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Abstract: Artificial reefs are being implemented around the world for their multi-functions including
coastal protection and environmental improvement. To better understand the hydrodynamic and
morphodynamic roles of an artificial reef (AR) in beach protection, a series of experiments were
conducted in a 50 m-long wave flume configured with a 1:10 sloping beach and a model AR
(1.8 m long × 0.3 m high) with 0.2 m submergence depth. Five regular and five irregular wave
conditions were generated on two types of beach profiles (with/without model AR) to study the
cross-shore hydrodynamic and morphological evolution process. The influences of AR on the
processes are concluded as follows: (1) AR significantly decreases the incident wave energy, and its
dissipation effect differs for higher and lower harmonics under irregular wave climates; (2) AR
changes the cross-shore patterns of hydrodynamic factors (significant wave height, wave skewness
and asymmetry, and undertow), leading to the movement of shoaling and breaking zones; (3) the
beach evolution is characterized by a sandbar and a scarp which respectively sit at a higher and lower
location on the profile with AR than natural beach without AR; (4) the cross-shore morphological
features indicate that AR can lead to beach state transformation toward reflective state; (5) the
scarp retreat process can be described by a model where the scarp location depends linearly on the
natural exponential of time with the fitting parameters determined by wave run-up reduced by
AR. This study demonstrates cross-shore effects of AR as a beach protection structure that changes
wave dynamics in surf and swash zone, reduces offshore sediment transport, and induces different
morphological features.
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1. Introduction

Beach erosion is a worldwide problem and intensified by natural effect and human activities
in recent years [1], and the available measures are hard structures and beach nourishment [2].
Scientific knowledge and practical experience since 1950s have led to principles of working with
natural processes, in the long term and broad overall perspective [3]. In the operational level,
engineering should work with the nature to better achieve sustainable protection by proper use
of beach nourishment and submerged coastal structures [4–8]. In the view of erosion prevention,
an investigation on the natural (e.g., rocky headlands, offshore reefs, cobble, and boulder stream deltas)
and artificial structures (e.g., groins, jetties, and breakwaters) in central and southern California [9]
found that the reefs and stream deltas performed with scarcely any adverse impacts.

In the view of coastal engineering, wave propagation on natural reef coasts had been studied in
terms of sea and swell waves, wave group, infragravity wave [10–14], wave set-up and run-up [15–17],
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and deliberated considering the effect of reef geometry [18]. Reefs can play a critical role in reducing the
vulnerability of coastal communities to rising seas and coastal hazards through multiple roles in wave
attenuation, sediment capture, vertical accretion, erosion reduction, and mitigation of storm surge [19],
which can provide comparable wave attenuation effects on breakwater [20]. Moreover, wave regime in
the reef-protected beach can result in different morphodynamic processes and an equilibrium state
relative to beaches directly exposed to a similar hydrodynamic condition [21]. However, reefs are still
rarely assessed for their morphological effect despite that some field investigations have highlighted
the positive contribution of natural reef in shoreline stabilization [22,23].

Artificial reef (AR) was originally created to promote marine life as natural reef and then
extended to provide multi-functions of sports-economic-recreational use, environmental improvement,
and coastal defense [24,25]. There were many research studies on how ARs improve fish abundance
concerning whether it is local proliferation or migration from somewhere else [26], fish behavior
patterns around AR, and the effect on colonization and community structure of marine organism [25].
Systematic investigations on the purpose-built AR have been carried out on wave region and structural
responses (deformation and stress) to various sizes and shapes (concrete box, tunnel, dome, leg,
and complex shapes) [27], material [28,29], and lay out [30,31].

ARs share similarities in coastal ecological and erosion control with submerged breakwaters [5,32]
and then serve as beach protection structures in some coastal resorts [33,34]. An example of a systematic
investigation on the wave transformation process is that Srisuwan and Rattanamanee [35] evaluated
the artificial reef consisting of hemispherical-shaped concrete units named Seadome by numerical
simulation and flume experiment. Furthermore, the geological and morphological influences of the
AR have gained the attention recently. Raineault et al. [36] found the coarsening of the sediment
adjacent to the sunken objects of redbird AR (subway cars, barges, tugboats from New York City) by
annual side-scan surveys from 2008 through 2011. Duarte Nemes et al. [37] conducted thorough field
surveys on the one seasonal cycle of a microtidal beach (Reserva Beach, Brazil) system exposed to
high energy-waves with rocky bank V-shape, elucidated the mechanism of erosion and deposition,
and pointed out that the changed wave breaking vector system determined the morphodynamic
feature onshore. While for the application of AR in beach nourishment, more investigations are needed
regarding the understanding of the mechanism of morphodynamic response to submerged structure
within the surf zone.

To study submerged structure like AR in the beach system, coastal wave dynamics, sediment
transport, and the resulting morphology remain strong challenges, especially involving engineering
works. Physical experiment is the dominated method to discern fundamental processes and their
interaction in beach evolution because of the difficulties and high cost for field measurement,
and limitations in theory and calibration for numerical simulation [38]. Although the impact of
coastal structures is three-dimensional, the cross-shore processes with natural reef, AR, or submerged
structures still lack study, and wave-flume experiment is feasible and practical to elucidate nonlinear
wave dynamics and the relation with sediment transport in shoaling, surf and swash zones [39–43].
Therefore, this study aims to better understand the cross-shore influence mechanism of AR on the
beach evolution process by flume experiments.

The physical model is designed with reference to the real case in Qinhuangdao, China (shown
in Figure 1) located 280 km east of Beijing and in the northeast of Bohai Sea (Figure 1a). The long
golden coast in Beidaihe District is one of the most popular coastal holiday resort destinations in
China [44], which consists of embayed beaches (e.g., West Beach) with granite peaks (e.g., Jinshanzui)
and headlands. The soft sandy beaches were subject to severe erosion in 1980s, and then beach
nourishment projects with periodical maintenance since 2008 have driven the thriving tourism industry.
Beaches are basically composed of fine sand (0.1–0.5 mm) and exposed to low-energy hydrodynamic
condition with an average tidal range of 0.74 m [45]. The wave measurements from 2011 to 2014
showed that most of the recorded significant wave heights Hs (about 91.23%) are smaller than 0.6 m
with only 1.01% over 0.9 m [46]. The wave height of 1.60 m and the maximum wave height of 2.10 m
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were also observed in the south direction [47]. Figure 1b–d shows the use of AR at West Beach,
where the beach slope just after nourishment was roughly 1/10.
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Figure 1. The application of AR in the beach nourishment project of West Beach in Qinhuangdao,
China: (a) geographical location; (b) typical profiles before (201009) and after the project (201203);
(c) the construction of AR; (d) AR at the lowest tide.

A set of flume experiments were conducted to reproduce beach evolution with and without the
AR under different waves and the main study scopes include: (1) to evaluate the hydrodynamic and
morphological responses to AR under regular and irregular waves; (2) to investigate the changes
induced by the AR in cross-shore morphodynamic processes for regular and irregular waves; (3) to
analyze the link between changes of morphological features induced by AR and the overall beach
system state (regardless of long-shore effect); and (4) to quantify the relation of offshore hydrodynamics
with erosion process which better enlighten the influence regime of the AR.

2. Methodology

The physical experiment was performed in a wave flume (50 m long × 0.8 m wide × 1.2 m deep)
located at the Laboratory of Hydraulic and Harbor Engineering, Tongji University (Figure 2).
Model waves were generated by a piston-type wave maker driven by servo motor with an active
absorbing system based on second-order wave generation.



Water 2020, 12, 2947 4 of 28

Water 2020, 12, x FOR PEER REVIEW 4 of 29 

 
Figure 2. Experimental setup: (a) side-view layout for natural beach (profile type B); (b) the AR 
protected beach (profile type B-AR); (c) photo of the model AR in the flume. 

2.1. Experimental Design 

The model beach and AR structure were designed according to those in Qinhuangdao. The 
initial post-nourishment beach slope is 1:10, and the grain size for both native and nourished sand 
(mostly dredged from local offshore area) ranges from 0.1–0.5 mm. Considering the wave flume size, 
light-weight model sand was chosen to achieve the similitudes of hydrodynamic and sediment 
movement [48,49]. Erosive wave parameters of wave height and period were derived from field 
measurements with the still water depth of 5.0 m. Shields and Rouse scaling were adopted to deduce 
the sediment transport similitude, and Froude number similitude can ensure wave dynamics and 
kinematics to be correctly modeled. 

