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Abstract: Traditional hydrocyclones can be used for the concentration of sewage-containing sediments,
but the low underflow concentration and the high content of fine particles result in a large subsequent
dehydration workload. This study aimed to investigate the effect of columnar hydrocyclone column
height on separation performance and the change in the internal flow field after the underflow orifice
of the hydrocyclone was closed, so as to provide a theoretical basis for improving the ability to
treat the sewage of the hydrocyclone. Numerical simulation was used to examine the change in
the separation performance of the hydrocyclone and the effect of column height on the separation
performance of the hydrocyclone in the case of the closed underflow orifice during intermittent
discharging. The results indicate that a proper increase in column height was beneficial to improve the
separation performance of the hydrocyclone. With the increase in the closing time of the underflow
orifice, the particle content at the bottom of the hydrocyclone increased significantly. The experiment
proves the feasibility of the intermittent discharge method in practice, and this working method can
effectively increase the underflow concentration.

Keywords: columnar hydrocyclone; intermittent discharging; numerical simulation; separation
performance

1. Introduction

Sewage contains a large number of fine particles. If the sewage goes directly to the urban sewer
without treatment, it easily causes problems, such as pipe blockage and serious pipe wear. Currently,
the gravity sedimentation method is often used to treat sediment-containing sewage; however, it has
the shortcomings of large site area, low sedimentation efficiency, high investment cost, and so forth.
Hydrocyclones are often used for mineral separation and slurry concentration, and they can also
be used in the treatment of sewage containing sediments. A hydrocyclone is a device [1–4] for the
efficient separation of two-phase mixtures, using the principle of centrifugal sedimentation. It has
the advantages of a simple structure, convenient operation, strong separation ability, and a small site
area. Hydrocyclones play an increasingly important role in the pretreatment of sewage wastewater
and surface sewage [5–9].

The separation of particles in a hydrocyclone is completed under the action of the flow field.
The structural parameters and structural forms of the hydrocyclone directly affect the characteristics of
the flow field, thereby affecting the separation and the separation performance of particles. Therefore,
the research status at home and abroad is analyzed from the aspects of the effect of structural parameters
and structural forms of the hydrocyclone on the separation performance.

The influence of structural parameters of a hydrocyclone on separation performance has
been widely reported. Representative studies focus mainly on the cylindrical section of the
hydrocyclone [10,11], the overflow pipe [12–14], the feed inlet [15–17], the underflow orifice [18–21],

Water 2020, 12, 2883; doi:10.3390/w12102883 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-7703-0019
https://orcid.org/0000-0002-4111-8801
http://www.mdpi.com/2073-4441/12/10/2883?type=check_update&version=1
http://dx.doi.org/10.3390/w12102883
http://www.mdpi.com/journal/water


Water 2020, 12, 2883 1 of 16

and the cone angle [20,22,23]. Numerical simulation and experimental methods obtain the effect of
structural parameters on separation performance, providing an important theoretical reference for the
structural optimization of the hydrocyclone.

In terms of the structural forms of the hydrocyclone, Jank et al. [24] proposed a large-diameter
hydrocyclone for the pretreatment of sewage waste, separating impurities like sand and glass.
Kyriakidis et al. [25] studied the micro-hydrocyclone group for separating fine particles in the
wastewater, which significantly reduced the content of fine particles. However, when the hydrocyclone
was used to treat low-concentration, sediment-containing wastewater, it caused a high moisture
content of the underflow and high content of fine particles, thereby resulting in a large subsequent
dehydration workload. Hence, the large-scale application of the hydrocyclone is limited in water
treatment. To increase the underflow concentration of the hydrocyclone, Lin [26] proposed a hydraulic
hydrocyclone with a thickening device outside the underflow tube. The solid particles at the bottom of
the thickening device were taken away via the spiral discharging mechanism, and the concentration
effect was significantly improved. Puprasert et al. [27] studied a large-diameter hydrocyclone equipped
with a “Grit pot” for the pretreatment of sewage. Compared with the traditional hydrocyclone and
sedimentation tank, the underflow concentration significantly increased. Although the storage device
outside the underflow tube is an effective underflow thickening method [28,29], the underflow orifice
and discharge opening can be easily blocked due to the longer accumulation time of materials in the
external storage device.

