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Abstract: As China’s main grain producing region, the Yangtze River basin is vulnerable to
changes in wet and dry conditions. In this study, the monthly scale of standardized precipitation
evapotranspiration index (SPEI) was calculated, based on the Penman–Monteith equation from 239
meteorological stations in the Yangtze River basin, from 1960 to 2017. Water regime characteristic
areas of the Yangtze River basin were extracted and divided using the rotating empirical orthogonal
function (REOF). The linear trend of the drought and wetness indicators, the abrupt changes of the
rotated principal component time series (RPCs), and the change periods of the drought/wetness
intensity (DI/WI) in each subregion were analyzed and discussed. Subsequently, the effects of El
Niño-southern oscillation (ENSO) and arctic oscillation (AO) on drought and wetness events were
discussed. The results showed that the Yangtze River basin has the characteristic of coexistence of
drought and wetness, and drought and wetness of similar severity tend to occur in the same region.
There were six subregions extracted through REOF, based on the monthly scale of SPEI, of which the
northwestern pattern had an aridization tendency. The stations with significantly increased wetness
were located in the middle and eastern basin. The stations in the south of the northwestern pattern,
and the west of the southern pattern, had a tendency of wetting in the first 29 years, however, there
has been a significant tendency of drying in this region in the last 29 years, which was caused by an
abrupt change in 1994. In addition, other patterns had multiple abrupt changes, resulting in multiple
transitions between dry and wet states. The principal periods of WI in the southern pattern and
northern pattern were longer than the DI, but in other subregions DI was longer than WI. ENSO and
AO had the most obvious influence on DI and WI. Compared with the cold phase of ENSO, the DI/WI
in the warm phase were higher/lower; compared with the negative phase of AO, both DI and WI
were higher in the positive phase. The Hurst index showed that the current dry and wet conditions
in the Yangtze River basin have persistent characteristics, the dry conditions in each subregion will
continue in the future, and there were a few wetness indicators with weak anti-persistence.

Keywords: wetness and drought characteristics; SPEI; REOF; Yangtze River basin

1. Introduction

Climate warming has a profound impact on the global ecological environment. In the context
of climate change, the pattern of water balance is changing [1–3], the surface evapotranspiration is
increasing due to climate warming, and the uneven spatial and temporal distribution of interannual
precipitation is strengthened, which leads to the increasing intensity and frequency of droughts, floods,
and other disasters [4,5]. The response of drought and wetness changes in different regions to global
warming is different. In the past 120 years, drought has increased in different parts of the United
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States, and the Great Plains of the United States have often been affected by drought [6,7]. In Italy,
the climate has transformed to drought, and the precipitation has decreased by 0.47%·a−1 in the last
57 years [8]. The frequency of drought in countries in Oceania has reduced because of the influence
of air circulation [9]. In China, the northwest region is relatively arid, and Lian et al. (2019) [10]
found that precipitation amount and precipitation frequency in the western region of northwest
China have both increased, while rainfall in the eastern region of northwest China has become more
concentrated in the past 58 years, which confirmed the view that the northwest region is changing into
a warmer and moister region [11]. Drought is aggravated due to the decrease in persistent precipitation,
and the increase in days without precipitation in north China and southwest China [12]. In southern
China, although persistent precipitation events and precipitation amount had an increasing trend,
moderate and mild droughts often occurred [13], resulting in short-duration droughts, which also had
an increasing tendency [14].

The Yangtze River basin is one of the two major basins, and also a major grain producing area
in China. Owing to the influence of the monsoon, El Niño-southern oscillation (ENSO), and other
factors, the Yangtze River basin has a frequent dry-wet conversion. In the Yangtze River basin,
there was a severe flood in 2010, and a severe spring drought in 2011; the rainstorm and flood occurred
on 7 December 2012, and a long summer drought occurred in 2013 [15–18]. The frequent dry-wet
conversion brought numerous adverse effects to the ecosystem and agriculture, as well as challenges
to monitoring [19].

Drought indexing is an important method to objectively quantify and compare the degree of
dryness and wetness in regions with different climatic and hydrological conditions [20]. At present,
there are three meteorological drought indexes: the palmer drought index (PDSI) [21], the standardized
precipitation index (SPI) [22], and the standardized precipitation evapotranspiration index (SPEI) [23]
that are widely used to monitor drought and wetness in the whole world, and different regions.
PDSI has been effective in the monitoring and prediction of regional dry and wet conditions through the
water balance model, which has achieved an important breakthrough in the drought index. However, it
is difficult to compare the dry and wet states of different times and different regions; Mckee et al. (1993)
proposed the SPI index, which can be used to monitor drought with multiple time scales. However, this
model only takes precipitation into consideration, while ignoring the influence of water balance on
regional dry and wet state, so the monitoring ability is not appropriate in the context of climate
warming. Therefore, Vicente-Serrano et al. (2010) combined the water balance idea of PDSI and
the multi-time scale idea of SPI to create the standardized precipitation evapotranspiration index
(SPEI). Potential evapotranspiration has been added to SPEI, so that meteorological indicators, such as
precipitation and temperature, are included in the drought evaluation system. Therefore, SPEI has
been widely used in recent years. SPEI has good applicability in the monitoring of dry and wet
conditions in China [20,24], and is used to monitor the drought and wetness changes in agricultural
areas, river basins, grasslands, and other regions [25–27].