The similitude of the sediment incipient motion is maintained by critical Shields number 훹  as 
Equation (1), which is the ratio of the force exerted by the bed shear-stress to move a particle to the 
submerged weight of the particle: 

훹 =
( )

, (1) 

where 휏  is the threshold of the bed shear stress dominated by wave motion following the 
Equation (2); 휌  is the density of sediment particle and 휌 is the water density; g is the gravitational 
acceleration; D is the sediment grain size: 

휏 = 휌푓 푈 , (2) 

where fw is the wave friction coefficient and Uw is the bottom orbital velocity of waves. Since fw 
varies for different flow regimes, the calculation method by Soulsby [50] presented in Equations (3) 
and (4) was adopted to cover the laminar, smooth turbulent regime and the rough turbulent regime, 
respectively: 

푓 = 퐵(푅 )  for laminar and smooth turbulent regimes, (3) 

푓 = 0.237
.

 for rough turbulent regime, (4) 
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protected beach (profile type B-AR); (c) photo of the model AR in the flume.

2.1. Experimental Design

The model beach and AR structure were designed according to those in Qinhuangdao. The initial
post-nourishment beach slope is 1:10, and the grain size for both native and nourished sand (mostly
dredged from local offshore area) ranges from 0.1–0.5 mm. Considering the wave flume size,
light-weight model sand was chosen to achieve the similitudes of hydrodynamic and sediment
movement [48,49]. Erosive wave parameters of wave height and period were derived from field
measurements with the still water depth of 5.0 m. Shields and Rouse scaling were adopted to deduce
the sediment transport similitude, and Froude number similitude can ensure wave dynamics and
kinematics to be correctly modeled.

The similitude of the sediment incipient motion is maintained by critical Shields number Ψc as
Equation (1), which is the ratio of the force exerted by the bed shear-stress to move a particle to the
submerged weight of the particle:

Ψc =
τc

(ρs − ρ)gD
, (1)

where τc is the threshold of the bed shear stress dominated by wave motion following the Equation (2);
ρs is the density of sediment particle and ρ is the water density; g is the gravitational acceleration; D is
the sediment grain size:

τw =
1
2
ρ fwU2

w, (2)

where fw is the wave friction coefficient and Uw is the bottom orbital velocity of waves. Since fw
varies for different flow regimes, the calculation method by Soulsby [50] presented in Equations (3)
and (4) was adopted to cover the laminar, smooth turbulent regime and the rough turbulent regime,
respectively:

fw = B(Rw)
−N for laminar and smooth turbulent regimes, (3)

fw = 0.237
(A

ks

)−0.52
for rough turbulent regime, (4)



Water 2020, 12, 2947 5 of 28

where Rw = UwA
ν is the wave Reynolds number; B = 2, N = 0.16 for the laminar flow and B = 0.0521,

N = 0.187 for the smooth turbulent flow; A = UwT/2π is the semi-orbital excursion; ks is the Nikuradse
equivalent sand grain roughness using 2.5 times the grain diameter in this study.

The shields number can be plotted against the dimensionless grain size D∗ referring to Soulsby [50]
as Equations (5) and (6):

D∗ = D
[
(s− 1)

g
ν2

] 1
3
, (5)

Ψc =
0.30

1 + 1.2D∗
+ 0.55[1− exp(−0.02D∗)], (6)

where s = ρs/ρ is the specific density of the sand and ν is the kinematic viscosity of water. This relation
is re-fitted linearly by the logarithmic scaled values for grain size range of 0.1–0.5 mm leading to
Equation (7):

Ψc = 0.12D−0.57
∗ . (7)

Hence by combining Equations (1), (2), (4), (5), and (7), scale relation is obtained as Equation (8)
with the scaling factor of a variable in prototype versus its model value represented by λ:

λl = λ1.69
s−1 λ

−0.19
D , (8)

where λ links the scales of submerged relative density s− 1 and sediment grain size D to the length scale.
The hydrodynamic similarity is ensured by Froude number F involving waves [51] as below:

F =
πHs

Tp
√

gh
, (9)

where Hs and Tp are significant wave height and peak period, and h is water depth.
The Rouse number, Rou in Equation (10) [52], represents the ratio between settling scale and

turbulent scale where the settling speed w is calculated according to Equation (11):

Rou =
w
u′

, (10)

w =
10ν
D

(1 + 0.01(s− 1)gD3

ν2

)0.5

− 1

, 0.1 mm < D < 1 mm, (11)

where u′ = 2πκ
√

fw/2A/Tp is the turbulent intensity (A is semi-orbital excursion), and κ is the von
Karman constant with a value of 0.4.

On the basis of above analysis, a type of resin sand is chosen with density of 1.43 g/cm3 and
median grain size of 0.17 mm, which satisfies relation Equation (8) on condition of time and length
scales (model/prototype) being roughly 1/3 and 1/10. The settling speed is approximately 0.01 m/s,
leading to the Rouse number equals to that of natural sand with grain size of 0.16 mm. Since Froude
number, Shields number and Rouse number are basically in the same magnitude as those in natural
environment, beach model consisting of this material is valid for study on morphological process.
Hence, model beach was installed with the slope of 1/10, which started at 24 m from the wave maker.
Model AR consists of polymethyl methacryate blocks, which is a cuboid of 1.80 m in length and 0.30 m
in height placed offshore. The still water depth is 0.50 m and crest depth of the AR is 0.20 m.

Considering the capacity and precision of the wave maker under the condition of model scaling,
five sets of characteristic wave height and period were selected which covered normal, moderate,
and storm conditions. Both regular and irregular model waves were generated based on these
parameters (Table 1). In total, 20 experimental tests were conducted under both regular (R1–R5) and
irregular waves (J1–J5) conditions with AR (B-AR tests) and without AR (B tests). Wave attenuation by
this type of AR can be referred to previous studies by fix-bed flume experiment of Ma et al. [53,54].
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Table 1. Experimental conditions (R means regular wave, and J means irregular waves following
JONSWAP spectra with γ = 3.3 and β = 0.065; Test Name consists of profile type and wave case,
where B-AR and B indicates the beach with and without AR protection).

Test
Name

H
(m)

T
(s)

Duration
(min)

Test
Name

Hs
(m)

Tp
(s)

Duration
(min)

B-R1 0.04 1.20 87 B-J1 0.04 1.14 87
B-R2 0.07 1.44 44 B-J2 0.07 1.38 44
B-R3 0.10 1.57 22 B-J3 0.10 1.68 22
B-R4 0.13 1.77 11 B-J4 0.13 1.74 11
B-R5 0.16 2.06 5.5 B-J5 0.16 2.37 2.6
B-AR-R1 0.04 1.20 87 B-AR-J1 0.04 1.14 87
B-AR-R2 0.07 1.44 44 B-AR-J2 0.07 1.38 44
B-AR-R3 0.10 1.57 22 B-AR-J3 0.10 1.68 22
B-AR-R4 0.13 1.77 11 B-AR-J4 0.13 1.74 4.2
B-AR-R5 0.16 2.06 5.5 B-AR-J5 0.16 2.37 2.6

2.2. Instrumentation and Data Analysis Techniques

A set of instrumentation was arranged, including 9 pre-calibrated capacitance-type wave gauges
(with an accuracy of ±2 mm) along wave propagation and 2 acoustic Doppler velocimeters (ADVLab,
Nortek, with an accuracy of 0.5% of measurement ±1 mm/s) located in the pre-estimated surf zone
(Figure 2). The sampling frequency of 50 Hz was adopted for hydrodynamic measurements. To record
profile evolution, images with resolution above a million pixels were obtained by videos with a frame
rate over 23 fps. The image analysis method has a vertical accuracy of ∆z = ±2 − 3 mm, which is
noticeably precise considering the dimensions of the wave flume. Beach profile data were obtained
continuously for different time durations. The coordinate system has its origin at 2.70 m offshore the
sea-side of AR. The coordinate system is shown in Figure 2a,b.

2.2.1. Wave Transformation

Wave set-up or set-down was computed as the mean of water level fluctuations at each instrument
location after an initial lead-in period (40 s). Wave height was calculated based on the water elevation
in the stable state with a time period of 200 s except for J5 using last 140 s. The spectral analysis
(using Welch’s approach with a 5 min segment interval) was conducted to detect and extract wave
components of different frequencies.