This study proposed an intermittent-discharge columnar hydrocyclone. By closing the valve
of the underflow orifice, the particles underwent centrifugal sedimentation inside the hydrocyclone.
After a certain period of time, the valve of the underflow orifice was opened to discharge the material.
After the hydrocyclone recovered normal operation, the valve of the underflow orifice was closed again.
The cycle could achieve the purpose of increasing the underflow concentration. The effect of column
height of the columnar hydrocyclone on the separation performance and the change of the internal
flow field after the underflow of the hydrocyclone is closed are studied by numerical simulation
methods, which provides a theoretical basis for improving the hydrocyclone. The experiment proves
the feasibility of the intermittent discharge method in practical applications.

2. Materials and Methods

2.1. Model Description and Validation

With the development of computational fluid dynamics, numerical simulation has been widely
used in the analysis and prediction of flow fields in a hydrocyclone. The Reynolds stress equation model
(RSM) and the mixture model in the numerical simulations of hydrocyclones have been unanimously
approved by researchers [16,30]. Nevertheless, it is still very important to determine the accuracy
and reliability of the model before conducting numerical simulation research. In this paper, a 75 mm
hydrocyclone is modeled, and the simulation results are compared with the experimental results of
Hsieh [31]. The model verification is divided into two parts: the first part uses the mixture model
to simulate the water–air flow, in order to verify the accuracy of the predicted velocity distribution,
and the inlet velocity is 2.28 m/s; in the second part, the particle phase is set in the mixture model
to verify the accuracy of predicting particle classification efficiency, and the inlet velocity is 2.5 m/s.
The particle size and volume fraction settings are shown in Table 1. The data comparison cross-section
is 60 mm downwards from the top cover of the hydrocyclone.
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Table 1. Size distribution and respective volume fraction of particles in the feed.

Size Interval (µm) Mean Size (µm) Volume Fraction (%)

−42.21 + 29.85 35.50 0.622
−29.85 + 21.10 25.10 0.734
−21.10 + 14.92 17.74 0.722
−14.92 + 10.55 12.55 0.508
−10.55 + 7.46 8.87 0.375
−7.46 + 5.27 6.27 0.365
−5.27 + 3.74 4.43 0.289
−3.73 + 2.63 3.13 0.185
−2.63 + 1.69 3.11 0.127
−1.69 + 1.01 1.31 0.116
−1.01 + 0.66 0.82 0.065
−0.66 + 0.43 0.53 0.032

Total 4.14

Figure 1a,b show the tangential velocity and axial velocity distribution curves. respectively. It can
be seen from the Figure 1 that the mixture model can accurately predict the velocity distribution of the
flow field inside the hydrocyclone, which is consistent with the research report by Kuang [32].

Figure 2 shows the classification efficiency curve. It can be seen from the Figure 2 that the
classification efficiency obtained by the mixture model is consistent with the experimental results.
The fine particles in the hydrocyclone are difficult to separate from the water, and its classification
efficiency is closely related to the water split ratio. Figure 2 shows that the content of particles below
4.43 µm in the experimental results is 0, and the simulation results show that the classification efficiency
of this part of the fine particles is about 5%, which is similar to the split ratio of water in the underflow
of the hydrocyclone. Therefore, the difference in the classification efficiency of fine particles may
be caused by experimental measurement errors [16]. It can be seen from the Figures 1 and 2 that
the mixture model and RSM model can accurately predict the flow field velocity and classification
efficiency of the hydrocyclone.
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Figure 1. Comparison of distribution of tangential velocity (a) and axial velocity (b).



Water 2020, 12, 2883 3 of 16Water 2020, 12, x FOR PEER REVIEW 4 of 17 

 

 

Figure 2. Comparison of classification efficiency curves between numerical simulation and experiment. 