The purpose of this study was to explore the changing characteristics of drought–wetness in
the Yangtze River basin from 1960 to 2017, through the monthly scale SPEI. Due to the large area of
the Yangtze River basin, REOF was used to divide the regions by different variation characteristics
of wetness and drought. Subsequently, the trend of changes of drought and wetness indicators of
meteorological stations and the RPCs, was used to reflect the dry and wet characteristics of each
subregion in the Yangtze River basin. Finally, the influence of ENSO and arctic oscillation (AO) on
drought and wetness events in the Yangtze River basin was analyzed through the generalized extreme
value distribution (GEVD), and the continuity of the current variation trend into the future was
explored through the Hurst index.
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2. Study Area and Data

2.1. Study Area

The Yangtze River basin (90◦33′ E∼122◦25′ E, 24◦30′ N∼35◦45′ N) is the third largest basin in the
world (Figure 1), and covers 18.8% of the land area, and one third of the total population, of China [28].
The Yangtze River basin has a large number of rivers and lakes, a developed economy, and rich
resources. Within the basin, the Dongting Lake Plain, Yangtze River Delta Plain, Poyang Lake Plain,
and Han River Plain are the main grain producing areas in China. Precipitation in the Yangtze River
basin is greater in the southeast and less in the northwest, and the temperature is higher in the east and
lower in the west. Within the basin, the Yunnan-Guizhou Plateau, Sichuan Basin, and Jinshajiang River
Valley are closed, high-temperature areas under the influence of the topography [29]. The Yangtze
River basin is vulnerable to drought and flood disasters. From 1961 to 1990, the losses caused by
drought and flood disasters accounted for about 78% of the total losses, caused by meteorological
disasters in the Yangtze River basin, while losses caused by drought alone were as high as 50% [30].

Figure 1. Digital elevation model and meteorological station distribution in the Yangtze River basin.

2.2. Data Sources

The daily wind speed (m/s), relative humidity (%), maximum temperature (◦C), sunshine time
(h), daily rainfall (mm), the minimum temperature (◦C) data from 1961 to 2017, of 239 meteorological
stations, in the Yangtze River basin were collected from the Chinese National Meteorological Information
Center (http://data.cma.cn/site/index.html). The meteorological data quality was strictly controlled,
while some data with missing measurements were interpolated by multiple regression. The data for
ENSO and AO was sourced from the Climate Prediction Center (https://www.cpc.ncep.noaa.gov/).

3. Method

3.1. Calculation of the Standardized Precipitation Evaporation Index

The first step was to calculate potential evapotranspiration (PET), based on the Penman–Monteith
equation, which was recommended by FAO-56 [31]:

PET =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where PET is the monthly potential evapotranspiration (mm day−1); Rn is the net radiation (MJ m−2

day−1); G is the soil heat flux density (MJ m−2 day−1); γ is the psychrometric constant (kPa ◦C−1); u2 is
the wind speed at 2 m height (m s−1); T is the mean monthly temperature (◦C); ∆ is slope vapor pressure
curve (kPa ◦C−1); ea is the actual vapor pressure (kPa); and es is the saturation vapor pressure (kPa).

http://data.cma.cn/site/index.html
https://www.cpc.ncep.noaa.gov/
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The second step was to calculate the difference between monthly precipitation and potential
evapotranspiration:

Di = Pi − PETi (2)

where Pi is the monthly precipitation, and PETi is the monthly potential evapotranspiration.
The third step was to simulate the water equilibrium accumulated probabilities, through the

three-parameter log-logistic probability distribution [32]:

f (x) =
β

α
(

x− γ
α

)
β−1

[1 + (
x− γ
α

)
β
]
−2

(3)

F(x) = [1 + (
α

x− γ
)
β
]
−1

(4)

where f(x) is the probability density function of a three-parameter log-logistic distributed variable,
and F(x) is the probability distribution function of the Di series, according to the log-logistic distribution.
α, β, and γ are scale, shape, and origin parameters, respectively, for Di values in the range (g < x <∞).
They can be determined by using the L-moment method [32]:

β =
2w1 −w0

6w1 −w0 − 6w2
(5)

α =
(w0 − 2w1)β

Γ(1 + 1
β )Γ(1−

1
β )

(6)

γ = w0 − αΓ(1 +
1
β
)Γ(1−

1
β
) (7)

where Γ(β) is the gamma function of β. ws (s = 0, 1, 2 . . . ) can be calculated by the probability weighted
moments, through the L-moment method [33]:

ws =
1
n

n∑
i=1

(1−
i− 0.35

n
)

s

Di (8)

where n is the sample size of Di.
The fourth step was to process the sequence with standard normal distribution.

First, the cumulative probability density was standardized [23]:

P = 1− F(x) (9)

When the cumulative probability P ≤ 0.5:

ω =
√
−2 ln(P) (10)

SPEI = ω−
c0 + c1ω+ c2ω2

1 + d1ω+ d2ω2 + d3ω3 (11)

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308. When P > 0.5,
ω =

√
−2 ln(1− P) and the sign of the resultant SPEI is reversed [34–36]. Then, the magnitude of

drought and wetness can be seen in Table 1:
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Table 1. Classifications of drought and wetness magnitude based on standardized precipitation
evapotranspiration index (SPEI) value.

