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Abstract: Large-domain hydrological models are increasingly needed to support water-resource
assessment and management in large river basins. Here, we describe results for the first Brazilian
application of the SPAtially Referenced Regression On Watershed attributes (SPARROW) model
using a new open-source modeling and interactive decision support system tool (RSPARROW) to
quantify the origin, flux, and fate of total nitrogen (TN) in two sub-basins of the Grande River Basin
(GRB; 43,000 km2). Land under cultivation for sugar cane, urban land, and point source inputs from
wastewater treatment plants was estimated to each contribute approximately 30% of the TN load
at the outlet, with pasture land contributing about 10% of the load. Hypothetical assessments of
wastewater treatment plant upgrades and the building of new facilities that could treat currently
untreated urban runoff suggest that these management actions could potentially reduce loading at
the outlet by as much as 20–25%. This study highlights the ability of SPARROW and the RSPARROW
mapping tool to assist with the development and evaluation of management actions aimed at reducing
nutrient pollution and eutrophication. The freely available RSPARROW modeling tool provides
new opportunities to improve understanding of the sources, delivery, and transport of water-quality
contaminants in watersheds throughout the world.

Keywords: watershed modeling; Brazil; nutrient source attribution; eutrophication; evaluation of
management actions

1. Introduction

Large-domain hydrological models are needed to support water-resource assessment and
management in large river basins (e.g., [1]) and coastal and estuarine waters with large contributing
drainages [2]. Such models must be able to quantify the effects of a diverse range of land uses on
streamflow and water quality as well as the climatic and hydrological processes that control water
and contaminant transport in surface waters across large spatial scales [1]. Progress has been made in
applying large-domain hydrological and water-quality models to advance understanding of land use
and process effects across global (e.g., [3,4]), continental [5–8], and regional spatial scales [9,10].
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Although mechanistic and statistical hydrological models have been used for these purposes,
applications of statistical models to large domains have certain notable comparative advantages.
First, statistical models can be more efficiently estimated across large scales, owing to their simplicity,
with large-scale applications also contributing to higher levels of statistical precision in coefficient
estimates and model predictions. The higher precision results from the inclusion of a greater
number of stream monitoring sites and larger quantities of data from watersheds with widely
variable contaminant sources and hydrological and biogeochemical transport characteristics [7,9,11].
Second, the application of statistical models to large domains enhances the sensitivity of the model
to the effects of dominant hydrological and water-quality processes [7] that can emerge over large
spatial scales and influence water and contaminant transport and export from watersheds [12,13];
for example, aquatic removal processes in river corridors [14] have an important cumulative effect
on contaminant transport in river networks and delivery to downstream receiving waters [15].
Third, empirical estimation of statistical models facilitates a more reliable quantification of coefficient
and prediction uncertainties, which can be challenging to accurately estimate with mechanistic
models that are frequently overparameterized [11,16]. Finally, statistical models can be used to
empirically test hypotheses about the major factors that govern flow and water-quality conditions in
streams, including contaminant sources (e.g., [10]), aquatic removal processes [17,18], and the effects of
watershed management activities such as wastewater treatment and farm conservation practices [19].

The U.S. Geological Survey (USGS) SPARROW (SPAtially Referenced Regression On Watershed
attributes) model [8] is a hybrid model with mechanistic and statistical features that is well-suited for
application to large spatial domains where it has been routinely applied [9,10,20–23]. The spatially
explicit model has a simple mechanistic structure that includes mass balance constraints and
non-conservative transport, applicable to one-dimensional stream networks, and their contributing
drainages. The model has been especially useful for quantifying contaminant sources (types and
geographical sources) and the transport of nutrients, sediment, and organic carbon within large
regional river basins, including the tracking of contaminant delivery to coastal water bodies [9,21].
Most applications of SPARROW have occurred in the United States, with international applications
in New Zealand [22,23], Japan [24], and Canada [25,26]. SPARROW was applied nationwide to
New Zealand streams [23] to quantify nutrient contributions from native, pasture, and developed
lands across 270,000 km2; this supported a national socio-economic and environmental model [27] that
evaluated the current and projected effects of land-use change throughout the country. In northern
Japan [24], SPARROW was used to quantify sediment contributions to stream loads from forested
and developed lands and stream channels in a 14,000 km2 river basin, results with relevance to the
management of watershed sediment sources. Additionally, SPARROW’s application to the Great Lakes
drainages [25] demonstrated a large-domain (500,000 km2), multi-jurisdictional (Canadian-USA) use of
the model to quantify watershed nutrient sources and stream transport, with relevance to supporting
the binational management of nutrients across the Great Lakes region [26,28].

In our study, we expand on the previous international, large-domain applications of SPARROW
by describing the results for the first application of the USGS SPARROW model to Brazilian river
basins. We develop a model of total (inorganic and organic) nitrogen (TN) in streams, using historical
data from 41 stream monitoring sites in the Pardo-Sapucaí sub-basins of the Grande River Basin (GRB;
43,000 km2). Nitrogen is a key limiting nutrient for algal growth in fresh and marine waters [29,30],
and contributes to eutrophication of reservoirs in the GRB. Excess reactive forms of nitrogen have been
increasingly observed in streams over the past 50 years and can be traced to fossil fuel production and
the fixation of N2 for use as fertilizer, associated with increased rates of energy and food production [31].
These activities have significantly increased the amount of reactive nitrogen circulating in the biosphere
over the last century, which coupled with human population growth has led to environmental and
human health consequences [31–33].