2.2. Hydrocyclone Geometry and Mesh Generation 

Figure 3 is a structural diagram of the hydrocyclone. In the figure, the reference cross-section 
positions of the simulation data analysis are located at Z = 80 mm, Z = 112 mm, Z = 165 mm, and Z = 
265 mm. To study the characteristics of the internal flow field of the hydrocyclone, the software 
SolidWorks2014 was used to establish the three-dimensional (3D) model of the fluid domain of the 
hydrocyclone. To study the effect of the column height on the separation performance of the 
hydrocyclone, the column height (h2) was selected as 220 mm, 260 mm, 300 mm, and 340 mm. The 
specific structural parameters are shown in Table 2. Among them, Di is the equivalent diameter of 
the feed port, Do is the diameter of the overflow port, Du is the diameter of the underflow port, and 
ho is the insertion depth of the overflow pipe. ICEM CFD 14.5 was used for mesh generation. The 
hexahedral structured grid generation method is used to divide the computational domain into 
207,116 mesh units. The mesh generation is shown in Figure 4. 

 
Figure 3. Structural diagram of the hydrocyclone. 

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n 
ef

fic
ie

nc
y（

%
）

Particle size（μm）

 Experimental
 Numerical Simulation

Figure 2. Comparison of classification efficiency curves between numerical simulation and experiment.

2.2. Hydrocyclone Geometry and Mesh Generation

Figure 3 is a structural diagram of the hydrocyclone. In the figure, the reference cross-section
positions of the simulation data analysis are located at Z = 80 mm, Z = 112 mm, Z = 165 mm,
and Z = 265 mm. To study the characteristics of the internal flow field of the hydrocyclone, the software
SolidWorks2014 was used to establish the three-dimensional (3D) model of the fluid domain of the
hydrocyclone. To study the effect of the column height on the separation performance of the
hydrocyclone, the column height (h2) was selected as 220 mm, 260 mm, 300 mm, and 340 mm.
The specific structural parameters are shown in Table 2. Among them, Di is the equivalent diameter
of the feed port, Do is the diameter of the overflow port, Du is the diameter of the underflow port,
and ho is the insertion depth of the overflow pipe. ICEM CFD 14.5 was used for mesh generation.
The hexahedral structured grid generation method is used to divide the computational domain into
207,116 mesh units. The mesh generation is shown in Figure 4.
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Table 2. Structural parameters of the hydrocyclone.

Parameters Intermittent-Discharge Column Segment (mm)

Do 34
ho 240
Di 34
Du 18
Da 150
Db 100
Dc 150
h1 65
h2 220/260/300/340
h3 65Water 2020, 12, x FOR PEER REVIEW 5 of 17 
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2.3. Boundary Conditions

The simulated material was a mixture of water and quartz sand, and the feed mass concentration
was 4%. The set particle size composition is shown in Table 3.

Table 3. Particle size composition.

Particle Size of Quartz Sand 5 µm 20 µm 40 µm 65 µm 90 µm 120 µm

Volume fraction 0.00274 0.00458 0.00270 0.00299 0.00181 0.00091

The mixture model [33,34] and RSM [35,36] were adopted, the inlet of the hydrocyclone was
set as the “velocity-inlet”, and the feeding rate was 6.3 m/s. Overflow and underflow were set as
“pressure-outlet”. The boundary condition was set to “no-slip wall”. The pressure–velocity coupling
SIMPLE numerical method was used for solving the control parameters. The discrete pressure and
momentum formats of the control equations were the PRESTO! and QUICK formats, respectively.

A transient solution method was adopted to compare and study the changing trend of the flow
field inside the hydrocyclone over time after the underflow orifice was closed. The residual error was
set to 10−4, the time step was 1 × 10−5 s, and the boundary conditions of the underflow orifice were set
to the wall at 4 s.
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2.4. Experiment Test Method