Mild Drought Moderate Drought Severe Drought Extreme Drought

−1 < SPEI ≤ −0.5 −1.5 < SPEI ≤ −1 −2 < SPEI ≤ −1.5 SPEI ≤ −2

Mild Wetness Moderate Wetness Severe Wetness Extreme Wetness

1 > SPEI ≥ 0.5 1.5 > SPEI ≥ 1 2 > SPEI ≥ 1.5 SPEI ≥ 2

3.2. Empirical Orthogonal Function (EOF) and Rotational Empirical Orthogonal Function (REOF)

In order to avoid data being smoothed, it is better to conduct partition analysis when studying
large areas. Due to the fact that the empirical orthogonal function (EOF) does not have a fixed base
function, it is convenient to decompose the space–time field of complex meteorological element fields.
The decomposed eigenvectors are orthogonal to each other, and the information of the variable field is
generally concentrated in the first few patterns. Therefore, the changes in the spatio-temporal field
of meteorological elements can be reflected by the first few patterns, where the cumulative variance
reaches a certain level. EOF expresses the space–time field of the weather variable through a matrix [37]:

Xm×n =



x11 x12 . . . x1 j . . . x1n
x21 x22 . . . x2 j . . . x2n

. . . . . . . . . . . .
xi1 xi2 . . . xi j . . . xin
. . . . . . . . . . . .
xm1 xm2 . . . xmj . . . xmn


(12)

where m is the point in space, which can be an observation station or a grid point. n is the point in time,
which represents the number of observations. xij is the jth observation value at the ith meteorological
station or grid point. And Xm×n can be seen as a linear combination of k spatial feature vectors and
corresponding time weight series:

Xm×n = Vm×k·Tk×n (13)

where V is the space matrix, also known as spatial patterns, and T is the time series matrix. Through this
process, the spatial typical field and time series of the month scale SPEI were extracted.

The rotating empirical orthogonal function (REOF) rotates the original matrix greatly, on the basis
of EOF decomposition, so that the high load vector field of the same spatial patterns are concentrated in
the region of a few variables, and the remaining load of other regions are close to 0. In this way, the clarity
of the feature field space and the stability of time are increased, which is conducive to the extraction of
local features of the spatial distribution of climate elements [38–40], resulting in the same region having
internal similarities, and differences between different regions. More information about REOF analysis
can be found in the review papers of Richman (1986) [41] and Hannachi et al. (2007) [42]. In this study,
the variable of REOF is the monthly scale SPEI value arranged in temporal and spatial order.

3.3. “Take the Minimum” Category

When the spatial vector after REOF is ≥ 0.3, assign each meteorological station to the modal
ordinal number of each mode; otherwise, assign a specific value (the specific value must be greater
than the modal ordinal number, 9 was selected in this study):{

CVi j = i, Vi j ≥ 0.3
CVi j = 9, Vi j < 0.3

(14)

where CVij is the classification value of the j meteorological station of the i spatial vector. Vij is the
spatial vector value of the j meteorological station of the i spatial vector, i = 1,2,3, . . . , 6. The minimum
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classification value of CVij is the final classification value [43], the purpose of which is to extract the
maximum absolute spatial load of all patterns of each meteorological station, and find out the number
of the pattern where the maximum absolute spatial load is located. The aggregate regions of each
pattern can be extracted into a composite region, and the month scale SPEI patterns can be partitioned:

C j = min
{
CV1 j, CV2 j, CV3 j, . . . , CV6 j

}
(15)

3.4. Linear Trend Rate and Significance Calculation of Drought and Wetness Index

The drought and wetness indicator of the sample amount, n, is represented by Y, t is the
corresponding year, and the simple linear regression equation is calculated by fitting the least squares
method [44]:

Y = at + b (t = 1, 2, · · ·, n) (16)

where a is the regression coefficient, 10 times of which is taken as the drought and wetness indicator
tendency rate, and the significance of the variation trend is tested by the Mann–Kendall non-parametric
test method [45].

3.5. Definition of Drought and Wetness Events

In this study, the process of SPEI values being continuously ≤−0.5 was defined as a drought event,
and the process of SPEI values being continuously ≥ 0.5 was defined as a wetness event. The OTD and
OTW are the occurrence times of drought and wetness events. The absolute value of the cumulative
value of the SPEI value between these procedures, were the drought intensity (DI) and wetness intensity
(WI). The DD and WD are the duration of drought and wetness events.

3.6. Other Methods

The Mann–Kendal (M–K) abrupt test [46,47] is generally used for climate abrupt detection.
UF and UB (forward and backward of the sequential values of the statistic U, see, e.g., Yang, Y.;
and Tian, F., 2009 [48]) are used for time series analysis when UF >0 or <0, the sequence shows a trend
of increase/decrease, and the curve UF exceeds the reliability line (P < 0.05), indicating a significant
trend of change. If the intersection of UF and UB is located between the reliability lines, this point
is the beginning of the abrupt transition. In this study, the M–K abrupt test was used to detect the
abruptness of the rotated principal component time series (RPCs).

R/S analysis (rescaled range analysis) is a nonlinear scientific prediction method, which has good
applicability to both normal distribution and non-normal distribution time series data. The Hurst index
has a value interval of [0,1]. When H > 0.5, the future trend is consistent with the past. When H < 0.5,
it indicates that the future trend is contrary to the past, and the process has anti-persistence, andthe
closer H is to 0, the stronger the anti-persistence will be [49].