Wave nonlinearity induces new components for regular waves and enhances the energy proportion
of high frequency domain for irregular waves. Therefore, distinction was made concerning the major
and emerged components for regular waves, and the corresponding wave heights are calculated by
the same approach as the calculation of Hm0. As for irregular waves, the analysis was conducted
based on high and low frequency band because of their different impacts on sediment transport and
morphological process. In the field, the classification is divided into high-frequency or sea-swell (with
frequency domain of 0.05–1 Hz, corresponding to period range of 1–20 s) and infragravity motions
(0.004–0.05 Hz, 20–250 s, with the upper limit period of 300 s) [55–57]. In this study, we focused on the
two prototype scale frequency bands, i.e., high- (0.05–1 Hz, 1–20 s) and low-frequency (0.003–0.05 Hz,
20–300 s), which were scaled down to the model domain (by the time scale of 1/3) of short wave
(0.15–3 Hz, 0.33–6.67 s) and long wave (0.01–0.15 Hz, 6.67–100 s), respectively. In addition to significant
wave height, representative wave heights for short and long wave are calculated in the same way
using the corresponding energy proportion at each wave gauges to facilitate the comparison analysis.

2.2.2. Wave Skewness and Asymmetry

As waves propagate onshore, their shape and orbital velocities evolve from skewed profiles to
asymmetric shapes with pitch forward, steep front faces and more gently sloping rear faces just prior
to breaking and in the surf zone [58] The skewed wave shape and asymmetric acceleration during the
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process are expressed by wave skewness Sk and asymmetry Asy, Equations (12) and (13), which lead to
velocity skewness and asymmetry contributing to onshore net wave-averaged sediment transport by
affecting near-bed velocity within wave boundary layer [59,60]:

Sk =
〈(η− η)3

〉

〈(η− η)2
〉3/2

, (12)

Asy =
〈H

3(η− η)〉

〈(η− η)2
〉3/2

, (13)

where η is the free surface elevation, η is the mean water level,H is the Hilbert transformation, and 〈·〉
is the time averaging operator. The overall evolution trends of wave skewness and wave asymmetry
along the water depth variations are similar for both types of measurements. Wave shoaling produces
a clear increase of Sk, and larger value means larger bed shear stresses at wave crest than at wave
trough with higher likelihood of carrying suspended sediment onshore. Large absolute value of Asy
occurs in the intensive breaking area, increasing sediment suspension, which corresponds to abrupt
accelerations associated with thinner boundary layers and thus higher bed shear stresses for a given
velocity magnitude [61].

2.2.3. Undertow Estimation

The depth-average current or undertow u, the balance return flow due to a shoreward mass flux,
is estimated by the time-averaging method [60] as:

u(h0 + η) = −Qw −Qr, (14)

where η is the mean water level, Qw =
∫ η

h0
udz is the wave-induced mass flux, and Qr =

ρrAr
ρTp

is
the roller-induced mass flux (ρr is the density of the fluid in the aerated roller taken as a constant
650 kg/m3, Ar is the roller area, and Tp is the peak period). Assuming the orbital velocity u does not
vary vertically in line with the shallow water approximation, the estimation of wave-induced mass
flux uses Qw = c

h0
η2 − c

h2
0
η3 (wave speed c =

√
g(h0 + η), h0 is the still water depth). It is assumed

that the area of the roller was given by Ar = 0.9H2 [62], where H is the local significant wave height.

2.2.4. Velocity and Turbulent Kinetic Energy (TKE)

Velocity data satisfy the standard that the correlation (COR) of ADV data is more than 70% and
the signal noise ratio (SNR) is more than 20 db [63]. Furthermore, the spikes were detected using
a 3-dimensional phase-space thresholding method [64] and then replaced by cubic interpolation.
The ADV1 and ADV2 were located at the x-coordinates of 6.10 and 7.00 m with water depths of 33 and
22 cm, which measured the velocities about 13 and 9 cm below the still water level.

Based on the velocity data, we use the common definition of turbulent kinetic energy as the
quantitative index to evaluate the turbulent energy of wave breaking. Because large regular waves
become asymmetrical when passing the AR, the velocity signals under regular and irregular waves at
ADV1 and ADV2 are separated by the wave periods obtained from the nearest wave gauges W7 and
W8, respectively.

The ensemble average was conducted over the wave period for each incident wave [65].
The instantaneous turbulent kinetic energy k′ in vertical two-dimensional manner is defined as:
k′ = 1

2

(
u′2 + w′2

)
, where u′ and w′ are horizontal and vertical turbulent fluctuations calculated by

subtracting phase-averaged velocity from the instantaneous velocities. The mean turbulent kinetic
energy is the average of the instantaneous turbulent kinetic energy by each wave period, which is
denoted as TKE hereafter.
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2.2.5. Sediment Transport

After the initial rapid seabed evolution and bar development, suspended sediment concentrations
decreased significantly and suspension patterns were more apparent within the slope area
(5 m < x < 11.3 m).

The total sediment transport rate qs was indirectly estimated from beach profile evolutions. As the
total sediment transport rate at the origin (x = 0) is zero for all tests, the total sediment transport rate
can be estimated using the sediment mass conservation equation based on the difference between
captured beach profiles as the following:

∂qs

∂x
= −(1− p)

∂zb
∂t

, (15)

where qs is the instantaneous sediment transport rate, zb is the bottom profile elevation at the cross-shore
position x (see Figure 2), and p = 0.4 is the sediment bed porosity which is assumed to be loosely
packed and homogeneous along the beach profile.

During a wave climate duration of ∆t, the total sediment transport rate at a given cross-shore

location is: qs(x) = 1
∆t

∫ t+∆t
t qs(x, t)dt, whose discrete version is:

qs(x) = qs(x− ∆x) − ∆x(1− p)
∆zb
∆t

, (16)

where qs > 0 (or qs < 0) corresponds to total onshore (or offshore) sediment transport.

2.2.6. Dimension of the Profile Feature

During the experiment, the beach was eroded by wave attack with vertical cut, called scarp,
and the eroded sediment would settle down offshore and form the deposition as sandbar, flat berm,
and terrace on the profile (Figure 3). Scarps are often found on eroding coastlines, where the profile
adjusts to a new dynamic equilibrium profile, e.g., nourished beach sites [66,67]. The breaker bar
migrates with the increase in volume and offshore moving location. In general, scarp and breaker bar
are the morphological features linked to the erosive and depositional process on the beach.
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The upper and lower locations of the scarp can be found by calculating the minimum and
maximum values of the second derivative of the measured profile [68]. In this study, we used this
automatic recognition method assisted with visual observation, but even so the deviation may be
induced by the debris from scarp slumping at some moment. The largest horizontal coordinate (xs)
between the upper and lower limit is chosen as the scarp location considering the use safety. In addition,
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deposition on the beach is controlled primarily by its height (hb) defined as the maximum deposition
height relative to the initial slope and its corresponding cross-shore location (xb).

3. Results

The experimental results were presented for regular and irregular waves respectively. For analysis
on wave transformation, significant wave heights at i-th wave gauge (Hi) were normalized by
dividing the incident wave height (H0 equaling H and Hs in Table 1 for regular and irregular waves,
respectively) to make direct comparison of the energy proportion. Furthermore, the rapid morphological
changes were used to express the large sediment transport rates coupled to the unsteady flows and
high turbulence. Then, the link was deliberated between hydrodynamics (such as wave skewness,
asymmetry, and undertow) and the total transport rates.

3.1. Regular Wave Tests

3.1.1. Hydrodynamics

As regular waves propagate onshore, higher harmonics are generated due to nonlinear wave
interaction in shoaling, surf and swash zones. Spectral analysis is conducted to extract the wave
components of different frequencies, namely the major (of incident frequency) and generated ones
(higher harmonics). For example, spectral analysis at W8, shown in Figure 4, indicated that only one
extra component emerged for R1 and R2 (B-R1, B-R2, B-AR-R1, and B-AR-R2), two for R3 (B-R3 and
B-AR-R3), and three for R4 and R5 (B-R4, B-AR-R4, B-R5, and B-AR-R5). Basically, wave energy transfer
happened where the generated components grew, and significant wave height decreased sharply
at the wave breaking location. It is found that the numbers and frequency values of the generated
components are identical in B and B-AR tests under the same incident wave. For a monochromatic
wave, AR cannot change the consequential wave components resulted from nonlinear transformation,
but it does change the breaking point.
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Figure 4. Spectral analysis at wave gauge of W8 (location shown in Figure 2) in regular wave tests.