In order to verify whether the intermittent discharge method can effectively increase the underflow
concentration, we conducted corresponding experiments, which are of great significance for guiding
practical applications. The experimental device for testing the separation performance of columnar
hydrocyclone is shown in Figure 5. It is mainly composed of a slurry tank, blender, centrifugal pump,
pressure gage, and valves. As shown in Figure 5, the underflow valve in the experimental device is a
ball valve, the regulating valve and the discharge valve are butterfly valves, and the pressure gauge
is a diaphragm pressure gauge. The regulating valve is installed between the centrifugal pump and
the inlet of the columnar hydrocyclone to regulate the pressure or flow of the inlet. The underflow
valve is used to control the opening and closing of the underflow port of the columnar hydrocyclone.
The material used in the experiment is quartz sand with a density of 2700 kg/m3, and its particle size
distribution is shown in Figure 6. In this experiment, the laser particle size analyzer (Mastersizer 2000,
Malvern, England) was used to measure the particle size in the experimental sample.
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The mass concentration of the quartz sand slurry was 4%. During the experiment, the pressure of
the pressure gauge was adjusted to 0.1 MPa through the regulating valve. After the experiment ran
smoothly, samples were taken from the hydrocyclone’s overflow, bottom flow, and feed. After that,
the underflow valve was closed and a sample was taken from the overflow every 4 s. After a certain
period of time, the underflow valve was opened and the underflow sample was taken.

3. Results and Discussion

3.1. Effects of H2 on the Separation Performance of the Hydrocyclone

Figure 7 shows the distribution curve of static pressure inside the hydrocyclone. The figure reveals
that the pressure distribution in different sections inside the hydrocyclone was basically the same,
the pressure at the axial position exhibited a negative value, and the pressure value increased and
reached the maximum value near the wall of the hydrocyclone with the increase in radius [16]. As the
column height increased, the space that actually participated in the separation and the residence time
of particles in the hydrocyclone increased, which was beneficial for improving the separation effect.
However, it can be seen that the pressure values at different cross-section positions decreased with the
increase in the column height, which increased the pressure loss of the hydrocyclone.
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Figure 8 is the distribution curve of tangential velocity. It shows that the tangential velocity was
zero near the wall, gradually increased with the decrease in radius, reached a maximum value at about
20 mm from the axis, and then decreased rapidly. This change trend is consistent with literature [16],
which proves the accuracy of the simulation. As the column height increased, the maximum tangential
velocity at various cross-section positions inside the hydrocyclone decreased. The decrease in tangential
velocity reduced the centrifugal force, increased the separation size, and increased the coarse particles
in the underflow. At the same time, as the column height increased, the separation space of the
hydrocyclone and the residence time of particles in the hydrocyclone increased, which made the
particle separation more thorough.
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Figure 9 shows the distribution curve of axial velocity. The distribution of axial velocity affected
the separation and residence time of particles in the hydrocyclone, determined the flow distribution of
underflow and overflow, and was one of the important factors affecting the separation effect of the
hydrocyclone. As the cross-sectional height decreases, the axial velocity becomes smaller, especially in
the area near the underflow where the axial velocity is close to 0, and tends to stabilize in the radial
position. This change may be caused by the increase in diameter near the underflow, which is beneficial
to the stability of the flow field to a certain extent. As the column height increased, the maximum value
of the axial velocity decreased significantly, effectively increasing the residence time of particles in the
hydrocyclone and making the separation more thorough.
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Figure 10 demonstrates the effect of column height on the split ratio. The high content of fine
particles, large flow, and a low concentration resulted in a large pressure on subsequent dehydration.
Therefore, the flow and the concentration of the underflow were expected to be lower and higher,
respectively. The smaller split ratio was more beneficial to actual production. The figure shows that
the split ratio decreased significantly with the increase in column height, indicating that the longer the
column segment, the larger the underflow concentration.
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pressure loss during the separation process, and the increase in pressure drop causes an increase in 
energy loss. As the overflow pressure drop (difference between overflow pressure and feed pressure) 
and underflow pressure drop (difference between underflow pressure and feed pressure) cannot be 
used to evaluate the overall pressure drop of the hydrocyclone, the pressure drop ratio (ratio of overflow 
pressure drop to underflow pressure drop) was adopted to evaluate the pressure loss. The figure shows 
that the pressure drop ratio of the hydrocyclone increased with the increase in column height. Although 
the increase in column height was beneficial to improve the separation effect to a certain extent, too large 
of a column height made the pressure loss of the hydrocyclone larger. 
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Figure 11 shows the effect of column height on the recovery rate of overflow particles. Figure 11
shows that the particle content in the overflow decreases with the increase of the tower height, and this
trend is particularly obvious for particles between 20 µm and 40 µm. Most particles in the overflow
had particle sizes less than 65 µm, indicating that particles with sizes of 65 µm and above had good
separation effects.
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Figure 12 demonstrates the effect of column height on the pressure drop ratio. Hydrocyclones
have pressure loss during the separation process, and the increase in pressure drop causes an increase
in energy loss. As the overflow pressure drop (difference between overflow pressure and feed pressure)
and underflow pressure drop (difference between underflow pressure and feed pressure) cannot be
used to evaluate the overall pressure drop of the hydrocyclone, the pressure drop ratio (ratio of overflow
pressure drop to underflow pressure drop) was adopted to evaluate the pressure loss. The figure
shows that the pressure drop ratio of the hydrocyclone increased with the increase in column height.
Although the increase in column height was beneficial to improve the separation effect to a certain
extent, too large of a column height made the pressure loss of the hydrocyclone larger.
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3.2. Effects of Intermittent Discharge on the Separation Performance of the Hydrocyclone (h2 = 300 mm)

