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Abstract: The discharge from rivers is one of the major factors of regional salinity perturbations in
addition to precipitation, evaporation, and circulation of the ocean, whereas simulations regarding
the marine environment are dominantly affected by ocean salinity. Moreover, perturbations in the
timing and quantity of freshwater cause salinity fluctuations, which in turn, affect the communities
of both plant and fauna. In this regard, the study ingeniously employs In Situ Analysis System-15
(ISAS15) data, which is freely available online, to ascertain the salinities in proximity of the major
rivers around the globe. Such computations are multilayered, i.e., for 1, 3, 5, and 10 m, and conducted
along major freshwater influxes, i.e., the Amazon River, Bay of Bengal (BoB), and Yangtze River,
on decadal scales, i.e., in 2004 and in 2014. Depending upon the location and availability of ISAS-15
data, the area in proximity of the Amazon is analyzed horizontally, vertically, and obliquely, whereas
the areas in proximity of the BoB and Yangtze estuary are analyzed vertically and obliquely. Similarly,
the study analyzed the freshwater influx at the aforementioned locations both for the maxima and
minima, i.e., during the particular months that observed the maximum and minimum influx into the
ocean from the above-mentioned freshwater sources in 2004, as well as in 2014. The detailed analysis
proved the outcomes to be conforming with the documented literary data along the Amazon and
Yangtze estuaries. However, the computed analysis illustrated the anomalous values in proximity of
the BoB. The study proceeds to discuss an ingenious approach of computing, as well as extrapolating,
the salinities, temperatures, and sound speed profiles (SSPs) by employing in situ deep Argo data
in order to counter such anomalies, as well as conjoin it with ISAS data, to investigate such regions
with broader spatiotemporal capabilities for the future course of action. For this particular study,
this method is employed on certain Argo buoys in order to prove the efficacy of the aforementioned
novel approach.
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1. Introduction