In this study, the SPARROW total nitrogen model is used to (1) quantify spatial variability in mean
annual TN loads in all streams across the GRB sub-basins; (2) quantify the major natural and human
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sources of nitrogen in the GRB, including the contaminant mass loading contributions from major land
uses (urban, pasture, sugar cane) and wastewater treatment facilities in the river basin; and (3) illustrate
an application of the model to evaluate the potential stream water-quality effects of hypothetical
nutrient-reduction management actions in urban areas of the watersheds. Model-derived information
about the major sources of TN to streams and spatial variability in source loadings (objectives 1 and 2)
can be used to prioritize watersheds for TN load mitigation, including watersheds and land areas that
provide important socio-economic and ecological services. The evaluation of alternative scenarios of
hypothetical changes in nitrogen loadings related to the management of contaminants in urban areas
(objective 3) can also guide the setting of management priorities for specific contaminant sources and
upstream watersheds (e.g., [2]).

Our study features the use of a new open-source (freely downloadable) SPARROW modeling
software tool, called RSPARROW [34], which was developed by the USGS in cooperation with the
Brazilian National Water and Sanitation Agency (ANA) and the Brazilian Geological Survey (CPRM).
A key component of RSPARROW is an interactive Decision Support System (DSS) mapping tool that
allows water managers to evaluate the potential effects of hypothetical changes in contaminant sources
on stream water quality, such as those evaluated in the urban management case study presented here.

2. Materials and Methods

2.1. Site Description

The GRB occupies an area of 143,437 km2, with about 60% of the basin being in Minas Gerais
State and 40% in São Paulo State. The Grande River is 1286 km long and forms the boundary between
the states of Minas Gerais and São Paulo in its lower reaches, to its mouth, when it forms the Paraná
River from the confluence with the Paranaíba River [33]. The modeled area comprises two adjacent
sub-basins with adequate data for model development, the Pardo and the Sapucaí, located in the
southern part of the GRB (Figure 1). The total modeled area is 42,551 km2. The Pardo River is the largest
sub-basin and drains an area of 35,855 km2 and flows into the reservoir created by the Marimbondo
hydropower plant, with a surface area of 36,271 ha. The Sapucaí River sub-basin drains an area of
6696 km2 to the reservoir of the Porto Colombia hydroelectric plant, with a surface area of 12,786 ha,
located immediately upstream of the Marimbondo Reservoir.

The study area has remaining areas of the Atlantic Forest (seasonal moist and dry broad-leaf
tropical forest) and Cerrado (tropical savanna) biomes, the latter being predominant in the upper
portions of the two sub-basins. The elevation of the study area ranges from 415 to 1791 m above sea level.
The average annual temperature is 19.1 ◦C, and ranges from 14.6 ◦C to 23.9 ◦C [35]. Annual precipitation
ranges from 1097 to 1812 mm/year, with an average precipitation of 1423 mm/year. The rainy period
is six to seven months in duration, lasting from October to March/April, with more than 80% of the
precipitation occurring during this time period [35].

The Grande River Basin (GRB), which has a population of 8.6 million, with approximately 75%
concentrated in urban centers, is one of the most important water resource regions in Brazil. In order
to manage water resources in the basin in a sustainable manner, the National Water and Sanitation
Agency and the Grande River Basin Committee developed the Integrated Water Resources Plan for the
Grande River Basin [35]. Among the actions foreseen in this plan is the implementation of water-quality
studies and identification of potential mitigation actions aimed at improving water quality in the basin.
Specifically, the control of water pollution, especially related to specific constituents capable of causing
eutrophication of reservoirs, such as nutrients, from both point and non-point sources, is a priority
water quality management issue in the GRB, as nutrients are negatively impacting water quality in the
basin. Effective control of water pollution requires information about constituent sources to allow for
prioritization of areas where appropriate actions can be taken to avoid and mitigate unwanted impacts
on water quality at the basin scale.
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Figure 1. Map showing the study area, wastewater treatment plants, and stream monitoring sites in
the basin.

The Integrated Water Resources Plan for the Grande River Basin reports that 97% of the urban
population in the basin is served by sewage collection systems. However, less than half of the sewage
that is collected is treated, and the sewage that is treated and discharged to water bodies generally
contains high concentrations of nutrients due to low removal efficiency. The water resources plan
identified the need to both expand sewage treatment services to increase the amount of sewage that
is treated and increase nutrient removal capacity in the existing treatment plants to limit negative
water-quality impacts on receiving waters. In addition to point sources of nutrients, spatially distributed
non-point source inputs from the terrestrial environment to streams are also sources of potential
concern. However, studies of non-point nutrient sources of nutrients in the GRB are limited, and little is
known about the relative importance of these sources in contributing to nutrient pollution. Filling the
knowledge gap related to the shares of diverse sources of nutrients to streams and their contributions to
eutrophication of downstream receiving water bodies will allow water resources managers to optimize
efforts aimed at improving sanitation services and agricultural practices in the basin and prevent or
mitigate eutrophication in the GRB.

