezoelectric AlN-based micro-machined infrasonic hydrophone sensor, to the best of
our knowledge, is the highest noise resolution of micro-machined hydrophones reported to date.
A non-linearity of 0.11% with a noise resolution of 57.5 dB referenced to 1 µPa/

√
Hz within an

ultra-low operation bandwidth is observed in Figure 1c,d, respectively. The hydrophone was fabricated
based on an in-house complementary metal oxide semiconductor (CMOS)-compatible AlN-on-SOI
(silicon-on-insulator) platform [25,26].

Figure 2 further explains the AlN-on-SOI MEMS hydrophone fabrication processes. In step a,
the wafer is double-sided polished (DSP) and alignment marks are etched on to the backside of the
wafer. This is followed by patterning the cavity and etching silicon on the front side of the DSP wafer
with alignment key on the backside of the wafer. If pillars within the cavity are needed, double etching
steps are required if the pillars are not the same height as the cavity, as shown in step b.

A different SOI wafer is used, and the dielectric layer can be produced using microfabrication
technique (thermal oxidation). Wafers are bonded together to create a vacuum-sealed cavity (fusion
bonding) in steps c and d. The second-stage manufacturing starts with the deposition and patterning
of aluminum nitride (AlN) and the moly (Mo) layers. This multilayer composite structure comprises
of a silicon support layer and a Mo/AlN/Mo piezoelectric stack. First, we deposited a 0.02 µm AlN
seed layer at high temperature and a 0.2 µm bottom Moly layer, followed by a 1.0 µm AlN at high
temperature deposition and a 0.2 um top Moly layer, as shown in step f. Alignment marks are also
transferred from the back to the front side to ensure further alignment during subsequent lithography
steps. A 0.2 µm oxide HM deposition and patterned top Moly defines the device structure and another
layer of oxide is deposited using plasma-enhanced chemical vapor deposition (PECVD). This oxide
layer is subsequently patterned and etched to the bottom electrode while a thick PECVD oxide layer
is deposited and patterned to open up contacts for both top and bottom electrodes. Finally, a metal
layer is deposited and patterned on the front side to form metal pads. The resultant fabricated array of
MEMS hydrophone sensors is shown in Figure 3.
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3. IoT Sensor Node Platform for Water Leakage Detection

To transform the sensor node into an IoT platform, the wireless hydrophone sensor node is
built around an Advanced reduced instructions set machine (RISC) machine (ARM) microcontroller
(MCU) running at 168 MHz core clock, which can be optionally configured to run at lower frequencies
to save power [27]. Its architecture is as shown in Figure 4. Cirrus Logic WM8731 Stereo Codec
(samples @ 8Ksps, 16 bits) interfaced to the MCU is fed by the on-board Op-Amp OPA2353, which is
configured as a second-order multi-feedback low-pass filter with audio bandwidth to pass acoustic
signals captured by hydrophones. Acoustic signals from the active hydrophone are fed at the input of
op-amp OPA2353. An on-board ESP8266 Wi-Fi module is interfaced to the MCU through Universal
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Asynchronous Receiver/Transmitter (UART) and configured at 3 Mega baud rates to carry the sensor
data traffic to and from the MCU. The completed wireless sensor node platform is as shown in Figure 5.
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This developed wireless sensor node platform has built-in Wi-Fi and global positioning system
(GPS) modules with provisions for external antenna connections depending on the deployment
environment. It is also designed with dual channel analog frontend for hydrophone signal capturing
and processing. For the leak detection algorithm to work, there is a need for collected signals to
be time-synchronized. To facilitate this, the network GPS-based clock synchronization is adopted.
1 PPS signal from the GPS drives the on-board Frequency Locked Loop (FLL), which is formed with
16 MHz voltage controlled crystal oscillator (VCXO) along with clock synchronization circuitry on
board. This GPS-synchronized 16 MHz clock is used as a master clock for the MCU and CODEC on
board, allowing all systems on the sensor nodes to be locked to the precise GPS clock timing to enable
timing synchronization of the hydrophone data samples.

The sensor node is capable of low power operation and is able to operate from a 6V, 1A wall
adaptor, while optionally a rechargeable 6V battery pack can be used to power up the sensor node
where the power supply is not available. Multiple sensor nodes can be connected to the backend
server through the Wi-Fi network so as to establish IoT capability, as shown in Figure 6. While this
configuration allows a large sensor deployment of up to 256 sensor nodes, each sensor node can be
assigned unique IPv4 addresses to communicate with the cloud server through the internet. Each sensor
node also has their own 8-bit unique ID to tag the sensor data packets for easy identification in the
backend server.
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4. Deployment of Water Leakage Detection System

To test the entire water leakage detection system, a 30 m long straight pipe testbed was set up as
shown in Figure 7, comprising of 5 sensor nodes and a simulated leak location. A schematic of the
entire testbed is shown in Figure 8. For this testbed, a water pressure of 3.2 Bar was maintained in
the pipes. Hydrophones were placed inside the pipe and leaks of varying intensity were simulated,
characterizing small, medium and large leaks as 12, 24 and 36 L/min (LPM), respectively.
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The process flow that was adopted for water leakage detection is as follows. First the sensor
location is collected based on the GPS coordinates of the deployed sensors. Data collected by the
sensors are then pre-processed upon ensuring data integrity. Data integrity checks include and are not
limited to the intermittent capture of time-synchronized signals with sufficiently high sampling rates to
meet resolution requirements for a sufficient duration and whose data sizes are small enough to allow
for fast and efficient pre/post-processing. In our testbed, we simulated leaks with an adopted time
duration of 40 s and signals were collected at a sampling rate of 8 KHz to meet resolution requirements
of 1.5 m. Varying scenarios were studied, including small, medium and large leaks, as well as a
combination of all the three different leak signatures.