The estuary’s salinity perturbation is responsible for a distinctive and elementary role in constructing
spatial patterns of biota, physical characteristics, and certain biogeochemical procedures. Such salinity
variations are caused by the influx of freshwater into the sea among other reasons such as precipitation,
evaporation, and circulation of the ocean. These perturbations not only lower the salinity in the
near-surface layer but can also create habitat instability for communities of both animal and fauna.
Furthermore, the average sea level has gone through an intense hike during the entire previous century
on a global scale. The reason behind such a hike can be ascribed to both ocean warming and rising
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continental freshwater influx [1–5]. In order to ascertain temporal weather fluctuations relying on seasonal
to decadal perturbations, an array of 3000 floats offering vertical profiles of CTD (Conductivity, Temperature,
and Depth) in global oceans to the depths of 2000 m in almost real-time was proposed by the end of the
previous century and was named the Argo Array. The connectivity of this array with other networks was
proposed in order to offer a weather observing model on a global scale. This array was also meant to
provide the data required to calibrate the satellite data [6–8]. This array offered coverage on the basis of
3◦ latitude × 3◦ longitude × 10-day cycles. In 2015, another array of 1228 floats was proposed (which is
already in the process of deployment) to cover the deeper half of the ocean and was named the Deep Argo
array, and it will offer global coverage on the basis of 5◦ latitude × 5◦ longitude × 15 day cycles upon its
global deployment. These arrays, along with the method proposed in this study at the end of the results,
cover for the poor observational coverage, as well as insufficient perspective of the interchange of the entire
components of the water cycle [4,9]. Moreover, an interpolation tool that performs optimally is evolved
to generate worldwide monthly regions of both salinities and temperatures from Argo data combined
with monitoring from varying networks on a 0.5◦ grid, and having a vertical resolution of 152 levels
initiating from 0 to 2000 m depth and covariances defined for every grid point. This tool is termed the
In-Situ Analysis System (ISAS) and is capable of maintaining the temporal and spatial sampling abilities
of the aforementioned Argo array. This ISAS has been improved since the performance of initial global
re-analysis in 2009 by comprising all kinds of vertically accumulated profiles in addition to time series. The
gridded regions for the ISAS are thoroughly dependent on in-situ measurements. The tool being employed
in this particular study is In Situ Analysis System-15 (ISAS15), which covers the temporal duration of 2002
to 2015, and certain regions in the form of horizontal, vertical, or oblique lines are selected in proximity of
the Amazon, Bay of Bengal (BoB), and Yangtze estuaries, as depicted in Tables 1–3 in the ensuing section,
respectively. As this tool only employs delayed mode in situ data, it comprises the best-quality products in
Delayed Mode. In addition, pre-processing is performed on data, and extra-QC (Quality Control) devoted
to the ISAS15 analyses is conducted on in situ profiles prior to their inclusion in the analysis [10–13].
Despite inclusion of such carefully analyzed data, this study found some discrepancies in proximity of the
BoB while analyzing the halocline on the decadal scale for both minima and maxima months, which may
rely on multiple factors. The study offers an ingenious method that involves the aforementioned core Argo,
Deep Argo, and the extrapolations based on these floats to ascertain and verify the salinities, temperatures,
and sound speed profiles (SSPs) at such locations. In addition, the study analyzed the halocline in proximity
of the Amazon’s (Brazil) freshwater influx area, along with the Yangtze River (China). The measures at
these two locations are in accordance with the documented literature and offered the salinity perturbations
according to the freshwater influx for both maxima and minima months. The time-related pattern of
freshwater influx varies hugely among varying rivers, i.e., their locality within an annual cycle varies on
the riverine-estuarine spectrum. The Amazon river is a major source of discharge into the Atlantic Ocean
amounting to nearly 17%, i.e., 6300 × 109 m3year−1, of the worldwide riverine influx to the oceans. The
maxima influx for this river occurs in May and June, which is three times greater than that during the
minima duration, which is December to January. The research has indicated its effects on sea level, as well
as on salinity and temperature perturbations, to be of higher consideration for both regional and global
scales. The research activity around the Amazon River starts 70.2 km away from the shore at the location of
49.46 W and 0.06 N. The vertical computations of salinity are toward 833.91 km from this particular position,
834.337 km of horizontal computations, and 1177.33 km of computations along the oblique distance [14–17].
Similarly, the BoB is quite huge with a length of 2090 km and width of 1610 km as it borders with India and
Sri Lanka on the western side, with Bangladesh on the northern side and Myanmar and Thailand on the
eastern side. However, our major concern is to monitor this bay initiating from the side near Bangladesh to
the south roughly 750 km both vertically and obliquely, as will be detailed in the ensuing section. The BoB
is considered among the highest freshwater influxes around the global oceans with an annual discharge
of 970 × 109 m3year−1 from Ganges-Brahmaputra and 430× 109 m3year−1 from Irrawaddy (Burma) as
the major sources of influx in the BoB. The freshwater influx causes the salinity to drop by roughly 7 psu,
especially in the far northern region. This low-saline water flows southward near the Indian coast as the
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reversal of the East India Coastal Current from August to December. The study region for this particular
activity starts 82.19 km away from the shore at a location of 91 E, 22.24 N. It is computed 794.12 km for the
vertical dimension and 1122.87 km obliquely [14,18,19]. Finally, the Yangtze River is considered the longest
river, i.e., 6300 km, ranking fifth largest in terms of freshwater influx of 900 × 109 m3year−1 annually and
the biggest estuary within China comprising three bifurcations and four channels into the sea. The starting
position for this particular activity around the Yangtze initiates 105.16 km away from the coast at a location
of 121.9 E, 31.3 N [14,20,21]. The study offers an ingenious method ascertaining the halocline perturbations
both spatially and temporally from an online dataset, i.e., ISAS-15, which is free of charge. In addition,
the study offers yet another ingenious method based on the least squares method, which conjoins core
(covering 3◦ latitude × 3◦ longitude × 10-day cycles) and deep Argo (covering 5◦ latitude × 5◦ longitude ×
15 day cycles) float’s data in order to extrapolate to abyssal oceans to offer wider spatiotemporal coverage,
as well as to verify any anomalous, ambiguous, or erroneous outcomes [22]. The further details regarding
the experimental setup and precise locations with time are illustrated in the ensuing section.