2.2. RSPARROW Model Description

2.2.1. Model Description and Estimation

Total nitrogen loads in surface waters of the Pardo-Sapucaí sub-basins were modeled according to
the USGS SPARROW framework [8,11,36]. The model uses a spatially explicit, hybrid (statistical and
mechanistic) structure to quantify the sources and transport of water-quality contaminants in
watersheds. The equation underlying the SPARROW model that describes the mean annual TN
load (Li

*) leaving incremental stream sub-watershed i is given by:
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where the TN load from all upstream contributing sub-watersheds J(i) that are delivered to
sub-watershed i is represented by the first summation term, where L′j equals the measured load
if the upstream reach j is monitored, or the model-estimated load (L∗i ) if there is no monitored value.
The term δi is the dimensionless fraction of upstream load delivered to sub-watershed i. The attenuation
of TN as it travels through the stream network is represented by A-the aquatic transport function,
which defines the fraction of load entering the upstream end of sub-watershed i that is delivered to
the downstream end of sub-watershed i. A is a function of stream (S) and reservoir (R) characteristics
defined by vectors ZS

i and ZR
i . The terms θS and θR are coefficient vectors associated with ZS

i and
ZR

i , respectively. The second summation term represents the incremental TN load contributed in
sub-watershed i. Specific sources of TN in sub-watershed i are represented by specific sources (Sn),
indexed by n = 1, . . . , NS. The term αn is the source-specific coefficient associated with each source
(Sn). The term αn combined with Dn, which is the land-to-water delivery function, determine the
TN load delivered to the stream in sub-watershed i. The term Dn is a source-specific function of a
vector of land-to-water delivery variables defined by vector ZD

i . The term θD is a vector coefficient
associated with ZD

i . The term A’ is the aquatic transport function applied to TN transport from the
midpoint of sub-watershed i to the outlet of the sub-watershed. Detailed descriptions of the theory and
development of the SPARROW model, including descriptions of the vectors represented in Equation (1),
are available from [8,11]. The model has been widely used in the United States over the past two
decades (e.g., [10,21,37–41]) and in selected countries.

The model structure describes three phases of nitrogen transport in watersheds:
nitrogen generation, landscape and sub-surface transport to water bodies, and stream and reservoir
transport and loss processes. The mechanistic features of the model include mass balance constraints
and non-conservative transport, applicable to a network of one-dimensional stream segments and
their contributing drainage areas. Nitrogen generation was described in the model using two types
of explanatory variables: (1) Diffuse non-point sources include area-based land-cover variables that
were used as surrogates for the primary nitrogen sources in watersheds associated with various
types of land uses (e.g., urban and cropland areas); these sources may include nitrogen in human
and animal waste runoff, atmospheric deposition of nitrogen (stationary and non-stationary sources),
and farm fertilizers; and (2) Point sources include estimates of nitrogen loadings from wastewater
treatment plants that are discharged directly into streams and reservoirs. Landscape and sub-surface
transport of nitrogen is described in the model by climatic factors (temperature, precipitation) or other
properties of the terrestrial landscape (e.g., soils, geology) that control the attenuation and delivery of
nitrogen to streams. Stream and reservoir transport and nitrogen removal were described according to
first-order decay kinetics [11], which assume that the loss of nutrients (the rate of removal per unit
time) varies inversely in streams with streamflow magnitude [17] and in reservoirs with the areal
hydraulic load [11]. These relations are consistent with previous observations of nitrogen transport and
losses in streams and reservoirs regionally [21] and in experimental field investigations and literature
studies (e.g., [10,17,22]).

Non-Linear Least Squares (NLLS) methods were applied to the SPARROW model to estimate the
values of the coefficients [11] associated with the diffuse and point sources, land-to-water delivery
variables, and the in-stream and reservoir loss variables. The final estimates of the coefficient values
using NLLS methods ensure the most accurate fit of the model to the stream monitoring observations,
such that differences between the simulated and observed predictions of the mean total nitrogen load
at stream monitoring stations are minimized on average. The NLLS methods and supporting measures
of model accuracy (e.g., root mean square error (RMSE), R-squared (R2), bias) and statistical diagnostics
(e.g., coefficient p-values and variance inflation factors, residual plots and maps) were used to compare
the accuracy of alternative models (with different numbers and types of explanatory variables) and to
select the final model with the most statistically important explanatory variables (e.g., see statistical
methods described in [11]). A nonparametric bootstrapping procedure with 200 iterations was used to
estimate uncertainty in predicted loads at the outlets of the two sub-basins [11]. The SPARROW models
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were statistically estimated and evaluated for accuracy using the open-source USGS RSPARROW
modeling system [34].