The generalized extreme value distribution (GEVD) is a continuous probability distribution based
on extreme value theory. The advantage of GEVD is that the probability density function (PDF) can be
estimated without making any assumptions about the unknown distribution. Moreover, GEVD has
good flexibility in dealing with the tails of different types of distributions [50], and can be well
used for the description of meteorological elements. In this study, GEVD was used to show the
distribution of OTD, DI, DD, OTW, WI, and WD, when ENSO is in a cold/warm phase, and AO is in a
positive/negative phase.

In this study, the Pearson correlation analysis method [51] was used to analyze the correlation
between SPEI of the central load of each pattern and the RPCs, and the moving average method [37]
was used to show the phased state of the central load SPEI value. Morlet wavelet variance [52] was
used to identify DI and WI cycles. The inverse distance weight method (IDW) [53] was used as the
spatial interpolation method in this study.
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4. Results

4.1. Spatial Distribution of the Number of Dry/Wet Months and Drought/Wetness Events in the Yangtze
River Basin

Figure 2 shows the spatial distribution of the number of dry and wet months in the Yangtze
River basin. The number of dry and wet months (Figure 2(a1,a2)) in the middle and lower reaches of
the Yangtze River was more than that in the upper reaches, especially in Hunan, Jiangxi, and Anhui.
The distribution characteristics of mild drought and mild wet (Figure 2(b1,b2)), moderate drought,
and moderate wet months (Figure 2(c1,c2)) were similar to the overall distribution characteristics
(Figure 2(a1,a2)). Therefore, the Yangtze River basin mainly experienced mild and moderate drought
and wetness.

Figure 2. The spatial distribution of (a1) all dry months, (a2) all wet months, and the months with the
magnitude of (b1) mild drought, (b2) mild wetness, (c1) moderate drought, (c2) moderate wetness,
(d1) severe drought, (d2) severe wetness, (e1) extreme drought, and (e2) extreme wetness.

Areas with more than 25 severely dry and wet months are widely distributed in the whole basin
(Figure 2(d1,d2)), indicating that the probability of severe drought and wetness events in the whole
basin was relatively close. For extreme dry and wet months (Figure 2(e1,e2)), although the overall
frequency of months was relatively small, the relatively frequent occurrences were mainly located
in the upper reaches of the Yangtze River, with relatively few occurrences in the middle and lower
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reaches of the Yangtze River. Furthermore, Figure 3 shows that short duration events occurred in the
middle and lower reaches of the Yangtze River, while long duration events occurred in central and
eastern Sichuan, southern Chongqing, and northern Yunnan, which also explained the coexistence of
drought and wetness in the Yangtze River basin. However, Figure 3 shows that there are more drought
and wetness events with short duration occurring in the Yangtze River basin.

Figure 3. Spatial distribution of the occurrence times of drought (OTD) and occurrence times of wetness
(OTW) with different durations. 1 is the spatial distribution of OTD; 2 is the spatial distribution of
OTW; (a) is all drought–wetness events, and (b–d) are OTD/OTW with different durations.

4.2. Partitioning Based on REOF

The monthly SPEI values of the Yangtze River basin from 1960 to 2017 were decomposed by
REOF, and the patterns that reached significance level were screened by the North criterion [54]
(Table 2). Six of the first seven consecutive patterns had reached a significant level (P < 0.05), and the
cumulative variance contribution rate of the first six patterns reached 54.27%, which best represented
the distribution structure of the drought and wetness variable field in the Yangtze River basin.
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Table 2. 1960–2017 contribution rate and cumulative contribution rate of rotating empirical orthogonal
function (REOF) patterns.

Pattern REOF1 REOF2 REOF3 REOF4 REOF5 REOF6 REOF7

Contribution rate 21.99% 11.59% 8.23% 5.08% 4.50% 2.89% 2.54%
Cumulative contribution rate 21.99% 33.58% 41.81% 46.89% 51.39% 54.27% 56.81%

Is it significant? Yes Yes Yes Yes Yes Yes No

The EOF eigenvectors of the first six significant patterns were orthogonally rotated, so that the
loads with similar change characteristics could be gathered in space. IDW spatial interpolation of
the rotated load (Figure 4) shows that the high positive value of load in pattern 1 is higher than the
absolute value of the high negative value, and the central load (the load with the highest absolute
value) is located in the east of the Yangtze River basin (Figure 4a), so pattern 1 can be named as the
eastern pattern (Table 3). The high positive load value region of pattern 2 is located in the southeast
of the Yangtze River basin, and the central load of the pattern is located in the southeast of the
Yangtze River basin. Therefore, pattern 2 can be called the Southeastern pattern (Figure 4b). Similarly,
patterns 3, 5, and 6 can be called the Southern, Southwestern, and Northwestern patterns, respectively.
The difference is that the high negative load value of pattern 4 is higher than the high positive load
value. The central load is located in the northern part of the Yangtze River basin, where the high
negative load value is located, therefore, this pattern can be called the northern pattern (Figure 4d).

Figure 4. Distribution of the space load value and central load of the significant pattern in (a) REOF1,
(b) REOF2, (c) REOF3; (d) REOF4, (e) REOF5, and (f) REOF6.
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Table 3. Information of the patterns.