The proportions relative to the incident wave height are illustrated in Figure 5 in terms of
significant wave heights, the 1st major- and the 2nd generated-component where B and B-AR are
depicted in orange and blue, respectively. The higher order generated components (the 3rd and 4th
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ones in B-R4, B-R5, B-AR-R4, and B-AR-R5) are excluded in the analysis, because their total energy
proportion accounts for less than 12%, which can be neglected in morphological evolution. Overall,
the cross-shore distribution of wave height appears with two patterns (one for R1 and R2, and the
other for R3–R5), which are changed by AR into similar pattern.

The significant wave height and wave height of the 1st major component in B tests fluctuate
against the horizontal location with significant decrease from W8 for R3–R5 and small decrease for R1
and R2, which indicate that shoaling effect dominates the area of W1–W8. The remarkable increase
from W8 to W9 in the energy of the 2nd component of R1 and R2 shows that the surf zone starts in the
leeside of W9, while much larger proportion of the 2nd component of R3–R5 at W7 and W8 account for
earlier breaking and enhanced shoaling effect offshore.

In B-AR tests, incident waves are attenuated in advance, leading to the attenuation of shoaling
and breaking effect on the beach, which show as reduce and increase in the wave heights of the 1st
component and 2nd component, respectively, at W4–W8. It is noted that the energy proportions of the
2nd component at W4–W8 in B-AR-R1 are much smaller than those in other B-AR tests under regular
waves, which means that AR attenuates R1 by the shoaling process and bottom friction and R2–R5
mainly by breaking. In addition, significant wave heights at the seaside of AR (W1–W3) are slightly
larger than those in B tests due to the reflection effect of the structure.
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Figure 5. The cross-shore distribution of characteristic wave height (Hi) relative to the incident wave
height (H0) in regular wave tests (panels sorted by (a–e) indicate the wave conditions from R1 to R5;
for a specific wave condition, three panels from left to right, numbered 1, 2, 3, show the transformation
of significant wave height, the 1st- and the 2nd-components, respectively; H0 is the model wave height
in Table 1; W1–W9 are the wave gauges in Figure 2).

Furthermore, the influence of AR on wave breaking can be reflected by comparing the mean
velocity and TKE at the fixed positions (ADV1 and ADV2) under the same wave climate (Table 2).
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The negative signs of mean horizontal velocity (Mean-V) and mean vertical velocity (Mean-W) indicate
the offshore and downward direction respectively. Due to Mean-V directs toward offshore in all tests,
only the magnitude (absolute value) is discussed. For the same regular wave, the values of Mean-W
are same in B and B-AR tests. However, AR decreased the TKE by 28–76% and Mean-V by 16–75%
except for R3 and R5.

Table 2. Mean velocity and TKE at ADV1 (x = 6.1 m) and ADV2 (x = 7.0 m) under regular wave
climates (depth is the distance between the probe and water surface).

Test Name

Variables ADV1 ADV2

Depth
(cm)

Mean-V
(cm/s)

Mean-W
(cm/s)

TKE
(cm2/s2)

Dpeth
(cm)

Mean-V
(cm/s)

Mean-W
(cm/s)

TKE
(cm2/s2)

B-R1 13.5 −1.50 0.05 643 8.5 −0.64 −0.14 343
B-AR-R1 13.5 −0.37 0.05 225 8.5 −0.29 −0.14 101
B-R2 13.5 −4.74 −0.10 1999 8.5 −1.81 −0.26 754
B-AR-R2 13.5 −1.61 −0.10 943 9.0 −0.87 −0.26 407
B-R3 13.5 −4.14 −1.11 1895 9.0 −2.00 −0.71 722
B-AR-R3 13.5 −4.14 −1.11 1362 9.0 −2.00 −0.71 945
B-R4 13.5 −7.29 −2.15 6126 9.0 −8.55 −1.13 3184
B-AR-R4 13.5 −6.14 −2.15 1897 9.0 −7.41 −1.13 1194
B-R5 13.5 −14.39 −1.36 66,498 9.0 −7.90 −0.88 6929
B-AR-R5 13.5 −4.86 −1.36 68,845 9.0 −8.97 −0.88 1648

The Mean-V remained unchanged after the placement of AR under wave R3, probably because the
profiles in B-R3 and B-AR-R3 resembled each other near the measurement points. As for the growth in
Mean-V and TKE induced by AR under R5, the explanation also refers to prevented offshore sediment
transport, leading to the remarkable decrease in water depth.

3.1.2. Beach Evolution

Figure 6 shows the beach evolution under regular waves, which indicates that AR alleviates the
beach erosion significantly. In all tests, the wave attack process was observed as follows: for the first
several incidents, waves broke on the initial slope and eroded the beach face causing scarp; the eroded
sand was suspended into the water column and carried offshore by undertow, which collided with the
next incident wave, leading to large energy loss and decreased offshore current; thus, some sediment
settled down and generated the sandbar with trough where the crest of the plunging breaker dropped
into the water; then, after-breaking wave bores propagated onshore, ran up the slope and undercut the
beach scarp by up- and back-rush.

Under the successive wave attack, the sandbar grew in sizes with a deeper erosion trough at its
leeside, and migrated seaward at a decreasing rate. The scarp gradually developed and reflected the
incident wave which resulted in the following avalanching. As the depth between trough and scarp
increased, wave breaking would occur, possibly leading to the formation of a smaller bar. In the stable
phase, the onshore bores collided with the reflected bores, which resulted in strong local turbulence
promoting the scarp retreat.

Overall, beach behavior consists of the scarp and sandbar, which can basically divide the beach
profile into lower and upper parts, separated by the intersection of the initial and final slopes (xm
in Figure 3). The erosion and deposition can be quantified by the volume changes of the upper and
lower parts, respectively. Table 3 shows the xm, volume changes relative to the original ones of lower
(Vd) and upper (Ve) parts per unit long-shore length under regular waves, which can quantify the
influence of AR. Comparing B and B-AR tests, beach erosion is restrained in higher elevation as xm
is increased by 16–86 cm, and deposition (Vd) and erosion volumes (Ve) are reduced by 22–62% and
40–58%, respectively.
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In B-R1 and B-R2, three generated bars were captured with slight sand ripples offshore.
Nevertheless, the beach evolved rapidly under R3-R5 with large amounts of suspended sediment in
stochastic suspension patterns. The variation of maximum deposition thickness (hb) and its location
(xb) are plotted in Figure 7. The exceptional situation happened in B-R4 and B-R5, where xb rapidly
moved to the toe of the initial profile, while in the other tests, hb and xb measured the bar height and
location. Generally, beach evolution in B tests showed the formation of the sandbar which quickly
moved offshore. Hence, the sandbar grew in height and length, causing the xb fluctuating in a very
slowly reducing trend. With larger incident waves, the sandbar would increase in volume, and migrate
faster toward offshore. Compared with B tests, AR reduced the hb by 2–3 cm and increased xb by
0–0.9 m under R1–R3. The beach slope between the bar-trough and scarp became a platform in B-AR-R4
and B-AR-R5, with the horizontal length of 1.9 and 2.5 m, respectively. To sum, the sandbar forms at
a higher location on the profile with lower height during the beach evolution when AR is included.
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Figure 6. Bed evolution under regular wave climates (left panels show the profile type B, and right
panels show the profile type B-AR, where profiles are shown with colors changing from light to dark as
time progresses; the profiles are captured in different time intervals for wave climates, which are 5 min
for R1, 1 min for R2 and R3, 20 s for R4, and 10 s for R5. The green dash line rectangle in the right panel
depicts the AR; the horizontal blue line represents the still water level, and the black circles are wave
gauges and triangles are ADVs in Figure 2).
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Table 3. The final volume changes of the lower and upper parts of the evolved profile relative to the
initial profile under regular waves (xm is the intersection of the initial and final slopes; Vd and Ve are the
volume changes of the lower and upper parts, which are positive and negative, indicating deposition
and erosion; ∆xm, ∆Vd, and ∆Ve are the difference between the variables in B and B-AR tests under
specific wave climate; p is the percentage of the decreased erosion volume defined as ∆Ve divided by
Ve in B tests.).