2.2.2. Evaluations of Nitrogen Management Scenarios

The calibrated total nitrogen SPARROW model was used to simulate the potential effects of
hypothetical managed reductions in nutrient sources on the nitrogen loadings and concentrations in
downstream water bodies within the Pardo-Sapucaí sub-basins. Using the interactive DSS feature
in the USGS RSPARROW software [34], the potential downstream water-quality effects of improved
management of urban diffuse and point sources of nitrogen were illustrated. The hypothetical
management scenarios included assessments of the effects of reductions in nitrogen loads associated with
improved levels of wastewater treatment (e.g., primary to secondary treatment) at established sewage
plants as well as load reductions associated with the construction of new wastewater treatment facilities.
For the former case, nitrogen loads from the point source variable in the model (wastewater treatment
plant loads) were reduced by selected percentages; whereas, for the latter case, the nitrogen loading
per unit area estimated for the urban diffuse source in the model was reduced by selected percentages.
The hypothetical scenarios of nitrogen reduction were illustrated for various sub-watersheds of the
Pardo-Sapucaí River sub-basins, using control settings in the RSPARROW DSS tool that allows users to
customize the geographic areas for applying the scenarios.

2.3. Data Sources

2.3.1. Stream Reach Network

The SPARROW model is based on a synthetic stream reach network and associated drainage
area polygons or “reaches”. The stream network and reaches are constructed to allow for the
upstream-to-downstream transport of loads through the network. Characteristics for each reach are
determined by combining the reach data with geospatial data representing source and landscape
transport variables. The synthetic stream reach network and reach relations were created using the
1:50,000-scale Brazilian cartography drainage lines [42] and the 1-arc second Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model [43]. All reach characteristics included in the model input
file were calculated using the “PgHydro” extension [44] for PostGIS/PostgreSQL. The stream reach
network consisted of 68,586 reaches, with a mean reach area of 0.62 km2 and a mean reach length of
0.72 km.

2.3.2. Calibration Data and Load Estimation

Bi-monthly discrete TN concentration data were obtained from the Environmental Company
of Sao Paulo State (CETESB) and daily discharge data were obtained from the Brazilian National
Hydrometeorological Network (RHN). Data collected between January 2001 and June 2017 were used
for all subsequent analyses. Discharge and water-quality data were not collected at the same sites.
The discharge was estimated at water-quality sampling locations by applying regionalization methods
based on regression (polynomial) models. A drainage area–discharge relationship was developed
using discharge data from 88 of the RHN sites and applied to estimate daily discharge at the CETESB
monitoring locations. The discrete TN concentration data and daily discharge estimates were applied
to estimate TN loads for calibration of the SPARROW model.

Long-term, time-detrended mean annual TN loads were computed at each site using a 5-parameter
regression, Beale’s Ratio Estimator, and an algorithm to select the better of those two estimates at each
site. Model estimates and flow corrections were centered on 1 October 2010 by fixing the time input at
that date when generating predictions.
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The 5-parameter regressions (RL5) were implemented within the “rloadest” R package [45].
These linear regressions take the following form:

ln(L) = β0 + β1c(ln(Q)) + β2c(T) + β3sin(T) + β4cos(T) (2)

where L is the load in kg d−1, Q is discharge in m3 s−1, T is decimal time in y, c is a centering
function that subtracts the mean, and β are the fitted parameters. Each model was fitted by adjusted
maximum likelihood estimation [46], then predictions were retransformed by exponentiation and the
retransformation bias was corrected as in [47].

Beale’s Ratio Estimator (BRE) identifies a representative ratio L:Q for each of eight conditions:
low or high discharge crossed with four seasons per year. Daily discharge and day-of-year information
is then used to generate an estimate of load on each day, and loads are summed to estimate the
multi-year mean load. Despite its simplicity, BRE is frequently more reliable than alternatives including
RL5 for decadal mean load estimates under certain conditions [48].

To select between RL5 and BRE estimates for each site, we used the following decision algorithm:
If RL5 identified no significant time trend (p-value < 0.1 for 2) or the center of the observation data
time window was within 2 years of 10 October 2010, then the BRE estimate was preferred. If the time
trend was significant and the observation window was not centered on 2010, then RL5 was preferred
as long as the ratio of the RL5 estimate to the BRE estimate was between 1.5 and 0.667; if this ratio was
too large or small by these arbitrary but commonsense thresholds, then we rejected both load estimates
for that site. After identifying a preference for either BRE or RL5, we used that preferred model at that
site as long as the standard error was less than 20% of the estimate, and otherwise, we rejected both
load estimates for that site. Of the 43 sites for which TN loads were estimated, this algorithm selected
the BRE estimate for 29 sites and the RL5 estimate for 14 sites. Both estimates were rejected for 2 sites,
resulting in 41 sites for which TN load estimates were generated to calibrate the SPARROW model.

We also used estimates from three other methods to screen for any poor matches between model
structure and the available data at each site. RL7 was a 7-parameter regression with terms for squared
discharge and squared decimal time as well as the terms in Equation (1), also implemented in the
“rloadest” package. The composite method (CMP) was the sum of the RL5 concentration predictions
and a rectangular interpolation of the residuals, as implemented in the “loadflex” R package [49].
A simple rectangular interpolation (INT) of the concentration observations, multiplied by discharge
and summed to estimate multi-year average loads was also implemented using loadflex. While the RL7,
CMP, and INT model comparisons did help us identify and correct a few data errors, we ultimately
found no reasons for concern about the selected BRE or RL5 models. We only used estimates from
the RL5 or BRE models in the SPARROW model because RL5 and BRE include uncertainty estimates
(CMP and INT do not) and were less prone to overfitting than RL7.