2. Methods

As mentioned earlier, the ISAS15 datasets are employed for this particular study, which analyzes
the halocline at three locations, i.e., Amazon river influx in the Atlantic Ocean, the BoB near Bangladesh’s
rivers influx, Yangtze River’s influx in the East China Sea. The results are presented in terms of
salinity units, i.e., in psu, along the distance of vertical, horizontal, or oblique in kilometers (km)
accordingly depending on the availability of ISAS-15 data. Furthermore, the results are presented in
multilayers, i.e., at 1, 3, 5, and 10 m. The results are illustrated both in 2D scales. Finally, the results are
exhibited both for the maxima, i.e., maximum freshwater influx month, as well as for the minima, i.e.,
minimum freshwater influx during both 2004 and 2014, in order to offer the decadal halocline analysis
accordingly. These maxima and minima months are then compared with each other for the varying
years, i.e., for 2004 and 2014. The outcomes along the Amazon and Yangtze river are as expected,
whereas apparent discrepancies are observed in the BoB. An ingenious and novel approach mentioned
in the previous section is described at the end of the results section, which hints at rectifying such
discrepancies innovatively. The detailed methodology along each river’s influx is explained in the
ensuing subsections.

2.1. Analysis along the Amazon River

The area chosen for the analysis is 70.2 km away from the delta at a location of 49.46 W, 0.06 N as
mentioned earlier. This particular region is measured in three dimensions, i.e., vertically, horizontally,
and obliquely. The vertical computations initiated from the starting location of 49 W, 0.499994 N
to 49 W, 7.974132 N, covering a distance of 833.91 km. The horizontal computations initiated from
49 W, 0.499994 N to 41.5 W, 0.499994 N, covering a distance of 834.33 km. Finally, the oblique
computations initiated from 49 W, 0.499994 N to 41.5 W, 7.974132 N, covering a distance of 1177.33 km.
These particular distances along the vertical, horizontal, and oblique lines are illustrated both globally
and focused in Figure 1a,b, respectively. Similarly, the exact coordinates in latitude and longitude
are depicted, where Lat And Long are abbreviated for latitude and longitude, respectively, and V, H,
and O represent vertical, horizontal, and oblique, respectively, as depicted in Table 1 below:

2.2. Analysis along the BoB

The experimental activity in proximity of the BoB 82.19 km away from the shore is considered as
the initial point at a precise location of 91 E, 22.24 N. Two lines, i.e., vertical and oblique, are chosen
for the computation of salinities along the way. The vertical line starts at 91 E, 14.34766 N to 91 E,
21.47852 N, covering a distance of 794.12 km. Similarly, the oblique line initiates from a position of
83.5 E, 14.34766 N to 91 E, 21.47852 N, covering a distance of 1122.873 km. Both the vertical and oblique
lines are illustrated in Figure 2a,b for both the global and focused image, respectively. In addition,
the exact coordinates in latitude and longitude are depicted, where Lat And Long are abbreviated
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for latitude and longitude, respectively, and V and O represent vertical and oblique, respectively,
as depicted in Table 2 below:
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Table 1. This table presents details of the computed coordinates along the Amazon Estuary.

Serial No. Lat, Long.(V) Lat, Long.(H) Lat, Long.(O)
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7 3.497825 N, 49 W 0.499994 N, 46 W 3.497825 N, 46 W
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Table 2. This table presents details of the computed coordinates along the Bay of Bengal (BoB).