Pattern REOF1 REOF2 REOF3

Name The Eastern Pattern The Southeastern Pattern The Southern Pattern
Representative region Subregion I Subregion II Subregion III
Representative station 58345 57896 57731

Pattern REOF4 REOF5 REOF6

Name The Northern pattern The Southeastern pattern The Northwestern pattern
Representative region Subregion IV Subregion V Subregion VI
Representative station 57154 56537 56196

Figure 5 shows the classification of meteorological stations, as well as the results of regional
division and extraction. The clustering and screening of meteorological stations by the “Take the
minimum” classification method showed that only eight meteorological stations had a poor aggregation
effect, and 96.65% of meteorological stations had a good aggregation effect (Figure 5a). The control
range of the meteorological stations was constructed through the Tyson polygon, and the space loads
were extracted according to the classification (Figure 5b). The eastern stations are located in the high
positive value region of pattern 1 (Figure 4), and the southeastern stations are located in the high
positive value region of pattern 2. The southern, southwestern, and northwestern subregions are
mainly located in the high positive value regions of patterns 3, 5, and 6. The stations classified as “9”
are located in the high negative value region of pattern 4, and part of the high positive value region of
pattern 6, which is located on the Qinghai-Tibet Plateau. Therefore, taking into account the continuity
of the region, the Yangtze River basin was divided into six subregions (Figure 5, Table 3).

Figure 5. The spatial distribution of (a) the Tyson polygon classification of meteorological stations, and
(b) classified load value and feature area extraction.

4.3. Change Characteristics of Drought and Wetness

The spatial difference of the load after REOF reflects that the regions where they locate have
different development directions in time. Therefore, the change of RPCs and the central load SPEI
value can be used to analyze the variation in the drought and wetness of different subregions in the
Yangtze River basin change characteristics. The combination of the spatial load and the RPCs can
reflect the temporal and spatial variation characteristics of drought and wetness in the Yangtze River
basin. The positive or negative spatial load indicates that the dry or wet conditions in different regions
have different changing directions [37]. If the load value of the high-load region is positive, a negative
value of the time series reflects that the region is in a dry state, and a positive value of the time series
reflects that the region is in a wet state. If the load value of the region is negative, when the value of
the time series is positive, the region is in a dry state, and when the value of the time series is negative,
the area is in a wet state. From Table 4, it can be seen that the RPCs 1, 2, 3, 5, and 6 have significant
positive correlation with the SPEI value of the central load meteorological stations, and the RPC 4
has a significant negative correlation with the SPEI value of the central load meteorological station,
which reflects the above description. Since the time series and the SPEI value of the central load have a
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significant correlation, the change in the SPEI value of the central load and RPCs can be used to reflect
the characteristics of drought and wetness changes in subregions.

Table 4. Correlation between the rotated principal components (RPCs) and SPEI value of the central
load of meteorological stations.

Pattern REOF1 REOF2 REOF3 REOF4 REOF5 REOF6

Station 58345 57896 57731 57154 56357 56196
correlation coefficient 0.83 0.78 0.72 −0.79 0.65 0.6

Significant level *** *** *** *** *** ***

Note: * is P < 0.05, ** is P < 0.01, *** is P < 0.001, the same below.

4.3.1. Distribution of Conditions of Drought and Wetness in Each Year-Month

Figure 6 shows the year–month distribution characteristics of the SPEI values of the central load
meteorological stations of the REOF significant patterns in the Yangtze River Basin from 1960 to
2017. Drought in subregion I–V mainly occurred from April to November (Figure 6), and the higher
magnitude droughts mainly occurred from May to September. Although the distribution of wet
months was wider than that of dry months, the months with higher wetness magnitude still mainly
occurred from May to September. Generally speaking, subregion VI was more arid than the other
subregions, and extreme drought was prone to occur from May to October.

Figure 6. Year–month distribution of SPEI values of the central load meteorological stations in (a)
subregion I, (b) subregion II, (c) subregion III, (d) subregion IV, (e) subregion V, and (f) subregion VI.

The alternating distribution of wet and dry months in subregion I fluctuated slightly, indicating
that the dry and wet state of the region was relatively stable (Figure 6a). Subregion II had more
normal months in all subregions, and extreme dry and wet months were the least in the all subregions
(Figure 6b). There were more wet months than dry months in subregion III, where extremely wet
months were more likely to occur than extremely dry months, and from 1994 to 2004 there was a
long period of wet state in this region (Figure 6c). The subregion IV was in a dry state from May to
September before 1979, and then changed to a state of alternating drought and wetness (Figure 6d).
There were more dry months from 1966 to 1985, and there were more wet months from 1996 to 2009,
in subregion V (Figure 6e). Subregion VI had more dry months and fewer wet months; after 1994,
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the dry months expanded, and the months with higher drought magnitude also increased, indicating
that the region faced an increasing risk of drought (Figure 6f).

4.3.2. Change Trend of Drought and Wetness Indicators

Table 5 shows the linear trend of the drought and wetness indicators in the Yangtze River basin
from 1960 to 2017. For drought indicators, the occurrence times of drought events (OTD) in subregion
IV had decreased significantly (P < 0.05), and the dry months in subregion VI had increased significantly.
For the wetness indicators, the WI increased significantly (P < 0.05) in subregion IV, the wet months
increased significantly in subregion V, but the wet months and the occurrence times of wetness events
(OTW) decreased significantly in subregion VI. Based on the comparison of drought and wetness
indicators, among all the subregions, only subregion VI can be determined to be in obvious aridification.