2.3.3. Explanatory Data

Sources and Landscape Transport Characteristics

Input data to the SPARROW model included data that describe sources of TN to streams
and watershed characteristics that influence the transport of TN from the landscape to streams
(i.e., landscape transport characteristics). A variety of sources were tested for potential inclusion
in the model, including multiple agricultural land area sources, urban land area, population, and
point source inputs from wastewater treatment plants (Table 1). The land use data used in the
model were developed specifically for the Integrated Water Resources Plan for the Grande River
Basin [35]. All source variables were constrained to be non-negative in the model [11]. Mean annual air
temperature and precipitation were tested for potential inclusion in the model as landscape transport
characteristics. Landscape transport characteristics were not constrained and were mean-adjusted and
log-transformed as needed to approximate normal distributions [11].
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Table 1. Total nitrogen (TN) sources and landscape transport characteristics tested for potential
inclusion in the SPAtially Referenced Regression On Watershed attributes (SPARROW) model.

Variable Dataset Used Parameter Tested

Land cover
Integrate Water Resources Plan of the Grande

River Basin [35]

Percent of catchment area composed of urban areas

Percent of catchment area composed of sugarcane crops

Percent of catchment area composed of soybeans/corn crops

Percent of catchment area composed of forestry

Percent of catchment area composed of pasture

Percent of catchment area composed of orange crops

Percent of catchment area composed of coffee

Percent of catchment area composed of other crops

Percent of catchment area composed of central pivots

Percent of catchment area composed of open waters

Percent of catchment area composed of Cerrado (tropical savanna)

Percent of catchment area composed of Atlantic Forest

Population Census sector [50] inhabitants of the basin area

Temperature WorldClim2 [51] Mean annual temperature (mm/year)

Precipitation WorldClim2 [51] Mean total annual precipitation (◦C)

Point sources Estimated with basis on the Sewage Atlas [52] TN load (tons/year)

In-Stream and Reservoir Transport

In-stream loss of TN in flowing waters was modeled as a first-order decay process, specified as a
function of estimated travel time. Travel time was estimated as reach length divided by stream velocity,
which was estimated using the Jobson equation [53]. The potential effect of reservoir storage on TN
loads was estimated using a reservoir decay term, estimated as a function of areal hydraulic load in
reservoirs (mean annual flow divided by reservoir surface area). This term was not identified as being
statistically significant and was therefore not included in the final model.

3. Results and Discussion

3.1. Model Assessment

Exploratory models were developed to test different model configurations. The final model
configuration selected contained four source variables and an in-stream decay term (Table 2). All model
input and output data as well as model code are available [54]. None of the tested landscape
transport variables were identified as being statistically significant. Calibration data were weighted
using a nonlinear weighted least-squares analysis [11]; the “NLLS_weights < - ‘lnload’” option in
RSPARROW [34]. Model estimation used the conditioned model predictions, which are obtained by
substituting the predicted load on reaches with monitoring stations with the observed station load
where available [11]. RSPARROW reports model performance for both conditioned and unconditioned
(simulated) model predictions. Here, we report the conditioned model predictions, as they provide
the most accurate reach predictions for model estimation and reduce the downstream propagation of
errors [11]. However, for assessing model performance, we report the model performance metrics
associated with both conditioned and unconditioned predictions, as the unconditioned predictions are
most representative of the model skill and performance at monitored and unmonitored stream locations.

Model statistics indicate a good fit of the model to the calibration data (Table 2). The yield
R2 values indicate that the model explained 68% of the variability in mean annual TN yield for
conditioned predictions and 60% of the variability in mean annual TN yield for unconditioned
predictions. RMSE values were 0.43 (conditioned) and 0.48 (unconditioned), indicating that the
average error in model predictions (associated with one standard deviation of the model error) was
43% (conditioned) and 48% (unconditioned). Percent bias values for conditioned and unconditioned
predictions were −3.94% and −6.80%, respectively. Negative percent bias values signify that on average,
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the model tended to overestimate observed loads. Residuals were approximately normally distributed
as a function of mean annual TN yield (Figure 2). The Moran’s I standard deviate was −1.15 (p = 0.25),
indicating that there was no statistically significant spatial autocorrelation in the residuals.

The four source variables identified in the final model configuration included the area of pasture
land, the area of urban land, the area of land under cultivation for sugar cane, and point source inputs
of total nitrogen from wastewater treatment plants (Table 2). The p-values for all source variables
were less than 0.05. Source coefficients for the three land area-based sources can be interpreted as the
mean TN yield (mass per unit area) from a given source. The dimensionless wastewater treatment
plant source coefficient was 1.15. A value of 1.0 for point sources is expected if the estimates of
point-source loads are accurate and the model representation of the nitrogen sources and stream
transport is properly specified. The estimated mean coefficient value of 1.15 and standard error of
0.41 (Table 2) indicates that the estimated loads from wastewater treatment plants in the model are
statistically different from the expected value of one (p = 0.025; two-tailed t-test with 36 degrees of
freedom); thus, assuming that the model is reasonably specified, the estimates of wastewater nitrogen
load that are input to the model may be slightly underestimated and are subsequently corrected by the
model estimation. Variance inflation factor (VIF) values for all source coefficients were low (<2; [11]),
indicating that there was no statistical evidence for multicollinearity among explanatory variables.