Serial No. Lat, Long.(V) Lat, Long.(O)

1 14.34766 N, 91 E 14.34766 N, 83.5 E
2 14.83153 N, 91 E 14.83153 N, 84 E
3 15.31433 N, 91 E 15.31433 N, 84.5 E
4 15.79601 N, 91 E 15.79601 N, 85 E
5 16.27655 N, 91 E 16.27655 N, 85.5 E
6 16.75592 N, 91 E 16.75592 N, 86 E
7 17.23409 N, 91 E 17.23409 N, 86.5 E
8 17.71101 N, 91 E 17.71101 N, 87 E
9 18.18668 N, 91 E 18.18668 N, 87.5 E
10 18.66195 N, 91 E 18.66195 N, 88 E
11 19.1341 N, 91 E 19.1341 N,88.5 E
12 19.60579 N, 91 E 19.60579 N, 89 E
13 20.07611 N, 91 E 20.07611 N, 89.5 E
14 20.54502 N, 91 E 20.54502 N, 90 E
15 21.0125 N, 91 E 21.0125 N, 90.5 E
16 21.47852 N, 91 E 21.47852 N, 91 E

2.3. Analysis along the Yangtze River

The computational activity near the Yangtze river took place 105.16 km away from the shore at
the location of 121.9 E, 31.3 N. This activity was conducted by considering both horizontal and oblique
dimensions. The horizontal computation of salinity initiates at 123 E, 31.3136 N to 128 E, 31.3136 N,
covering a distance of 474.885 km. Similarly, the oblique line starts at 123 E, 26.94775 N to 128 E, 31.3136 N,
covering a distance of 685.13 km. The locations both on the global scale and in focused form are illustrated
in Figure 3a,b, respectively. Similarly, the exact coordinates in latitude and longitude are depicted, where Lat
And Long are abbreviated for latitude and longitude, respectively, and H and O represent horizontal and
oblique, respectively, as depicted in Table 3 below:
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Figure 3. The area of experimental computations illustrating vertical and oblique dimensions in
proximity of the Yangtze Estuary both globally in (a) and in focused form as (b) (Courtesy: https:
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Table 3. This table presents details of the computed coordinates along the Yangtze Estuary.

Serial No. Lat, Long.(H) Lat, Long.(O)

1 31.3136 N, 123 E 26.94775 N, 123 E
2 31.3136 N, 123.5 E 27.39258 N, 123.5 E
3 31.3136 N, 124 E 27.83562 N, 124 E
4 31.3136 N, 124.5 E 28.27686 N, 124.5 E
5 31.3136 N, 125 E 28.71628 N, 125 E
6 31.3136 N, 125.5 E 29.15387 N, 125.5 E
7 31.3136 N, 126 E 29.58959 N, 126 E
8 31.3136 N, 126.5 E 30.02345 N, 126.5 E
9 31.3136 N, 127 E 30.45541 N, 127 E

10 31.3136 N, 127.5 E 30.88546 N, 127.5 E
11 31.3136 N, 128 E 31.3136 N, 128 E

3. Results

This particular section is dedicated to the results of salinity computations along the three
aforementioned major freshwater influx sources, i.e., Amazon River, BoB, and Yangtze River. The results are

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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presented in terms of salinity units, i.e., in psu, along the distance of vertical, horizontal, or oblique in km
accordingly. Furthermore, the results are presented in multilayers, i.e., at 1, 3, 5, and 10 m. The results are
illustrated both in 2D scales. Finally, the results are exhibited both for the maxima, i.e., maximum freshwater
influx month, and the minima, i.e., minimum freshwater influx for both 2004 and 2014, in order to offer
the decadal halocline analysis accordingly. The ensuing subsections represent the results at multiple
locations accordingly.