The pressure loss along the radial direction during the separation process of the hydrocyclone
is the main basis for calculating the production capacity and studying the energy loss, and it also
has an important influence on the separation particle size and separation efficiency [16]. Figure 13
shows that the closure of the underflow orifice had little effect on the internal pressure distribution of
the hydrocyclone, indicating that closing the underflow orifice did not affect the internal separation
strength of the hydrocyclone.
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Figure 13. Distribution curve of static pressure.

Figure 14 shows that the tangential velocity at each cross-section position of the hydrocyclone
decreased slightly with time after the underflow orifice was closed. Additionally, the lower the
cross-section position, the more obvious the phenomenon. This was because the particles settled
and accumulated inside the hydrocyclone, the concentration of the material at the bottom of the
hydrocyclone increased, and the resistance within the fluid increased after the underflow orifice was
closed, causing a gradual decrease in the tangential velocity. Meanwhile, the tangential velocity at the
cross-section position Z = 80 mm remained at a high level, indicating that the bottom material of the
hydrocyclone was still in a strong motion state, which was clearly different from other hydrocyclones
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with external storage devices, and was beneficial to avoid the blocking problem caused by the static
accumulation of the bottom material.

Water 2020, 12, x FOR PEER REVIEW 11 of 17 

 

the hydrocyclone was still in a strong motion state, which was clearly different from other 
hydrocyclones with external storage devices, and was beneficial to avoid the blocking problem 
caused by the static accumulation of the bottom material. 

 
Figure 14. Distribution curve of tangential velocity. 

Figure 15 shows that the axial velocity at the axial center increased with the increase in the closing 
time of the underflow orifice. The higher the cross-section position, the more obvious the changing trend. 
As the axial velocity increased, the residence time of the particles in the hydrocyclone became shorter, 
and some materials were discharged from the overflow before the effective separation was completed, 
which made the separation performance of the hydrocyclone worse. 

 
Figure 15. Distribution curve of axial velocity. 

Figure 16 shows that the volume fraction of coarse particles above 40 μm at the bottom of the 
hydrocyclone increased significantly with time after the underflow orifice was closed. The longer the 
closing time, the more obvious the particle accumulation at the underflow orifice. This phenomenon 
indicated that the longer the closing time of the underflow orifice, the more beneficial it was to 
increase the underflow concentration. However, the closing time of the underflow orifice was too 

Figure 14. Distribution curve of tangential velocity.