A variety of climatic and terrestrial variables (e.g., temperature, precipitation, water runoff,
soil physical and chemical properties) have been previously identified in SPARROW studies (e.g., [10,21])
and other literature studies [55–58] as being important landscape transport variables influencing the
delivery of TN from the landscape to streams in other watersheds. In this study, only landscape transport
variables for climatic conditions were tested for potential inclusion in the model; none were identified
as being statistically significant and were therefore not included in the final model configuration.
This finding does not indicate that temperature and precipitation (or other landscape transport
variables) are not important variables determining delivery of TN to streams in the Pardo-Sapucaí
sub-basins, but only that at the regional scale, a simple model with sources and in-stream loss terms
has been found to sufficiently describe the amount and spatial variability of TN as indicated by
model fit statistics. In-stream loss, modeled as a first-order decay process as a function of travel time,
was identified as being weakly significant (p = 0.13); there was also insufficient evidence of collinearity
with the source variables (VIF = 3.34). The estimated coefficient for in-stream nitrogen loss of 0.08 d−1

is representative of estimated loss rates reported in large temperate streams [17,59].

Table 2. SPARROW model coefficients and model statistics for both conditioned and un-conditioned
model runs.

Model Parameters Coefficient Units a Coefficient Standard Error p-Value VIF

Pasture ton/km2 0.54 0.20 <0.01 1.75
Urban ton/km2 10.5 2.92 <0.01 1.70

Sugar Cane ton/km2 0.58 0.27 0.04 1.95
Wastewater Treatment Plants D 1.15 0.41 <0.01 1.88

In-Stream Loss d−1 0.08 0.05 0.13 3.34

Conditioned Model Fit (N = 41; RMSE = 0.43; Yield R2 = 0.68; Percent Bias = −3.94)

Un-Conditioned Model Fit (N = 41; RMSE = 0.48; Yield R2 = 0.60; Percent Bias = −6.80)
a D = dimensionless.

3.2. TN Loads and Yields to Streams

The model was calibrated to TN loads for the base year of 2010 under long-term mean hydrologic
conditions. Therefore, the flux estimates presented here are representative of typical TN fluxes under
mean streamflow conditions and, therefore, are expected to reflect the average of temporally varying
annual fluxes. The SPARROW model estimated that approximately 20,000 tons/yr of TN was delivered
to the outlet of the Pardo-Sapucaí sub-basins (Table 3). SPARROW allows for the apportionment of
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loads from different sources; this is illustrated for the Pardo-Sapucaí sub-basins in Table 3. The model
estimates that of the 20,000 tons/yr of TN delivered to the outlet of the watershed, approximately
2200 tons (11%) originated from pasture land, ~5500 tons (28%) originated from urban landscapes,
~6400 tons (32%) originated from land under cultivation for sugar cane, and ~6000 (30%) tons originated
from wastewater treatment plants (Table 3). While only 11% of the total load was estimated to be
derived from pasture land, this land-use makes up only 2.1% of the land area in the watershed. It is
of note that the estimated 5500 tons of TN from urban land is not inclusive of the nitrogen loading
from wastewater treatment plants, which is separately estimated by the model. This finding suggests
that the additional capture and routing of urban waters through wastewater treatment plants may be
an effective approach for decreasing total TN loading to streams in the basin. The effects of such an
approach on TN loading to streams is discussed in the following section.

Table 3. Estimated annual mass and share of total nitrogen from each source delivered to the outlet
from the two sub-basins combined estimated using the standard (i.e., non-bootstrapping procedure)
SPARROW modeling approach. Estimated mass ± one standard error and share of load delivered from
each source ± one standard error for each source in the individual sub-basins, as estimated by the
bootstrapping process, are also included.

Source Area of Watershed (km2) a Mass Delivered to Outlet (Tons) Share of Total Load (%)

Combined Pardo-Sapucaí Basins

Pasture 901 (2.1) 2237 11
Urban 9735 (23) 5549 28

Sugar Cane 15,432 (36) 6398 32
Wastewater Treatment NA 5966 30

Pardo River sub-basin

Pasture 1750 ± 1366 9.5 ± 6.8
Urban 4000 ± 2950 21.6 ± 14.9

Sugar Cane 5350 ± 3499 27.9 ± 18.7
Wastewater Treatment 5130 ± 3379 27.2 ± 17.3

Sapucaí River sub-basin

Pasture 205 ± 139 5.8 ± 4.1
Urban 675 ± 488 19.3 ± 14.1

Sugar Cane 1136 ± 740 32.1 ± 21.3
Wastewater Treatment 1008 ± 675 29.0 ± 18.7

a Percent of total watershed area in parentheses.

Mean incremental and mean delivered incremental TN yields predicted by the model are shown
in Figure 3. The incremental yields are the yields generated within each incremental catchment, and the
delivered incremental yields are the yields generated within each catchment that are delivered to the
outlet of the Pardo-Sapucaí sub-basins after accounting for nitrogen losses in streams. The median
incremental TN yield from the 68,856 reaches in the watershed was 4.66 kg/ha/year (interquartile range:
1.97–6.10 kg/ha/year). Some of the largest incremental yields were estimated for streams in the southeast
portion of the watershed (Figure 3a), where pasture land is prevalent. However, due, in part, to the fact
that this part of the watershed is furthest from the outlet, with the nitrogen loads subject to larger losses
during transport to the outlet, this portion of the watershed displays lower delivered incremental
yields relative to other parts of the watershed (Figure 3b).