Table 5. The 1960–2017 linear trend of drought and wetness indicators in The Yangtze River basin.

Station Dry Months OTD DD DI

58345 −0.093 −0.027 0.008 −0.055
57896 −0.162 −0.090 −0.098 −0.104
57731 0.009 0.002 0.008 0.004
57154 −0.178 −0.153 −0.016 0.041
56357 −0.129 −0.048 −0.038 0.047
56196 0.287 0.078 0.152 0.242

Station Moist Months OTW WD WI

58345 −0.005 −0.024 0.023 0.097
57896 0.122 −0.017 0.044 0.048
57731 −0.039 −0.008 0.001 0.007
57154 0.105 0.009 0.115 0.198
56357 0.247 0.103 0.084 0.040
56196 −0.280 −0.138 −0.048 −0.050

Note: Bold font means P < 0.05.

As a whole, there are just a few drought and wetness indicators in each subregion with a significant
change trend. On the one hand, for the long-term change tendency, the drought–wetness transition
in subregions 1–3 had smaller fluctuations than subregions 4–6 (Figure 6). Therefore, the OTD and
OTW, the wet and dry months, the duration of drought events (DD), and the duration of wetness
events (WD), the drought intensity (DI), and the wetness intensity (WI) did not reach the significance
level (P > 0.05) in subregions 1–3. On the other hand, there were fewer meteorological stations with a
significant increasing trend in subregions 1–3 (Figure 7).

Figure 7 shows the spatial distribution of changing tendency from 1960 to 2017. In terms of the
occurrence times, the OTD increased significantly (Figure 7(a1)), and the OTW decreased significantly
(Figure 7(b1)), in the western part of subregion III and the southern part of subregion VI, indicating
that this region is gradually becoming arid. In other subregions, except for the OTD in the southern
part of subregion I that showed a significant decreasing trend, both the OTD and OTW were on an
increasing trend, leading to more frequent droughts and floods (Figure 6).

As for the intensity, the DI of subregions I, II, IV, and the west of subregion V was weakened
(Figure 7(a2)), while the WI increased (Figure 7(b2)), showing a tendency of wetting. However,
the western part of subregion III and the central and southern parts of subregion VI both showed a
trend of aridification, with decreasing WI and increasing DI. The DD and WD (Figure 7(a3,b3)) were
consistent with the situation reflected by the DI and WI.
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Figure 7. The spatial distribution of linear trend of (a1) OTD from 1960 to 2017, (a2) DI from 1960 to
2017, (a3) DD from 1960 to 2017, (b1) OTW from 1960 to 2017, (b2) WI from 1960 to 2017, and (b3) WD
from 1960 to 2017.

The drought and wetness events were divided into the first 29 years and the last 29 years for
analysis. There were obvious differences in the changing tendency of drought and wetness events in
some regions between 1960–1988 and 1989–2017, and there was a significant reversal in the changing
tendency of drought and wetness events at the junction of subregions III, IV, and VI (Figure 8). The OTD,
DI, and DD had changed from a significant decrease to a significant increase. In addition, DI had
similar phenomena in the south of subregion I, the west of subregion II, and the east of subregion
IV, reflecting that these regions were facing a higher risk of drought in the last 29 years (i.e., from
1989 to 2017). For the southern part of subregion V, the WI showed a significant increasing trend
from 1960 to 1988 (Figure 9(a2)), while it showed a significant decreasing trend from 1989 to 2017
(Figure 9(b2)), reflecting that, although the overall DI in this region had decreased during the study
period (Figure 7(a2)), it had been facing a higher risk of aridification in recent years.

Figure 8. The spatial distribution of the linear trend of (a1) OTD from 1960 to 1988, (a2) DI from 1960 to
1988, (a3) DD from 1960 to 1988, (b1) OTD from 1989 to 2017, (b2) DI from 1989 to 2017, and (b3) DD
from 1989 to 2017.
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Figure 9. The spatial distribution of the linear trend of (a1) OTW from 1960 to 1988, (a2) WI from 1960
to 1988, (a3) WD from 1960 to 1988, (b1) OTW from 1989 to 2017, (b2) WI from 1989 to 2017, and (b3)
WD from 1989 to 2017.

4.3.3. Abrupt Changes and Variation Periods of Drought and Wetness

The Mann–Kendall abrupt detection method was performed on the rotated principal component
time series (RPCs) 1–6 to detect the drought and wetness abrupt years of each pattern (Figure 10).
REOF6 experienced an abrupt change in 1994, which caused the trend of drought in subregion VI
(Figure 10f, Figure 7). REOF1–REOF5 had undergone multiple abruptions, and the abrupt period
was different for each. For abrupt years before 2000, REOF1 was 1977–1978, REOF2 was 1978–1983,
REOF4 was 1964–1968, and REOF5 were 1961, 1966, and 1980; for abrupt years after 2000, REOF1 were
2001 and 2013, REOF2 was 1977–1978, REOF3 was 2000–2001, REOF4 were 2013, and REOF5 was 2017.

Figure 10. Abrupt change of (a) RPCs1, (b) RPCs2, (c) RPCs3, (d) RPCs4, (e) RPCs5, and (f) RPCs6.