Test
Name

xm
(m)

Vd
(m3/m)

Ve
(m3/m)

Test
Name

xm
(m)

Vd
(m3/m)

Ve
(m3/m)

∆xm
(m)

∆Vd
(m3/m)

∆Ve
(m3/m)

p
(%)

B-R1 8.055 0.039 −0.033 B-AR-R1 8.505 0.019 −0.019 0.450 −0.021 0.014 42
B-R2 7.640 0.080 −0.107 B-AR-R2 8.175 0.063 −0.064 0.535 −0.018 0.043 40
B-R3 7.285 0.172 −0.196 B-AR-R3 7.440 0.066 −0.089 0.155 −0.107 0.107 55
B-R4 7.290 0.257 −0.318 B-AR-R4 7.620 0.119 −0.133 0.330 −0.138 0.185 58
B-R5 6.785 0.274 −0.343 B-AR-R5 7.645 0.152 −0.167 0.860 −0.122 0.177 52

Note: The integral range of Ve is from xm and xs, and the unstable part of the reverse slope at the scarp is regarded
as the erosion part before avalanching, leading to the larger magnitude of Ve than Vd.
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Figure 7. Maximum deposition thickness hb and its cross-shore location xb during beach evolution
under regular waves: (a) B tests; (b) B-AR tests (The values are derived from profiles in Figure 6,
and hence the time intervals of the triangles or circles are 5 min for R1, 1 min for R2 and R3, 20 s for R4,
and 10 s for R5).

3.2. Irregular Wave Tests

3.2.1. Hydrodynamics

For irregular wave propagation along the profile of B or B-AR shown in Figure 8, wave heights
of full, high, or low frequency motions vary in the cross-shore patterns with different proportion
magnitude and trend. On basis of the three panels in the same row, variation in wave spectra has
characteristics of energy transformation from peak frequency to higher and lower frequency domain,
especially the enhancement of low frequency ones at W7–W9.
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In B-J1 and B-J2, significant wave height (Hs, shown as orange triangle in Figure 8) presented
a fluctuating growth trend with the maximum value at W9, while in B-J3, B-J4, and B-J5, this growth
trend ended at W8 and turned to the minimum at W9. The wave height of high frequency domains
(Hshort, gray triangle) changed in the same way as Hs. However, the cross-shore distribution of the
wave height of low frequency domains (Hlong, purple triangle) varied for different incident waves,
and B tests under R3-R5 shared a similar general feature.

In B-AR tests, Hs (shown as blue circle in Figure 8) at W1 and W2 basically remained the same as
in the corresponding B tests, while Hs was significantly reduced from W4 to W6. As waves propagated
passing AR, Hs maintained at a relatively constant value at W6–W9 in B-AR tests under J3–J5, while it
slightly grew from W8 to W9 in B-AR-J1 and B-AR-J2. This trend is also found in the distribution of
Hshort (green circle in Figure 8). Compared with B tests, Hlong (yellow circle in Figure 8) was generally
decreased in B-AR-J1 and B-AR-J2, but under J3–J5 Hlong was increased offshore the AR (W1–W3)
and reduced on the beach (W7–W9). In summary, AR changes the cross-shore transformation of Hs

and Hshort into one stable pattern, while the cross-shore pattern of Hlong in B-AR tests depends on the
incident wave.
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Figure 8. The cross-shore distribution of characteristic wave height (Hi) relative to the incident (H0) in
irregular wave tests (panels sorted by (a–e) indicate the wave conditions from J1 to J5; for a specific
wave condition, three panels from left to right, numbered 1, 2, 3, show significant wave height, wave
height of high and low frequency domains, respectively; H0 is the model wave height in Table 1;
W1–W9 are the wave gauges in Figure 2).

Furthermore, the influence of AR on the velocity was summarized in Table 4 for irregular waves.
At ADV1, AR decreased the TKE by 17–73% and the offshore directed Mean-V by 7–99%, except for J5,
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while Mean-W remained same as in B tests. Similarly, TKE and Mean-V at ADV2 were reduced by
38–73% and 44–99% with Mean-W unchanged. Additionally, larger Mean-V at ADV1 in B-AR-J5 than
B-J5 results from the smaller local water depth in B-J5.

Table 4. Mean velocity and TKE at ADV1 (x = 6.1 m) and ADV2 (x = 7.0 m) under irregular wave
climates (depth is distance between the probe and water surface).

Test Name

Variables ADV1 ADV2

Depth
(cm)

Mean-V
(cm/s)

Mean-W
(cm/s)

Depth
(cm)

Mean-V
(cm/s)

Mean-V
(cm/s)

Depth
(cm)

Mean-V
(cm/s)

B-J1 13.5 −0.27 −0.01 171 9.0 −0.47 −0.08 64
B-AR-J1 13.5 −0.08 −0.01 105 9.0 −0.21 −0.08 40
B-J2 13.5 −1.95 −0.46 948 9.0 −1.25 −0.43 350
B-AR-J2 13.5 −0.29 −0.46 427 9.0 −0.00 −0.43 169
B-J3 13.5 −2.95 1.48 45,581 9.0 −5.42 −1.48 1156
B-AR-J3 13.5 −2.02 1.48 29,650 9.0 −1.79 −1.48 406
B-J4 13.5 −3.29 1.15 105,110 9.0 −9.16 −1.67 2365
B-AR-J4 13.5 −3.05 1.15 77,640 9.0 −2.79 −1.67 638
B-J5 13.5 −0.95 2.49 105,270 9.0 −6.38 −1.17 4920
B-AR-J5 13.5 −1.65 2.49 87,411 9.0 −3.55 −1.17 1479

3.2.2. Beach Evolution

Beach evolution under the irregular waves (J1–J5) went through the same process as in tests
under regular waves (Section 3.1.2), leading to smoother final profiles without obvious bar and trough
(Figure 9), probably due to the wider breaking zone relative to regular incident waves. It is noteworthy
that scarps in B test (left panels of Figure 9) have approximately the same location under irregular and
regular waves with the same wave parameters. While in B-AR tests (right panels of Figure 9), final
scarp locations were basically at lower position under irregular waves than under the corresponding
regular waves, indicating more attenuation by AR on irregular wave run up.

In addition, Table 5 illustrates the quantification of the profile change induced by AR under
irregular waves. The erosion started at xm with the growth distance of 21–66 cm, and deposition (Vd)
and erosion volumes (Ve) were reduced by 28–62% and 52–59%. Likewise, the sandbar developed
and moved offshore faster with larger incident waves. Comparing Figure 10a,b, AR increased xb by
0.3–1.5 m, meaning deposition forming at the higher location corresponds to smaller hb by 0.5–3.3 cm.

Table 5. The final volume changes of the lower and upper parts of the evolved profile relative to the
initial profile under irregular waves (xm is the intersection of the initial and final slopes; Vd and Ve

are the volume changes of the lower and upper parts, which are positive and negative, indicating
deposition and erosion; ∆xm, ∆Vd, and ∆Ve are the difference between the variables in B and B-AR
tests under specific wave climate; p is the percentage of the decreased erosion volume defined as −∆Ve

divided by Ve in B tests.).

Test
Name

xm
(m)

Vd
(m3/m)

Ve
(m3/m)

Test
Name

xm
(m)

Vd
(m3/m)

Ve
(m3/m)

∆xm
(m)

∆Vd
(m3/m)

∆Ve
(m3/m)

P
(%)

B-J1 8.215 0.027 −0.029 B-AR-J1 8.420 0.015 −0.014 0.205 −0.012 0.015 52

B-J2 7.730 0.055 −0.079 B-AR-J2 8.365 0.040 −0.033 0.635 −0.015 0.047 59

B-J3 7.535 0.141 −0.156 B-AR-J3 7.845 0.053 −0.066 0.310 −0.088 0.091 58

B-J4 7.335 0.129 −0.148 B-AR-J4 7.940 0.061 −0.061 0.605 −0.068 0.086 58

B-J5 7.240 0.112 −0.165 B-AR-J5 7.895 0.065 −0.076 0.655 −0.048 0.088 53

Moreover, the dimension and location of the generated sandbars are compared with those in
a large-scale flume experiment of Eichentopf et al. [69] using natural sand including the prototype
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grain size. The beach profile in this experiment, with slope of 1:15, consisted of well-sorted sand with
relatively narrow grain size distribution (d50 = 0.25 mm, d10 = 0.154 mm, d90 = 0.372 mm). The sandbar
in the wave climate of Hs = 0.47 m and Tp = 3.7 s was found with bar height Zbar = 0.22 m (i.e., hb in
our manuscript) at the point of Xbar = −10.8 m (consistent with xb) corresponding to water depth
hbar = 0.72 m (calculated by multiplying the absolute value of Xbar by the slope of 1/15). In the wave
climate of Hs = 0.53 m and Tp = 4.14 s, the bar was generated with height of Zbar = 0.29 m at the point
of Xbar = −13.4 m corresponding to hbar = 0.89 m. In order to make the comparison, we converse
the horizontal coordinate as in the Eichentopf experiment, which is conducted by subtracting the
original x-value at the intersection of the still water level and slope from all horizontal coordinate (in
the original system). Then, we scaled down bar height by the geometric scale of 10, i.e., hb = 0.022 m
and hb = 0.029 m. These two bar height values are found with the locations of xb = −0.72 m and
xb = −0.99 m, where the water depth of d = 0.072 m and d = 0.099 m (calculated by multiplying the
absolute value of xb by the slope of 1/10). The depth ratios (hbar/d) basically meet the geometric scale of
1/10, which basically supports the validity of the beach model in this study to simulate beach behavior
in the prototype.