3.1. The Halocline Computations along the Amazon Estuary

As mentioned earlier, the Amazon is responsible for the huge influx of freshwater into the Atlantic
accounting for roughly 20–30% of the entire river influx in the Atlantic; thus, perturbing the haloclines
in the form of salinity spikes at varying levels. Such perturbations in salinity patterns illustrate
the conjoining and/or distribution of nutrients among the marine and dry land-based systems [23].
The levels for this particular study are aforementioned, i.e., 1, 3, 5, and 10 m. The salinity perturbations
due to the influx of freshwater along the Amazon river are presented in 2D at multiple layers, i.e., 1, 3, 5,
and 10 m, for the months of June and November in 2004, as well 2014, and illustrated in Figures 4 and 5,
respectively. As mentioned earlier, the analysis is based on ISAS15 datasets and the outcomes are
illustrated for 2004 and 2014 vertically as (a) and (b), obliquely as (c) and (d), and horizontally as (e)
and (f). The freshwater influx due to the Amazon River is three times larger during the rainy season,
i.e., May and June, as compared to the dry season, i.e., December and January. This lower saline
plume of the Amazon is responsible for developing a barrier layer closer to surface, which hinders
mixing, enhances the surface temperature of the sea, and increases halocline stratification. This, in turn,
impedes the vertical mixing of the upper high-temperature mixed layer with the low-temperature
deeper ocean [15,23]. Furthermore, Junior et al. analyzed the dynamics of Zooplankton (one of the
paramount groups of organisms of seaside and marine ecosystems and crucially responsible for the
spread of energy via the aquatic sustenance webs of sultry estuaries) in this particular estuary of the
Amazon and found that perturbations in salinity and density of varying taxa were responsible for the
variations in their diversity, evenness, and richness [24,25]. The outcomes of this particular study are
observed for the analysis of both June and November, and relevant perturbations in salinities are also
evident. There is a slight difference in salinity deviations for both June and November during 2004,
as well as 2014, as illustrated in Figures 4 and 5, respectively.

3.2. The Halocline Computations along the BoB

As mentioned earlier, the BoB comprises a larger area, i.e., 2.8− 3.0× 106 sq.km, with a maximum
width of 1000 km and a peak depth of 4694 m [26,27]. This section is dedicated to measuring the
halocline along this BoB both vertically starting near Bangladesh to a distance of 749 km and obliquely
to a distance of 1123 km in four layers of 1, 3, 5, and 10 m by employing the ISAS15 dataset for
July in 2004 and 2005, as illustrated in Figure 6, for vertical computations as (a) and (b) and oblique
computations as (c) and (d), respectively. Similarly, the aforementioned comparison is conducted for
the month of January in 2004 and 2014, as depicted in Figure 7, for vertical computations as (a) and
(b) and oblique computations as (c) and (d), respectively. It is pertinent to mention that the surface
salinities compared in Figures 6 and 7 exhibit deviations from the established norms of the BoB as
established in the literature. In this regard, Vinayachandran et al. categorically ascribed the freshwater
influxes/sinks and the subsequent distribution of the ensuing lower- or higher-salinity water by oceanic
currents to the seasonal balancing of salinity in the Indian Ocean [28]. Furthermore, Hussain et al.
explicitly illustrated the relative surface salinities during both monsoon and winter, which are depicted
in Figure 8a,b, respectively [29]. Moreover, the deviations within the months of July and January
show deviations for the years 2004 and 2014. These entire deviations or anomalies may be due to
multiple reasons, i.e., mentioned by Mahadevan et al., who evaluated the rate of water becoming
saline along the trajectory as it leaves the northern bay [30], and by Banerjee who analyzed surface
water salinity perturbations of Indian Sundarbans on the decadal scale as a prospective criterion of
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climate change. Such climatological perturbations have enhanced during the last two decades due to
the global rise in temperature, removal of glacial land ice from the Gangotri Glacier of the Himalayan
ranges, influxes of the Farakka embankment, and an increase in the sea level. In this regard, remarkable
continuing discrepancies are observed while monitoring salinity for a period of 23 years, i.e., from
1990 to 2012 [31]. Similarly, salinity perturbations in the BoB away from the shores may be either due
to the interchangeability of waters among the Arabian Sea and BoB as the Arabian Sea appears to be
saltier due to its proximities to the couple of high-salinity seas, i.e., Red Sea and the Persian Gulf, or
due to the influx of eastern rivers of Burma, i.e., Irrawaddy and Salween, which discharge 430× 109

and 300 × 109 m3year−1, respectively [14,28]. In this regard, an aforementioned ingenious method
based on least squares is proposed at the end of this section to assess this particular region on a wider
spatiotemporal coverage for both halocline and thermocline analysis. In situ data from varying parts
of global oceans are obtained with the help of deep Argo floats, and extrapolations are conducted to
the nearest identical values. Such extrapolations conjoining core and deep Argo programs will help to
assess this region with more conviction as a future course of action.
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3.3. The Halocline Computations along the Yangtze Estuary