Figure 15 shows that the axial velocity at the axial center increased with the increase in the closing
time of the underflow orifice. The higher the cross-section position, the more obvious the changing
trend. As the axial velocity increased, the residence time of the particles in the hydrocyclone became
shorter, and some materials were discharged from the overflow before the effective separation was
completed, which made the separation performance of the hydrocyclone worse.
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Figure 16 shows that the volume fraction of coarse particles above 40 µm at the bottom of the
hydrocyclone increased significantly with time after the underflow orifice was closed. The longer the
closing time, the more obvious the particle accumulation at the underflow orifice. This phenomenon
indicated that the longer the closing time of the underflow orifice, the more beneficial it was to
increase the underflow concentration. However, the closing time of the underflow orifice was too long,
which was likely to cause the blockage of the underflow orifice. Therefore, the reasonable selection of
the closing time of the underflow orifice required continuous experiments.
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Figure 17 demonstrates the distribution of the velocity vector. A circulating flow was observed
at the bottom of the hydrocyclone, and the circulating flow always existed within 4–12 s after the
underflow orifice was closed. Some particles were not completely separated and deposited at the
bottom to re-enter the separation area, due to the presence of underflow circulation in the hydrocyclone,
which was beneficial to improve separation accuracy.
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3.3. Experiment Results Analysis

Figure 18 shows the effect of underflow valve closing time on overflow concentration. Figure 19
shows the effect of the closing time of the underflow valve on the median diameter of overflow
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particles. It can be seen from Figures 18 and 19 that when the underflow valve is closed, the overflow
concentration and the median diameter of the overflow particles increase with time. It is worth noting
that the overflow product changes at 32 s. At this moment, the underflow valve opens, and with the
high concentration of material gradually discharged from the bottom flow, the overflow concentration
and median particle size of the overflow particles decrease obviously. This shows that the intermittent
discharge hydrocyclone does not affect the overflow separation accuracy.
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Table 4 is a comparison of underflow products under conventional discharge and intermittent
discharge conditions. As shown in Table 4, the concentration of the intermittent discharge underflow
product is 44.37%, and the median diameter of the particles has been significantly improved. The particle
distribution cloud in Figure 16 shows the reason for the increase in underflow concentration. When the
underflow valve is closed, the residence time of coarse particles in the hydrocyclone increases, and these
coarse particles enter the outer vortex and accumulate at the bottom of the hydrocyclone. At the same
time, as shown in Figure 17, the bottom space of the columnar hydrocyclone is larger than that of the
conventional hydrocyclone, so the internal elutriation effect is enhanced; this means that more fine
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particles enter the inner swirling, which causes the proportion of coarse particles in the underflow
product to increase and the median diameter of the particles to increase. The experimental results
show that the intermittent discharge can significantly increase the concentration of underflow and
reduce the content of fine particles in the underflow.

Table 4. Comparison of underflow products.

Underflow Product Concentration (%) Median Diameter (µm)

Normal discharge 15.86 42.45
Intermittent discharge 44.37 55.83

4. Conclusions

This study proposed an intermittent-discharge columnar hydrocyclone. The material settled and
accumulated inside the hydrocyclone by closing the underflow valve. After a certain time, the underflow
valve was opened to discharge the material, so as to increase the underflow concentration and reduce
the content of fine particles. Through numerical simulation, the following conclusions were obtained:

(1) The column height has a greater effect on the separation performance of the hydrocyclone.
The tangential and axial speeds of the hydrocyclone decrease with the increase in the column
height, which is beneficial for the stability of flow fields in the hydrocyclone. However, increasing
column height enhances the pressure loss of the hydrocyclone. Therefore, a reasonable choice of
column height is very important for the separation performance of the hydrocyclone.

(2) After the underflow orifice is closed, the tangential speed of the hydrocyclone gradually decreases,
and the axial speed gradually increases, which increases the content of fine particles in the
overflow. A circulating flow occurs at the bottom of the hydrocyclone. The fine particles enter the
overflow under the effect of the circulating flow, which is beneficial for reducing the content of
fine particles in the underflow of the hydrocyclone and improving the separation accuracy and
underflow concentration.

(3) The intermittent-discharge columnar hydrocyclone still maintains high tangential speed and
centrifugal separation strength, which improves the underflow blockage problem caused by
material deposition to a certain extent.

The findings of this study might guide the practical application of the intermittent-discharge
columnar hydrocyclone. However, many problems remain unresolved, such as the effect of feeding
rate, column diameter, and so forth, with regard to the separation performance of the hydrocyclone
and the optimized interval of determining the opening and closure of the underflow orifice.
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