3.3. Wastewater Treatment Plant Source Reduction Scenarios

Nearly one-third of the TN load being delivered to the outlet of the Pardo-Sapucaí sub-basins was
estimated to originate from wastewater treatment plants (Table 3). While economic considerations
would need to be taken into account, this point source input represents a source that could be removed
from the watershed by, for example, improved levels of wastewater treatment via upgrading from
primary to secondary or tertiary treatment.

Hypothetical source reduction scenarios were implemented using the DSS feature in the USGS
RSPARROW software to assess the potential impact of such actions on in-stream TN loads. The DSS
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feature was applied to estimate in-stream TN loading in response to wastewater point source input
reductions of 20%, 40%, 60%, and 80%. The results of this exercise are shown in Figure 4. The SPARROW
model predicts that relative to baseline (i.e., current long-term average) conditions, TN loading at
the outlet of the Pardo-Sapucaí sub-basins decreased by 1200 tons (6%) for the 20% reduction in
wastewater point source inputs, 2400 tons (12%) for the 40% reduction scenario, 3600 tons (18%) for the
60% reduction scenario, and 4800 tons (24%) for the 80% source reduction scenario.Water 2020, 12, x FOR PEER REVIEW 10 of 21 
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Figure 4. Map showing the predicted percent reduction in TN load in response to hypothetical
reductions in TN mass inputs from wastewater treatment plants of (a) 20%, (b) 40%, (c) 60% and (d) 80%.
The colors in the map represent different predicted percent reductions in TN stream load as a function
of the percent change in TN mass input from wastewater treatment plants. Note the differences in bin
ranges among maps.

Another management-relevant result obtained from the SPARROW model is that both urban
land area and wastewater treatment plants were identified as being significant sources of TN to
streams in the Pardo-Sapucaí sub-basins. Given the fact that wastewater treatment plants are generally
co-located with urban areas, the ability of the model to distinguish between these two sources indicates
the strength of these source signals. From a management perspective, this result suggests that the
capture of urban runoff (e.g., unsewered residences, stormwater runoff) and the construction of new
wastewater treatment facilities, or other technologies like green infrastructure, to remove TN from the
currently untreated urban runoff may be an effective approach for decreasing TN loading to streams
in the basin. To test the potential effectiveness of such an approach, we used the DSS feature in the
USGS RSPARROW software to reduce the TN loading per unit area from diffuse urban land source.
Specifically, the urban land source coefficient was reduced by 20%, 40%, 60%, and 80% to represent
the construction of new wastewater treatment plants that would remove the specified percent of TN
loading from the current, baseline urban land source. Relative to baseline conditions, TN loading at the
outlet of the Pardo-Sapucaí sub-basins decreased by 1100 tons (6%) for the 20% reduction in loading
per unit area from diffuse urban land sources, 2200 tons (11%) for the 40% reduction scenario, 3300 tons
(17%) for the 60% reduction scenario, and 4400 tons (22%) for the 80% source reduction scenario
(Figure 5). These percentage reductions in the TN loads at the outlet of the Pardo-Sapucaí sub-basins,
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resulting from improved management of urban runoff, are generally similar to those associated with
the reduction in point source loads, resulting from improved treatment at wastewater plants.
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Figure 5. Map showing the predicted percent reduction in TN load in response to hypothetical
reductions in TN loading per unit area from the diffuse urban land source of (a) 20%, (b) 40%, (c) 60%
and (d) 80%. The colors in the map represent different predicted reductions in TN stream load as a
function of the percent change in TN loading per unit area from the diffuse urban land source. Note the
differences in bin ranges among maps.

3.4. Model Limitations and Future Applications

We applied the new open-source USGS RSPARROW model, developed in cooperation with ANA
and CPRM, to identify major sources of TN in the watershed and to quantify the spatial variability
of TN in all streams in the basin. Model results indicate that pasture land contributes approximately
10% of the TN load estimated at the outlet of the watershed, with the remaining sources—land under
cultivation for sugar cane, urban land, and point source inputs from wastewater treatment plants—each
contributing approximately 30% of the TN load estimated at the watershed outlet. Knowledge of
contaminant source contributions, and the locations of major sources, to in-stream TN loadings,
as demonstrated in this study for the Pardo-Sapucaí sub-basins provides key information that can be
used to prioritize sub-basins for TN load mitigation across large regional basins, as has been done
in the Chesapeake Bay watershed, USA [2]. The DSS feature in the USGS RSPARROW software also
provides a complementary tool to allow for assessment of the impacts of hypothetical source reductions
that could be achieved through management actions on in-stream TN loading. Here we provided
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demonstrations of how this tool could be applied to assess in-stream TN response to (1) point source
reductions from wastewater treatment plants that could be achieved by upgrading treatment facilities
to have secondary or tertiary treatment capabilities, for example, and (2) reductions in TN loading
per unit area from diffuse urban land sources that could be obtained by building new facilities that
would treat currently untreated urban runoff. The results of these analyses suggest that, depending
on the magnitude of the management action (i.e., degree of wastewater treatment or number of new
wastewater treatment plants), it may be possible to reduce TN loading at the outlet of the watershed
by up to 20–25%.