As mentioned earlier, Yangtze is the longest river in China and constitutes the biggest estuary by
comprising three bifurcations and four channels into the East China Sea [21]. Sun et al. undertook the
environmental flow depending on the salinity objectives for the Yangtze estuary of China to analyze the
effects of varying freshwater discharge on the estuarine ecosystem. They mentioned strong correlations
between freshwater influx and the salinity gradient, as well as correlation between salinity and a large
variety of kinds of biological productivity [32]. This particular section of our study is dedicated to
compute and compare haloclines for the Yangtze Estuary during the months of July in 2004 and 2014,
as well as January in 2004 and 2014, as illustrated in Figures 9 and 10, respectively. These comparative
analyses are conducted horizontally to a distance of 475 km from the estuary and obliquely 685 km
from the initial observation location. The halocline comparisons are exhibited in five layers as done
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in previous experimentations, i.e., 1, 3, 5, and 10 m. The outcomes in Figures 9 and 10are illustrated
for horizontal computations as (a) and (b) and oblique computations as (c) and (d). The outcomes
illustrated in Figures 9 and 10 exhibit the salinity deviations according to the literature regarding
the freshwater influx during the months of July and January, respectively [21,33]. Moreover, a slight
difference is observed between 2004 and 2014 comparisons in the months of both July and January.
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The aforementioned method proposed to ascertain the BoB both on the temporal and spatial scale
for future course of action is presented mathematically. As mentioned earlier, this proposed method is
based on the least squares method [22]. This method ingeniously conjoins datasets from core Argo and
deep Argo in order to extrapolate and depends on in situ deep ocean values either from deep Argo or
from any other sensing source. The data are depicted in Equation (1) below, where x illustrates the
salinities, temperatures, and SSPs in psu, ◦C, and m/s, respectively, whereas y demonstrates the depth
in meters, and i = 1, 2, 3, . . . , n.
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D = (xi, yi) (1)

In order to employ polynomials for curve fitting, we have

f (x) =
∑m

j=0k jx j. (2)

Here, k = (k0, k1, . . . , km) are the desired design parameters. Then, we have

R(k) =
∑n

i=1[yi − f (xi)]
2. (3)

In order to acquire the most desirable fitting, classical least squares is applied [34]. By differentiating
each side, we come up with

∂R(κ)
∂k j

= −2
∑n

i=1[yi − f (xi)]x
j
i = 0, j = 0 . . .m. (4)

Now, substituting Equation (2) into Equation (4), we have∑n
i=1
∑m

l−0klx
l+ j
i =

∑n
i=1yix

j
i (5)

which is of the form Aκ∗ = b where A =
{
ai j
}

with ai j =
m∑

l=0
xl+ j

i and b =
{
b j
}

with b j =

{
n∑

i=1
yix

j
i ,

j = 0, . . . , m and i = 1, . . . , n.
The m and n can be chosen freely, and certain values are selected for them to acquire extrapolations

of salinities, temperatures, and SSPs that are nearly analogous to the in-situ values of the Deep Argo
buoys. In this regard, m was set to 1 in the initial stages for extrapolations with different values of n,
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which were 32, 78, and 14 for the corresponding buoys, i.e., World Meteorological identification (WMO)
WMO2902510, WMO2902971, and WMO1902074, respectively, as detailed in Table 4, and their results
are exhibited in Figure 11a,c,e, respectively. Then, in order to rectify the anomalies shown for the value
of m equal to 1 in Figure 11a,c,e, m was changed to 2 for the case of the second-order polynomial,
and the outcomes almost identical to the in situ values are illustrated in Figure 11b,d,f, respectively.

Table 4. The buoys with vertical profiles up to depths of 4000 m.