Water 2020, 12, x FOR PEER REVIEW 16 of 29 

 
Figure 9. Comparison of bed profiles after the same duration under irregular (orange profile) and 
regular wave climates (blue profile) with the same wave parameters (left panels show the 
comparisons for profile type B, and right panels show the comparisons for profile type B-AR; the 
green dash line rectangle in the right panel depicts the AR; the horizontal blue line represents the still 
water level, and the black circles are wave gauges and triangles are ADVs in Figure 2)  

Table 5. The final volume changes of the lower and upper parts of the evolved profile relative to the 
initial profile under irregular waves (xm is the intersection of the initial and final slopes; Vd and Ve are 
the volume changes of the lower and upper parts, which are positive and negative, indicating 
deposition and erosion; Δxm, ΔVd, and ΔVe are the difference between the variables in B and B-AR 
tests under specific wave climate; p is the percentage of the decreased erosion volume defined as −ΔVe 
divided by Ve in B tests.). 

Test 

Name 

xm 

(m) 

Vd 

(m3/m) 

Ve 

(m3/m) 

Test 

Name 

xm 

(m) 

Vd 

(m3/m) 

Ve 

(m3/m) 

Δxm 

(m) 

ΔVd 

(m3/m) 

ΔVe 

(m3/m) 

P 

(%) 

B-J1 8.215 0.027 −0.029 
B-AR-

J1 
8.420 0.015 −0.014 0.205 −0.012 0.015 52 

B-J2 7.730 0.055 −0.079 
B-AR-

J2 
8.365 0.040 −0.033 0.635 −0.015 0.047 59 

Figure 9. Comparison of bed profiles after the same duration under irregular (orange profile) and
regular wave climates (blue profile) with the same wave parameters ((a,c,e,g,i) show the comparisons
for profile type B, and (b,d,f,h,j) show the comparisons for profile type B-AR; the green dash line
rectangle in the right panel depicts the AR; the horizontal blue line represents the still water level,
and the black circles are wave gauges and triangles are ADVs in Figure 2).
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Figure 10. Maximum deposition thickness hb and its cross-shore location xb during beach evolution
under irregular waves: (a) B tests; (b) B-AR tests (The time intervals of the triangles or circles are same
as in Figure 7, which are 5 min for J1, 1 min for J2 and J3, 20 s for J4, and 10 s for J5).

3.3. Cross-Shore Hydrodynamics and Morphodynamics

The mechanism of coupled hydrodynamics and morphodynamics is complex as interactions
between motions at different scales lead to more complex sediment transport to affect morphological
behavior. However, the hydrodynamics relating to sediment transport can be illustrated by
parameterization analysis of wave energy and nonlinearity [70–72] such as wave height Hs, mean
water elevation η, wave skewness Sk, wave asymmetry Asy, and the induced undertow current u.
Therefore, the influence of AR is obtained by comparing these factors in B and B-AR tests. Wave R3
and J3 were selected as representatives for regular (Figure 11) and irregular waves (Figure 12). Since u
is the offshore directed depth-average current, and its growth hereinafter means the growth in its
absolute value.

In Figures 11 and 12, H is the significant wave height in Figures 5 and 8, and its great decay
indicates the start of the surf zone where η changes from a negative to positive value, indicating wave
set-down to set-up. In B-R3 (Figure 11a), H varied slightly between 0.077 m and 0.089 m at W1–W8
and decreased to 0.062 m at W9, and a similar trend was found in the cross-shore pattern of η with
a decrease from W7 (Figure 11b). As Figure 11c shows, Sk maintained the values of 0.24–0.32 at W1–W6,
suddenly decreased to −0.45 at W7, and then increased to 0.51 and 1.15 at W8 and W9, respectively.
In general, Asy and u were positively correlated with H, and their values basically stayed constant at
W1–W7 and increased significantly at W8 and W9 (Figure 11d,e). Given the above, W7 is the growth
point for wave nonlinearity, and the breaking point is located very close to W9 where the sandbar
and trough forms. As shown in Figure 11f,g, the maximum offshore-directed total sediment transport
appeared at the local highest elevation on the generated sandbar (5.0 m < x < 7.3 m). Moreover, smaller
underwater bars were also captured between break point and scarp (7.7 m < x < 9.2 m), which resulted
from the smaller offshore-directed total sediment transport due to the weaker breaking.
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Figure 11. Cross-shore distribution of significant wave height H (a,h), mean water elevation η (b,i),
wave skewness Sk (c,j), wave asymmetry Asy (d,k), undertow u (e,l), total sediment transport qs (f,m),
initial (dashed) and final beach profile (solid) under wave R3. The final profiles (g,n) are the results
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those in B-AR-R3. The green dash line rectangle in the right panel depicts the AR.
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For B-AR-R3, H reduced from the W3, and the wave heights at W6–W9 were 0.02–0.03 m smaller
than in B-R3. η was positive at all wave gauges except for W2 and W4. Two positive peaks in
cross-shore distribution of Sk were located at W5 and W9, and one positive maximum of Asy was
captured at W6. These indicated that main wave breaking happened on the AR, and the wave breaking
on the beach started at W9. As a result, AR increased u at W5 by 0.05 m/s and reduced at W9 by
0.01 m/s. Therefore, smaller offshore-directed total sediment transport results in a smaller sandbar
(6.1 m < x < 7.6 m) compared with that in B-R3.

As in Figure 12, the hydrodynamic factors in B-J3 and B-AR-J3 show similar cross-shore patterns
with those in B-R3 and B-AR-R3. Since wave energy of J3 is smaller than R3, the magnitude of total
sediment transport driven by J3 is smaller than in the corresponding tests under R3, and weaker breaking
happens on the beach. Hence, less erosion and deposition are found in the profile (Figure 12g,n),
and the topography between the scarp and sandbar shows a gentle slope instead of small bars formed
in B-R3 and B-AR-R3.

4. Discussion

4.1. Implications for Beach States

The concept of beach morphodynamic states [73] achieved widespread acceptance to classify the
beach system on basis of complete assemblages of depositional forms and coupled hydrodynamic
process signatures in the surf zone and beaches. For the micro-tidal environment, Wright and
Short [73] established the relation between 3-dimensional morphology and sediment-wave parameter
(Dean’s parameter Hb/wsT) to identify beach state classified as two extremes (dissipative and highly
reflective states) and four intermediate states (long-shore bar-trough, rhythmic bar and beach, transverse
bar and rip, and ridge-runnel or low tide terrace). In this experiment, the changes induced by AR in
the beach system, despite being cross-shore process oriented, show some implications for beach state
transformation on condition of uniform long-shore.

There are studies [21,74] demonstrating the limitation in the application of Dean’s parameter,
and the intermediate states can persist through a relatively wide range of Dean’s parameter [75] even
in micro-tidal conditions. Moreover, the surf-scaling parameter ε [76] also allows the assessment of
the likelihood of beach falling into dissipative, intermediate, or reflective state [77]. Jackson et al. [78]
identified that inherited geological factors can appear to be more important determinants of beach
morphology than contemporary dynamics.