For preprocessing of collected signals, we adopted techniques to extract the clean portions of the
signals, make the signal more pronounced by normalization and to extract key parameters such as
the number of channels, the sampling frequency and the number of samples. To clean the signals,
we perform averaging of the signal envelope to obtain the maximum amplitude and mean dominant
frequency. A mean squared error for the signal is calculated with a noise buffer inserted above the
collected noise. An example of such filter operation is as shown in Figure 9. Using the medium leak
signature between sensors 1 and 3 from our testbed results, we can filter and perform subsequent
frequency analysis of the signals to obtain the results shown in Figure 10.
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Once the data collected are found to have satisfied the data integrity checks and have been
pre-processed to only contain information that is pertinent to our analysis, we can then proceed to ensure
the integrity of the algorithms/functions via various post-processing techniques. The post-processing
techniques that we adopted include the identification of leak frequency ranges. This involves the
use of spectral centroids [28] to isolate the frequency ranges of interest. A direct result of identifying
the spectral centroids from Sensor 2 is shown in Figure 11. The next technique involves the use of
bandpass filter to retain relevant data within the frequency range of interest. For the medium leak
detected from sensor nodes 1 and 3, the lower and upper bounds are calculated to be 60 Hz and 720 Hz,
respectively. This is shown in Figure 12. Lastly, we make use of the cross-correlation algorithm to
identify the time arrival of leak.
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The cross-correlation function, PGCC(t), is calculated from the cross-spectral density function,
P12( f ) as follows.

P12( f ) = S1( f )S2
∗( f ) (1)

where S1( f ) = F.T[s1(t)] and S2( f ) = F.T[s2(t)]. s1(t) and s2(t) are the collected signals from sensor
node 1 and sensor node 2, respectively. The generalized cross-correlation with weighting function [29]
is as follows:

PGCC( f ) = P12( f )ψdif(ω) (2)

where ψdif(ω) = ω
n and n refers to the order of the weighing function. The cross-correlation function

in time can then be obtained as
pGCC(t) = I.F.T[PGCC( f )] (3)

Thereafter, the leak location can be narrowed and identified via the use of positive or negative
lags to identify which sensor node is closer to the signal, as shown in Figure 13. The lag time obtained
is also known as the time arrival of leak (TOA).
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Once the algorithm determines the TOA after post-processing the collected signals from the
deployed sensor nodes, we are able to determine the leak location. Assuming a setup with 2 deployed
sensors as shown in Figure 14, a leakage distance of a simulated water leak from the deployed sensors
can be determined using the formula

Dist_sensor1_leak =
Dist_sensor− TOA ∗ speed_sound_water

2
(4)
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Based on the distance of the leak from the two sensors, the leakage location of a simulated water
leak can be determined. This abovementioned process flow can be applied not just to acoustic signals
but for other time-based signals as well, for instance, accelerometer signals. For all of the test cases,
a relative accuracy of up to 1.5 m can be achieved, which is the maximum resolution for an adopted
sampling rate of 8 KHz. The results are as shown in Table 1.

Table 1. Sensors leak location results in meters.

Test Cases Sensors Detected Distance
from Leak

Actual Distance
from Leak

Within Relative
Accuracy

Medium Leak 3 1, 3 (−3.79, 10.83) (−5, 9.62) 1.5

Medium Leak 3 1, 4 (−9.6175, 14.62) (−5, 19.24) 5

Small Medium Large 1 1, 3 (−6.2, 9.61) (−5, 9.62) 1.5

Small Medium Large 1 1, 4 (−5.177, 19) (−5, 19.24) 1.5

Small Medium Large 2 1, 3 (−8.785, 5.835) (−5, 9.62) 5

Small Medium Large 2 1, 4 (−8.604, 15.635) (−5, 19.24) 5

5. Conclusions

In conclusion, we have developed a water leakage detection system with MEMS hydrophone
sensor nodes and built-in IoT capability. The benefits of adopting the MEMS hydrophone far outweighs
those of other existing hydrophones in that it allows for higher optimal sensitivity, small footprint,
lower cost and easier scalability for large-scale IoT implementation. The process flow and algorithms
for signal analysis for such a water leakage detection system has also been defined, allowing for leak
localization. This process flow can be further enhanced to incorporate machine learning techniques
or adopted into existing leakage detection processes to improve the accuracy of the location of the
identified leak for different pipe lengths, diameters and materials. The complete water leakage
detection solution with automatic detection, real-time monitoring and alerts with the onset of abnormal
events has been tested with an in-house 30 m pipe testbed with a controller leak simulator, thereby
demonstrating the feasibility of such water leakage detection deployment, with the allowance to scale
up the sensor deployment if necessary.
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