Float Identity Cycle Number Date Lat and Long Location

WMO2902510 24 2 March 2014 30.447◦ N, 146.004◦ E Pacific Ocean
WMO2902971 08 12 May 2016 29.566◦ N Pacific Ocean
WMO1902074 08 11 April 2016 28.998◦ S, 52.16◦ E Indian Ocean
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The salinity in the ocean is a sign of variations in the worldwide hydrological cycle and extensive climate
perturbation. The spread of salt in the ocean along with its temporal discrepancy is crucial for comprehending
Earth’s weather. The thermohaline circulation along with the spread of heat and mass is critically dependent
on the salinity of the ocean. In addition, temperature along with salinity and pH are crucial to the existence
of the majority of marine flora and fauna and, hence, are critical parameters for the observation of
water [23,35]. In this regard, temperature is extrapolated below 2000 m analogous to the extrapolations
of salinity conducted for the Argo floats presented in Table 4. These temperature extrapolations are
illustrated in Figure 12a,c,e for the aforementioned basic first-order method for Argo floats of WMO2902510,
WMO2902971, and WMO1902074, respectively. Similarly, the improved second-order polynomial is
employed to rectify the anomalies, as illustrated in Figure 12b,d,f, respectively. As mentioned earlier,
such extrapolations for both salinity and temperature may pave the way for the broader spatiotemporal
coverage of assessing varying regions of the ocean by taking into consideration the core as well as deep
Argo programs.
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In order to compute the SSPs for three deep Argo buoys, i.e., WMO5905738, WMO5905739,
and WMO5905740 are detailed in Table 5 by employing the Del Grosso equation (1974), which employs
the vertical profiles of both salinities and temperatures of the aforementioned buoys. This particular
equation was reassessed by Zhu and Wong (1995) in order to adjust according to the new International
Temperature Scale of 1990, and is given as [36,37]:

c(S, T, P) = C000 + ∆CT + ∆CS + ∆CP + ∆CSTP (6)

∆CT(T) = CT1T + CT2T2 + CT3T3 (7)

∆CS(S) = CS1S + CS2S2 (8)

∆CP(P) = CP1P + CP2P2 + CP3P3 (9)

∆CSTP(S, T, P) = CTPTP + CT3PT3P + CTP2TP2 + CT2P2T2P2 + CTP3TP3 (10)

CSTST + CST2ST2 + CSTPSTP + CS2TPS2TP + CS2P2S2P2 (11)

Table 5. The buoys from the Pacific Ocean.

Float Identity Cycle Lat, Long. Date Time

WMO5905738 20 22.6443◦ N, 158.6656◦ W 19 July 2018 11:52:11
WMO5905739 20 22.8836◦ N, 158.7888◦ W 3 July 2018 04:03:52
WMO5902521 20 12.0588◦ N, 154.0620◦ W 19 September 2018 07:54:23

T represents the temperature in ◦C, S exhibits the salinity in Practical Salinity Units, and P illustrates
the pressure in kg/cm2. The range of validity for temperature is 0 to 30 ◦C, whereas that for salinity is 30 to
40 parts per thousand, and that for pressure is 0 to 1000 kg/cm2, where 100 kPa = 1.019716 kg/cm2.

The SSPs obtained from the above computations are extrapolated for the buoys mentioned in
Table 5 in a symmetrical way by keeping the values of both m and n the same (i.e., m = 2 and n = 40),
as shown in Figure 13a,c,e. Similarly, the asymmetric extrapolations were conducted for these buoys
as m = 2 and n = 46 for WMO5905738, m = 3 and n = 68 for WMO5905739, and m = 2 and n = 37 for
WMO5905740, as illustrated in Figure 13b,d,f, respectively. It is explicitly evident that by changing
the values of m, as well as n, i.e., by correcting asymmetrically, the acquired corrected computations
became nearly identical to the in situ-measured values of the buoys.
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40), as shown in Figure 13a,c,e. Similarly, the asymmetric extrapolations were conducted for these 
buoys as 푚 = 2 and 푛 = 46 for WMO5905738, 푚 = 3 and 푛 = 68 for WMO5905739, and 푚 = 2 and 
푛 = 37 for WMO5905740, as illustrated in Figure 13b,d,f, respectively. It is explicitly evident that by 
changing the values of 푚, as well as 푛, i.e., by correcting asymmetrically, the acquired corrected 
computations became nearly identical to the in situ-measured values of the buoys. 