In this study, beach morphology evolved from steep initial profile slope to final state. Therefore,
surf-scaling parameter ε was calculated by Equation (17) for the immediately antecedent period as
discriminant coefficient to analyze hydrodynamic implications for beach state. Then beach state
in each test was visually categorized into one of six beach states on the basis of the observed
morphological feature:

ε = 2π2Hb/
(
gT2tan2β

)
, (17)

where Hb is the breaker wave height, g is the acceleration of gravity, and tanβ is the beach slope. Hb
was estimated according to measurement at W6 by Equation (18) [79]:

Hb
H′0

= 0.76(tanβ)1/7
(
H′0/L0

)−1/4
, (18)

where H′0 is the equivalent deep-water wave height considering refraction and diffraction, and L0 is
the deep-water wave length. In this experiment, as the wave propagation was confined as normal
incidence along wave flume (perpendicular to the shore), refraction and diffraction did not happen.
Therefore, the significant wave height measured at W6 was used as H′0 in Equation (18). Larger εmeans
wider surf zone and stronger turbulent dissipation of incident wave energy (Wright and Short, 1984):
as long as ε < 2.0− 2.5, strong reflection will continue to permit strong standing wave motion, surging
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breakers, and resonance, which defines the highly reflective extreme; when ε > 2.5, waves begin to
plunge, dissipating energy; and dissipative state is characterized by spilling breaker occurring as
ε > 20. As shown in Table 6, ε ranges from 5.6 to 12.3, indicating plunging breaker and intermediate
state in all tests, and AR decreases ε under the same incident wave. Hence, the morphodynamic
influence of AR was analyzed by comparison between observed profile features and those in the four
intermediate states.

Table 6. The surf-scaling parameter (ε) of all tests.

Profile Type

Waves
R1 R2 R3 R4 R5 J1 J2 J3 J4 J5

B 8.1 7.7 9.1 9.5 8.2 8.5 10.1 12.3 12.1 10.5
B-AR 5.6 6.7 6.5 6.7 5.8 7.1 8.0 8.9 7.9 7.8

As Figure 13a–e shows, pronounced bar and trough shape developed in B tests under regular
waves. In B-R4 and B-R5, the maximum deposition (xb) rapidly moved to the toe of the initial profile
and then remained there, leading to the stable bar-trough location. The quasi-equilibrium profile
was achieved in B-R1 with the stable bar-trough. Therefore, beach state was identified as long-shore
bar-trough (tanβ = 0.05 − 0.20) in B-R1, B-R4, andB-R5, while beach state in B-R2 and B-R3 was
categorized as rhythmic bar and beach (tanβ = 0.01 − 0.20) because of bar-trough still under the
migration. Comparing them with the corresponding B-AR tests, plunging breaker happened along
terrace instead of bar-trough under R1 and R4 (Figure 13f,i). As a result, beach state in B-AR-R1 and
B-AR-R4 was taken as low tide terrace. In addition beach states in the other B-AR tests under regular
waves remained as rhythmic bar and beach for the same reason in the corresponding B tests.Water 2020, 12, x FOR PEER REVIEW 21 of 29 
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Nevertheless, B and B-AR basically share the same profile feature under irregular waves. Small bars
formed in B-J1 (Figure 13k) identified as long-shore bar-trough, which was changed into low tide
terrace by AR (B-AR-J1 in Figure 13k). The profiles under J2 (B-J2 and B-AR-J2) kept the feature
of rhythmic bar and beach topography, i.e., bar-trough under migration. The other six tests (B-J3,
B-J4, B-J5, B-AR-J3, B-AR-J4, and B-AR-J5) shared characters of transverse bar and rip, where strong
undertow carried the eroded sand offshore, leading to the flat deposition bar which would extend
further offshore with time.

Overall, AR enhances the reflective elements and reduces the dissipative elements in beach
morphodynamics in terms of cross-shore processes. It should be noted that beach states in B-AR tests
still fall into the range of intermediate state, while transformation into reflective state may happen
under larger waves or longer time. For more energetic waves, the erosion process will be similar with
that under R5 or J5, but it will spend less time to reach the same changes and beach state. It can be
inferred that larger blocks or wider layout of the AR may change the hydrodynamic environment in
the lee side more significantly, leading to transformation to reflective state. Besides, a different initial
beach slope may also result in a different change process of profile characteristic.

4.2. Scarp Evolution

Scarp location (xs) varies in different tests due to different surf and swash environment. Figure 14
shows its moving history with the duration time (t). The scarp retreat rate Vxs in each time interval,
estimated by scarp location data (Vxs = dxs/dt), grows in the initial several minutes and then
monotonically decreases with time towards zero as Figure 15 shows. In summary, scarp location
(xs) recedes with time in a slowing down rate (Vxs) and ceases to move (rate being zero) when the
equilibrium state is reached. Therefore, quantification of the scarp process can be decomposed into
two steps regarding Vxs and xs. First, we attempted to describe the character of Vxs using the natural
exponential function (exp) as below:

Vxs = a × exp
(
−

t
b

)
, (19)

where the unit of time t is second. The fitting of Equation (19) was aimed at the steadily decreasing trend
of Vxs, hence tests under R4, R5, J4, and J5 were excluded because short wave durations were insufficient
to provide definitive evidence on stable stage. Second, the integral of Vxs function Equation (19) could
lead to the relation between xs and time t as Equation (20):

xs = P2− P1× exp
(
−

t
b

)
, (20)

where a × b is expressed by parameter P1 meaning that there are three independent parameters in
this scarp model. As a consequence, curve fitting consists of two steps, i.e., firstly by Equation (19)
and secondly by Equation (20), and results are shown in Table 7. A relatively high fitting degree with
R-square over 0.92 and RMSE below 0.04 validates the application of this scarp model to the experiment.

The underlying physics of parameters in the scarp model are explained as follows: the exponential
part exp(−t/b) is non-dimensional indicator for decreasing trend, hence b has the dimension of time
and P1 and P2 have the dimension of length with of a being velocity; P2 is the estimation of the
scarp location at the equilibrium state corresponding to the maximum value of xs in this experimental
coordinate; P1 represents the distance between the minimum and maximum value of xs, and the term
of P1× exp(−t/b) indicates how far is left before scarp to reach equilibrium; and b can indicate the
time duration before equilibrium, as the distance to maximum scarp location (P2) reduces to about one
third of P1 when t equals to b.

In consequence, the influence of AR on scarp process can be analyzed by comparing the scarp
model parameters between B and B-AR tests under the same wave condition, and almost all the
parameters are smaller in B-AR tests. The maximum scarp location P2 is basically moved seaward
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by AR, except for the same value under R2. Smaller b means the shorter time required to reach the
equilibrium. Given the reduced a and P1, scarps in B-AR tests recede slower yet reach the maximum
earlier than in corresponding B tests because of the smaller total distance P1.
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Figure 15. The change of the scarp retreat rate (Vxs) over time duration (t) (upper panels (a–e) show
the comparison between B and B-AR tests under regular wave conditions, and lower panels (f–j) show
the comparison under irregular wave conditions)

Table 7. Fitting parameters of scarp model.

Test Name

Parameter a
(m/s)

b
(s)

P1
(m)

P2
(m)

B-R1 0.00054 696 0.374 9.39
B-AR-R1 0.00042 678 0.284 9.29
B-R2 0.00094 604 0.568 9.73
B-AR-R2 0.00082 591 0.482 9.73
B-R3 0.00455 265 1.208 10.02
B-AR-R3 0.00409 196 0.801 9.65
B-J1 0.00024 1701 0.403 9.43
B-AR-J1 0.00013 1410 0.188 9.20
B-J2 0.00096 691 0.662 9.74
B-AR-J2 0.00079 611 0.484 9.48
B-J3 0.00369 341 1.258 10.10
B-AR-J3 0.00262 310 0.811 9.71

Notes: P1 obtained in the second step is smaller thane a× b in the first step in each test, probably because scarp
location detection induces amplified deviation in Vxs. Both P1 and e a × b are smaller in B-AR tests than in
corresponding B tests. To simplify, P1 is adopted as it is acquired from the primary data (xs) with a revised by P1/b.
R-square (coefficient of determination) of fitting by Equation (20) on xs data ranges from 0.92 to 1.00 with RMSE
(root mean squared error) between 0.004 and 0.038.
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Since all tests share the same sediment and initial beach slope, the variations in model parameters
are purely caused by different wave run-up. The hydrodynamic impact on scarp evolution is evaluated
by calculating the Pearson correlation coefficients: (ρ(A, B) = 1

N−1
∑N

i = 1

(Ai−µA
σA

)(Bi−µB
σB

)
, where µ and

σ are the mean and standard deviation of variables A and B, and N is the sample size) of model
parameters (P1, P2, and b) and factors used to estimate wave run-up (offshore deep water wave height
and length, the product of them, wave steepness, wave set-up, and Irribarren number). Wave set-up
is the result of mean water elevation η, and Irribarren number ξ is calculated as Equation (21) with
values between 0.6 and 0.9:

ξ = tanβ/
√

H/L, (21)

where tanβ is the beach slope being initial value of 0.10. All the wave factors were calculated
using measurement at W6. For irregular wave climates, the wave heights of low and high frequency
components (Hlong and Hshort) were added into the consideration. The results are shown in Tables 8 and 9
where significant level indicates the probability against the original hypothesis, i.e., the probability of
getting a correlation as large as the observed value by random chance, when the true correlation is
zero. The Pearson’s linear correlation coefficients were used as a proxy to find some clues to explain
the discrepancy in scarp behavior due to the process change.