The result of multiple abruptions is that the Yangtze River basin has experienced more drought
and wetness transitions. The five-year moving average of SPEI values of the central load meteorological
stations can reflect this situation (Figure 11). Among the six subregions of the Yangtze River basin,
subregions IV–VI had a relatively long dry–wet transition period. The subregion IV was relatively
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dry before 1983, and changed to relatively wet after 1983 (Figure 11d). The subregion V had a
relatively dry period from 1968 to 1989, and a relatively wet period from 1990 to 2009 (Figure 11e).
The subregion VI was relatively wet before 1995 and relatively dry after 1995 (Figure 11f). Subregions
I and II (Figure 11a,b) had undergone many dry–wet transitions, and the subregion III was in a
long-term normal state before 1998 (Figure 11c). The abrupt change year of each of the RPCs had a
good correspondence with the dry–wet conversion of the center load SPEI value of each subregion
(Figure 10; Figure 11).

Figure 11. The 5-year moving average of central load SPEI of (a) subregion I, (b) subregion II,
(c) subregion III, (d) subregion IV, (e) subregion V, and (f) subregion VI.

DI and WI are the most important indicators to describe the degree of drought and wetness in a
region. Combining the periodic changes of DI and WI can better reflect the transition of drought and
wetness in each subregion. Figure 12 shows that the DI of the subregions I–III, V, and VI had the first
principal periods of 20, 30, 16, 10, and 14 years, respectively, and the first principal period of DI in
subregion IV was more than 30 years. In Figure 13, the WI had the first principal periods of 10, 7, 30, 9,
20, and 12 years, respectively. Only the principal periods of WI in the subregions III and V were longer
than the principal periods of DI, and the principal periods of DI in the remaining subregions were
longer than the principal periods of WI.
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Figure 12. Morlet wavelet variance of DI in (a) subregion I, (b) subregion II, (c) subregion III,
(d) subregion IV, (e) subregion V, and (f) subregion VI.

Figure 13. Morlet wavelet variance of WI in (a) subregion I, (b) subregion II, (c) subregion III,
(d) subregion IV, (e) subregion V, and (f) subregion VI.

5. Discussion

5.1. Effects of AO and ENSO on Drought and Wetness

The Yangtze River basin runs through the monsoon region of China, where climate change is
affected by large-scale atmospheric ocean circulation, resulting in frequent and alternating droughts
and floods. El Niño-southern oscillation (ENSO) is the most significant ocean-atmosphere coupling
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signal in the tropical Pacific. The warm and cold phases are represented by El Niño and La Niña events
respectively [55,56]. ENSO affects every member of the East Asian monsoon system in the form of
“tele-correlation” through atmospheric circulation, and thus indirectly affects the climate anomalies
in China [57]. The change of Pacific sea temperature is strongly related to the spring and summer
drought and flood disasters in the Yangtze River basin in China [58], therefore, ENSO has an important
impact on changes to the drought and wetness in the Yangtze River basin. When the arctic oscillation
(AO) is in the positive phase, the westerly wind belt over the mid-latitude Eurasian continent increases
abnormally, leading to the weakening of the East Asian trough, which in turn causes the weakening
of the meridional wind in the lower troposphere over East Asia. As a result, the underlying surface
temperature increases and the East Asian winter monsoon weakens [59]. AO has an impact on the
surface temperature, and the occurrence of climate anomalies in China and the Yangtze River basin in
winter, spring, and summer [60,61].

The impact of ENSO and AO were analyzed through the generalized extreme value distribution
(GEVD) of the OTD and OTW, and DI and WI in the Yangtze River basin, when the ENSO was in the
cold and warm phases, and AO was in the positive and negative phases (Table 6). Figure 14 shows
that in the warm phase of ENSO, there were slightly more OTD in the Yangtze River basin than in
the cold phase, and slightly less OTW than in the cold phase. In the cold phase of ENSO, the DI was
higher than that in the warm phase, and the WI was slightly less than that in the warm phase. In the
positive phase of AO, the probability of occurrence of OTD was almost the same as in the negative
phase, but there were more OTW than in the negative phase. In the negative phase of AO, the DI and
WI were slightly lower than in the positive phase. However, the influence of different phases of ENSO
and AO on the duration of drought and wetness were less than the occurrence times and intensity,
therefore, the probability distribution differences between DD and WD in different phases was small.

Table 6. ENSO warm (cold), AO positive (negative) phase year.

Index Phase Criterion Year

ENSO

Warm phase ≥0.5 ◦C

1964 1966 1969 1970 1973
1977 1978 1980 1983 1987
1988 1992 1995 1998 2003

2005 2007 2010 2015

Cold phase ≤−0.5 ◦C

1965 1968 1971 1972 1974
1975 1976 1984 1985 1989
1996 1997 1999 2000 2001

2006 2008 2009 2011

AO

Positive phase ≥0.2 ◦C

1971 1972 1974 1975 1983
1988 1989 1990 1991 1992
1994 1998 1999 2001 2006
2007 2008 2011 2015 2017

Negative phase ≤−0.2 ◦C

1960 1962 1963 1964 1965
1966 1967 1968 1969 1970
1976 1977 1978 1979 1981
1984 1985 1986 1987 1993
1995 1997 2000 2002 2003

2005 2009 2010
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Figure 14. Generalized extreme value distribution (GEVD) of (a) OTD, (b) DI, (c) DD, (d) OTW, (e) WI,
and (f) WD in different phase years of ENSO, and GEVD of (g) OTD, (h) DI, (i) DD, (j) OTW, (k) WI,
and (l) WD in different phase years of AO.