Table 5. The buoys from the Pacific Ocean. 

Float Identity Cycle Lat, Long. Date Time 
WMO5905738 20 22.6443° N, 158.6656° W 19 July 2018 11:52:11 
WMO5905739 20 22.8836° N, 158.7888° W 3 July 2018 04:03:52 
WMO5902521 20 12.0588° N, 154.0620° W 19 September 2018 07:54:23 

 

Figure 13. Cont.



Water 2020, 12, 2886 15 of 17
Water 2020, 12, x 16 of 18 

 

 
Figure 13. The sound speed profiles (SSPs) from symmetric extrapolations were rectified by 
asymmetric extrapolation, resulting in an improvement of ~2 m/s to become almost identical (a,b). 
Similarly, an improvement was observed from ~7 m/s to negligible difference (c,d). Finally, a 
difference of ~5 m/s was improved to ~1 m/s, as illustrated in (e,f), respectively. 

4. Conclusions 

The study explains the varying effects of salinity perturbations due to major influxes of 
freshwater into the respective seas. In this regard, the study ingeniously employs the datasets of 
ISAS15 to ascertain the halocline perturbations along the estuaries of three major sources of 
freshwater influxes, i.e., in proximity of the Amazon, BoB, and Yangtze River. The study proceeds to 
ascertain the comparative analyses of halocline perturbations in maxima and minima months, i.e., 
maximum influx and minimum influx of freshwater both in 2004 and in 2014. The computations 
along the Amazon and Yangtze proved to be in accordance with the documented literature data. 
However, the deviations were computed for the months of July and January in proximity of the BoB 
during both 2004 and 2010. The study concludes by presenting and employing an ingenious method 
that is capable of extrapolating salinities, temperatures, and SSPs to deeper depths by its pioneer 
application of a basic first-order technique based on the least squares method, which extrapolates the 
Argo data to deeper depths. Then, this method is adjusted to employ the second-order polynomial, 
which rectifies the anomalies in the extrapolation for the basic first-order method. This particular 
method lays the foundation to counter and/or rectify the deviations identified in the BoB. In addition, 
it offers a broader spatiotemporal investigation platform to assess varying regions on an almost 
global scale after conjoining it with the ISAS tool for the future course of action. 
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Figure 13. The sound speed profiles (SSPs) from symmetric extrapolations were rectified by
asymmetric extrapolation, resulting in an improvement of ~2 m/s to become almost identical (a,b).
Similarly, an improvement was observed from ~7 m/s to negligible difference (c,d). Finally, a difference
of ~5 m/s was improved to ~1 m/s, as illustrated in (e,f), respectively.

4. Conclusions

The study explains the varying effects of salinity perturbations due to major influxes of freshwater into
the respective seas. In this regard, the study ingeniously employs the datasets of ISAS15 to ascertain the
halocline perturbations along the estuaries of three major sources of freshwater influxes, i.e., in proximity
of the Amazon, BoB, and Yangtze River. The study proceeds to ascertain the comparative analyses of
halocline perturbations in maxima and minima months, i.e., maximum influx and minimum influx of
freshwater both in 2004 and in 2014. The computations along the Amazon and Yangtze proved to be in
accordance with the documented literature data. However, the deviations were computed for the months
of July and January in proximity of the BoB during both 2004 and 2010. The study concludes by presenting
and employing an ingenious method that is capable of extrapolating salinities, temperatures, and SSPs
to deeper depths by its pioneer application of a basic first-order technique based on the least squares
method, which extrapolates the Argo data to deeper depths. Then, this method is adjusted to employ
the second-order polynomial, which rectifies the anomalies in the extrapolation for the basic first-order
method. This particular method lays the foundation to counter and/or rectify the deviations identified in
the BoB. In addition, it offers a broader spatiotemporal investigation platform to assess varying regions on
an almost global scale after conjoining it with the ISAS tool for the future course of action.
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