It is noteworthy that significant level (usually used threshold value of 0.05 or 0.10) in some cases
is not small enough (e.g., B-AR-P1) due to limited sample size (with only three wave conditions
considered for each case). As a result, analysis emphasized the comparative correlation level relative to
B tests and ignored the special cases. For regular wave climates, AR increases the correlations between
L and P2 and between H and b. In irregular wave tests, P2 is mostly determined by Hs and Hshort,
and b shows correlation only with Ls. However, P1 in B tests is highly correlated to all wave heights,
while AR reduces the correlation of Hlong and increases correlation of Hs and Hshort, consequently
leading to growth in coefficients of Hs/Ls and Hs × Ls.

In general, AR moves the scarp location seaward with a smaller retreat rate and shorter time
to reach the equilibrium. Experimental results show that model parameters depend on both wave
height and length for regular wave, and AR seems to improve this relatively weak correlation of them.
For irregular wave condition, the length parameters (P1 and P2) and time parameter (b) are determined
by total wave energy and peak period, and strong correlation between long wave and P1 disappears
in the AR-protected beach. This scarp model and the effect of AR on the three parameters provide
a process-based example to study the submerged structure in the view of morphodynamic evolution.

Table 8. The Pearson’s linear correlation coefficients of hydrodynamic factors and model parameters
under regular waves with significant level in parentheses (H is the wave height at W6, and L is calculated
by local water depth and period at W6; bold format indicates correlation coefficients with relatively
low significant level meaning significant correlation).

Cases

Factors
H η L H/L H × L ξ

B-P1 0.9889
(0.03)

0.4935
(0.67)

0.9204
(0.26)

0.9848
(0.11)

0.9957
(0.06)

−0.9903
(0.09)

B-AR-P1 0.9494
(0.20)

0.9039
(0.28)

0.9788
(0.13)

0.8828
(0.31)

0.9750
(0.14)

−0.8754
(0.32)

B-P2 0.9915
(0.08)

0.6396
(0.56)

0.9751
(0.14)

0.9385
(0.22)

0.9394
(0.05)

−0.9976
(0.20)

B-AR-P2 0.9714
(0.15)

0.9351
(0.23)

0.9920
(0.08)

0.9173
(0.26)

0.9896
(0.09)

−0.9110
(0.27)

B-b −0.9006
(0.29)

−0.8486
(0.35)

−0.9954
(0.06)

−0.7826
(0.43)

−0.9192
(0.26)

0.8040
(0.41)

B-AR-b −0.9994
(0.02)

−0.9878
(0.10)

−0.9969
(0.05)

−0.9793
(0.13)

−0.9981
(0.04)

0.9760
(0.14)
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Table 9. The Pearson’s linear correlation coefficients of hydrodynamic factors and model parameters
under irregular waves with significant level in parentheses (Hs is significant wave height at W6, and Ls

is calculated by local water depth and peak period at W6; bold format indicates correlation coefficients
with relatively low significant level meaning significant correlation).

Cases
Factors

Hs Hlong Hshort η Ls Hs/Ls Hs × Ls ξ

B-P1 0.9873
(0.10)

0.9969
(0.05)

0.9869
(0.10)

−0.8537
(0.35)

0.8998
(0.29)

0.9930
(0.08)

0.9875
(0.10)

−0.9626
(0.17)

B-AR-P1 0.9994
(0.02)

0.9736
(0.15)

0.9992
(0.03)

0.8773
(0.32)

0.9674
(0.16)

0.9999
(0.01)

0.9995
(0.02)

−0.9950
(0.06)

B-P2 0.9998
(0.01)

0.9671
(0.16)

0.9999
(0.01)

−0.7482
(0.46)

0.9628
(0.17)

0.9982
(0.04)

0.9998
(0.01)

−0.9954
(0.06)

B-AR-P2 0.9990
(0.03)

0.9524
(0.20)

0.9992
(0.02)

0.8363
(0.37)

0.9845
(0.11)

0.9957
(0.06)

0.9988
(0.03)

−0.9998
(0.01)

B-b −0.9435
(0.22)

−0.8384
(0.37)

−0.9443
(0.21)

0.5021
(0.67)

−0.9990
(0.03)

−0.9292
(0.24)

−0.9432
(0.22)

0.9753
(0.14)

B-AR-b −0.9691
(0.16)

−0.8701
(0.33)

−0.9702
(0.16)

−0.7068
(0.50)

−0.9996
(0.02)

−0.9557
(0.19)

−0.9680
(0.16)

0.9828
(0.12)

5. Conclusions

This experimental study investigated the cross-shore hydrodynamic and morphodynamic
processes of beach profiles with and without AR under regular and irregular wave climates,
and comparative analysis of the results revealed the influences of AR.

As regular waves propagate onshore, higher harmonics are generated due to nonlinear effects,
which remain identical in the numbers and frequencies for two types of profiles under the same incident
wave. Therefore, the influence of AR is to break incident wave in advance and significantly decrease
wave energy that propagates onshore, but it cannot change the after-breaking fate of a monochromatic
wave. Nevertheless, wave transformation varies for different frequency domains for irregular wave.
In addition, this was considered by separating wave series to full, high, and low frequency motions
and calculating the significant, short, and long wave heights. The cross-shore patterns of these wave
heights are different in magnitude and change trend that tightly linked to wave breaking probability.
With the protection of AR, significant wave height and short wave height are adjusted into one similar
cross-shore distribution, while the cross-shore pattern of long wave height still depends on the incident
wave to some extent.

Beach profile shows in a bar-trough type under regular waves and in a milder slope under
irregular waves. AR strongly reduced the offshore sediment transport that leads to smaller erosion
and deposition on the beach. The morphodynamic process is illustrated by relating the hydrodynamic
factors (e.g., wave skewness, wave asymmetry, and undertow) to sediment transport. The profile
changes consist of scarp retreat and sandbar migration, which are essentially driven by the offshore
sediment flux due to swash erosion and accompanied with large variations of hydrodynamic factors.
According to the cross-shore features proposed by Wright and Short (1984), beach states in all tests are
identified as intermediate morphodynamic state. AR can enhance the reflective elements and abate
the dissipative elements in morphodynamics, leading to beach state transformation, which is more
significant in regular wave tests than in irregular wave tests.

The development of beach scarp resulted by wave run-up can partly reflect the morphodynamic
role of AR. Scarp location can be formulated as a linear equation regarding the natural exponential
of the duration time, leading to three independent fitting parameters, which are investigated by the
correlation analysis in terms of hydrodynamic factors used to predict the wave run-up. The results
show that AR slows down the scarp retreat rate, causing shorter time duration to a more seaward
equilibrium location under the same wave climate. AR improves the relatively weaker correlation



Water 2020, 12, 2947 25 of 28

with the wave height and length during the erosion process under regular waves, while the impact of
low-frequency harmonics is weakened in the AR-protected beach.

To conclude, AR reduces the incident wave energy and changes the hydrodynamic process
significantly in the surf and swash zone, which enables smaller erosion and decreased shoreline retreat
on the beach with the enhanced reflective elements for the beach state. This cross-shore process-based
experimental research indicates that AR affects the morphodynamic environment within the surf zone
to maintain the erosion control purpose, where it embodies the principles of working with natural
processes, in the long term and broad overall perspective.
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