5.2. Continuity of Drought and Wetness Changes in the Yangtze River Basin

Extreme climate events are important factors that triggers changes in regional drought and
wetness. Extreme precipitation events have rapidly increased the degree of wetness in many areas,
which can cause floods in severe cases. The Yangtze River basin, the Sichuan basin, and the middle and
lower reaches of the Yangtze River are more likely to have extreme precipitation events, and are prone
to high-risk flood disasters [62]. This study also shows that these two regions are frequent areas of
extreme dry and wet months (Figure 2(e1,e2)). Although there are more extreme precipitation events
in the Sichuan basin, due to its high concentration of annual precipitation [63], while prone to flooding,
the southern part is still showing a trend of aridification (Figure 6(a1,b1)). In the middle and lower
reaches of the Yangtze River, extreme precipitation has increased [62], and wetness events are also on
the increase (Figure 6).

With the deepening of global warming, the increase in extreme high temperature events has led to
an increase in evapotranspiration, which may lead to an increase in regional drought. Extreme high
temperatures in the upper reaches of the Yangtze River have increased more significantly than that in the
middle and lower reaches of the Yangtze River [64]; and the Sichuan basin, Yunnan-Guizhou Plateau,
and other areas are closed high-temperature areas [29]. In southern China, where evapotranspiration
is dominant [65], drought is likely to increase (Figure 6).
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The R/S analysis method is used to judge the trend continuity of the drought and wetness indicators
in the Yangtze River basin. Table 7 showed that only a few hurst values are less than 0.5, which are
WI and WD of subregion II and subregion VI, and OTW of subregion IV respectively, indicating that
the wetness conditions of these subregions are likely to change in the future. However, these hurst
values were all greater than 0.38, and the anti-persistence is not strong. The drought indicators are all
persistent, indicating that the drought conditions in each subregion will basically maintain the current
state, with the drought indicators in subregion V being the strongest among all subregions.

Table 7. Hurst values of the drought and wetness index.

Type Index 58345 57896 57731 57154 56357 56196

Drought
OTD 0.51 0.57 0.57 0.70 0.87 0.67

DI 0.66 0.61 0.55 0.53 0.67 0.63
DD 0.65 0.59 0.50 0.55 0.69 0.58

Wetness
OTW 0.54 0.53 0.50 0.39 0.80 0.61

WI 0.62 0.44 0.58 0.63 0.52 0.38
WD 0.53 0.40 0.57 0.62 0.50 0.41

Note: Bold font means anti-persistence.

6. Conclusions

In this study, the characteristics of dry and wet periods in The Yangtze River basin were analyzed,
and the spatial distribution of the number of months of dryness/wetness of different magnitude was
presented. REOF was used to find the subregions with different characteristics of dry and wet states in
the Yangtze River basin. On this basis, the variance tendency of the OTD and OTW, the DD and WD,
and the DI and WI in different subregions were analyzed. Finally, the combined analysis of the 5-year
moving average of the SPEI value of the central load of each subregion, and the abrupt change of the
RPCs, showed the dynamic change of the dry–wet transition in the Yangtze River Basin from 1960 to
2017. The main findings of this research are as follows:

(a) The Yangtze River basin is characterized by the coexistence of drought and flooding in the same
areas. Areas where there were more dry/wet months at the same levels, are more likely to occur
in the same region. There were more mildly and moderately dry months in the middle and lower
reaches of the Yangtze River, but also mildly and moderately wet months. The upper reaches of
the Yangtze River were prone to extremely dry months as well as extremely wet months.

(b) Using REOF to analyze the drought and wetness conditions of the Yangtze Riverb asin in time and
space, it was found that there are six significant patterns in the Yangtze River basin. Through the
“Take the minimum“ method and the Tyson polygon, the Yangtze River basin can be divided into
six characteristic subregions: east, southeast, south, north, southwest, and northwest.

(c) The distribution of SPEI values for the central load of each pattern from 1960 to 2017 shows that
drought and wetness of a higher grade generally occur from May to September. The eastern
parrern frequently changed between dry and wet status; the southeastern pattern had more normal
periods of dry and wet; the southern pattern had higher levels of wet months; the northwestern
pattern was consistent and relatively dry; the northern pattern and the southwestern pattern had
a longer period of extreme drought/wetness in the 1970s and 1980s.

(d) From 1960 to 2017, the inter-annual change showed that the number of dry months, the OTD,
and the DI and DD increased significantly in fewer subregions. However, spatially, the southern
part of the Northwestern pattern and the western part of the southern pattern showed a significant
decrease in the OTW, WI, and WD, and a significant increase in the OTD, DI, and DD, and this
region changed from wetness to dryness in the past 29 years.

(e) According to the 5-year moving average of the central load SPEI value, the subregions I and II had
experienced many dry-wet transitions, the subregion III had a long-term normal dry–wet state
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before 1998, and the subregions IV and VI had a relatively long dry–wet transition. However,
these dry and wet state transitions can better correspond to the abrupt change of RPCs.
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