The SPARROW model documented here is a relatively simple water-quality model, in that it
contains only four source terms and a single in-stream decay term. Despite the simplicity of the model,
assessment metrics indicate that model performance is on par with that reported by other TN SPARROW
modeling efforts [10,21,59], and model specification is similar to simple land-use based SPARROW
source transport models (e.g., [22–24,60,61]). Furthermore, the statistical and mass balance components
of the model are important features to ensure that the model estimates of nitrogen loadings from sources
are generally consistent with the observations of nitrogen at stream monitoring locations throughout
the Pardo-Sapucaí sub-basins. While the results presented here show promise for identifying TN
sources for potential mitigation, there is a need to recognize model limitations. For example, the model
does not provide a detailed description of the specific sources of TN in the watershed, given that
land use (i.e., lands in urban, pasture, and sugar cane) is used as a surrogate for a variety of diffuse
nitrogen sources (e.g., human and animal wastes, atmospheric deposition, fertilizer applications).
Additionally, there are important landscape properties that can influence the delivery of TN from
the landscape to streams (e.g., soil properties) that remain to be evaluated. Although the effects of
climatic factors (precipitation, temperature) on stream nutrients were not found to be statistically
significant in the model, the expansion of the geographic domain of the model to include data from
nearby river basins could potentially broaden the range of climatic conditions represented in the model,
thereby improving the sensitivity of the model [11] to these factors. These limitations on the number
and types of nutrient sources and other predictor variables in the model are largely a function of the
quantity and quality of explanatory and calibration data. Expanding the spatial domain of the model
can both increase the range of variation in the model (“data quality”) and the number of calibration
sites (“data quantity”), thereby improving the statistical power of the model to detect process effects.
Improvements in data quality and quantity have been previously shown to be associated with more
complex and interpretable SPARROW models [11] as reflected by a larger number of statistically
significant explanatory variables. The model could also be improved through the regular collection of
new water-quality and streamflow data at existing and/or new monitoring locations. Finally, access to
potential predictor variables including soil characteristics, geology, and industrial plant discharges
may allow for improvements in model performance and prediction accuracy as well as the process
interpretability of the model.

Continued improvements in the Brazil TN model will enhance its ability to assist water
management planning [35] in the Grande River Basin. The SPARROW modeling approach has been
previously shown to provide an informative approach for water-quality assessment and management
across large spatial domains. The model provides an efficient spatial framework for advancing
the large-scale understanding of streamflow processes [7] and the major contaminant sources and
watershed properties that affect transport over large scales in river networks [8,10,23], information that
can assist water resource management of regional river basins and inland and coastal water bodies
with large drainages [2,27,28,62]. These capabilities are enabled by the hybrid characteristics of the
model [7,8,11] that include a simple mechanistic structure, with mass balance and non-conservative
transport constraints, and statistically estimated model parameters and their associated uncertainties.

Our study of the Brazilian Grande River Basin has extended the previous management support
capabilities of SPARROW (e.g., [2,63]) by demonstrating the use of the RSPARROW integrated modeling
and decision support system [34]. Although progress was previously made in developing SPARROW
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decision support tools [63], the lack of integrated modeling components has caused inefficiencies,
related to the considerable manual labor required to link existing SPARROW models to the decision
tools. By contrast, the RSPARROW software developed for this project in cooperation with Brazilian
water agencies (ANA, CPRM) provides an automated, fully customized decision support tool that
is enabled simultaneously with the development and calibration of a SPARROW model. This tool
and its capabilities can be readily applied to large river basins in other countries where stream water
monitoring data and geospatial information on watershed characteristics are available.

4. Conclusions

Given the importance of water resources in this region of Brazil, as indicated by the prioritization
of actions aimed at improving water quality outlined by the Integrated Water Resources Plan for the
Grande River Basin [35], there is a need for continued efforts to quantify human-natural systems to
understand nutrient sources, delivery and transport. This application of SPARROW, facilitated by the
use of the new interactive modeling and management RSPARROW mapping tool developed by the
USGS in coordination with ANA and CPRM, provides a first assessment of present-day TN sources and
transport in an important Brazilian watershed. Results of the example management scenarios presented
here demonstrate the ability of SPARROW and the RSPARROW mapping tool to inform management
efforts aimed at controlling nutrient loads and preventing eutrophication. Remotely sensed land-use
data, the primary predictor variable in the SPARROW nitrogen model, are currently available nationally
in Brazilian river basins and could provide a foundation for future model-based investigations of
contaminant sources in major rivers. These efforts could be supported by the use of the historical data
from existing Brazilian water-quality and -quantity monitoring networks, coupled with the strategic
development of new stream monitoring information. The open-source nature of RSPARROW and the
availability and ease-of-use of the interactive DSS tool also provides new opportunities to develop
SPARROW model-based water-quality assessments in additional sub-basins of the GRB as well as other
river basins of Brazil and other countries. The model-based water resource assessment approach that
we illustrate here could also be expanded and applied to other water contaminants (e.g., phosphorus,
sediment, biochemical oxygen demand, fecal bacteria, and pathogens).
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