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Abstract: Probabilistic streamflow forecasts using precipitation derived from ensemble-based
Probabilistic Quantitative Precipitation Forecasts (PQPFs) are examined. The PQPFs provide rainfall
amounts associated with probabilities of exceedance for all grid points, which are averaged to
the watershed scale for input to the operational Sacramento Soil Moisture Accounting hydrologic
model to generate probabilistic streamflow predictions. The technique was tested using both the
High-Resolution Rapid Refresh Ensemble (HRRRE) and the High-Resolution Ensemble Forecast
version 2.0 (HREF) for 11 river basins across the upper Midwest for 109 cases. The resulting discharges
associated with low probability of exceedance values were too large; no events were observed
having discharges above the 10% exceedance value predicted from the technique applied to both
ensembles, and no events were observed having discharges above the 25% exceedance value from the
HREF-based forecast. The large differences are due to using the same precipitation exceedance value
at all points; it is unlikely that all watershed points would experience the heavy rainfall associated
with the 5% probability of exceedance. The technique likely can be improved through calibration of
the basin-average precipitation forecasts based on typical distributions of precipitation within the
convective systems that dominate warm-season precipitation events or calibration of the resulting
probabilistic discharge forecasts.

Keywords: probabilistic forecasting; flood forecasting; quantitative precipitation forecasts; ensemble
prediction systems; forecast verification

1. Introduction

Currently, river and stream flood forecasts are usually made using Quantitative Precipitation
Estimates (QPEs) [1,2] instead of Quantitative Precipitation Forecasts (QPFs) because large errors can
exist in the QPFs. However, because QPE is not available until after the rainfall begins, a hydrologic
forecast cannot be made until the precipitation event is underway and the full impact of the event
cannot be captured in the streamflow forecast until the rain has ended. This is especially problematic in
small river basins where the precipitation event may not have ended before flash flooding has already
started to occur. Thus, reliance on QPE for flood forecasting limits the ability of forecasters to predict
rapid streamflow changes with much lead time, reducing the time emergency managers have to inform
and prepare safety personnel and the general public for potential flooding. Earlier flood warnings
could be made if QPFs were used as input to hydrologic models instead of QPEs [3–6].
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One problem in the use of QPFs in hydrologic models is that precipitation forecasts often have
substantial errors, especially for warm season rainfall [7,8], which is typically associated with relatively
small-scale and intense thunderstorms that have weak large-scale forcing. The small-scale and high
intensity of this type of precipitation often makes it particularly challenging to forecast possible
resulting flash flooding [9,10], especially because displacement errors in the simulated precipitation
systems are common [11,12]. Additionally, the lack of larger-scale forcing means that small-scale
forcing mechanisms play a more important role in initiating and sustaining warm-season precipitation
systems so that higher resolution is necessary in numerical models to forecast warm-season rainfall.
Unfortunately, even models run with fine grids still can struggle to accurately predict small-scale forcing
and the resulting precipitation [13–15], at least partly because existing limited observational networks
that supply the initial conditions for the models may only partially resolve these small-scale mechanisms.
In addition, errors can arise from the use of parameterizations for the boundary layer or microphysical
processes [16–18]. Since it is so challenging to forecast warm-season precipitation events using
deterministic model runs, an increasing emphasis has been placed on ensemble forecasting [19–21].

Ensemble Prediction Systems (EPSs) assist with forecasting, since EPSs show the uncertainty of an
event through probabilistic forecasts [12,22], and the ensemble mean of a variable is often more accurate
than values from any individual ensemble member [23,24]. EPSs can use multiple models, different
physical parameterizations, and different initial and lateral boundary conditions, thus accounting for
many of the uncertainties that can lead to errors in atmospheric models. Werner et al. [25] tested the
use of an EPS in streamflow forecasts and discovered that using the mean areal precipitation of the EPS
improved the Ranked Probability Skill Score (RPSS) values when compared to the reforecast archived
model forecasts. However, Ebert et al. [26] found that the ensemble mean for heavy QPF was usually
smaller than that observed due to the averaging process smoothing the extremes from each member,
since the locations of predicted heavy rain typically differed among members. The resulting mean QPF
field was often unrealistically smooth and light.

Since the precipitation patterns from an ensemble mean may not be physically realistic, a better
approach can be to use the individual QPFs from the ensemble members. For example, Davolio et al. [5]
showed how QPFs from a multi-model ensemble were useful in generating flood forecasts, although
shortcomings with the forecasted timing and shape of the river’s hydrograph were noted. The small scale
and intense nature of typical warm-season rainfall aggravate QPF errors associated with both timing
and location, such that when input into the hydrologic model, significant errors in watershed-level
predictions can occur, especially for small basins [27,28]. Carlberg et al. [29] found that increasing
the number of ensemble members by randomly shifting the individual members’ QPF to account for
displacement errors led to more skillful probabilistic streamflow forecasts than those of the original EPS.
The current operational Hydrological Ensemble Forecasting Service (HEFS) at the National Oceanic
and Atmospheric Administration in the United States uses bias correction applied to the ensemble
member QPFs that are used as input to create probabilistic streamflow forecasts [30].

Individual member QPFs are commonly used to create probabilistic QPF (PQPF) [31,32], which
provides a measure of uncertainty in the rainfall forecasts. Although one could simply assign
probabilities at grid points based on the number of members showing precipitation above a threshold,
often these forecasts are calibrated by comparing the model forecasts to observations for a period of
time to account for systematic biases in the ensembles. In addition, smoothers are often used, which
effectively take into account information from nearby grid points [19], possibly mitigating in a small
measure displacement errors common to precipitation forecasts. Assuming value is added to the
PQPFs by these approaches, the rainfall amounts associated with the PQPFs could be used instead of
individual member QPF as input to hydrologic models to create probabilistic streamflow forecasts.
Presently, the National Weather Service’s (NWS) North Central River Forecasts Center (NCRFC)
generates a probabilistic streamflow forecast using both QPE measurements from the United States
Geological Survey and NWS’s Stage IV rainfall data and PQPFs from the NWS Weather Prediction
Center using the 5%, 50%, and 95% exceedances. However, they and others who have attempted
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to use PQPF in similar manners acknowledge that there may be problems in the direct use of PQPF
(S. Connely, NCRFC, 2020, personal communication), suggesting that further work is necessary to
document how well the technique may work to provide probabilistic streamflow forecasts.

The objective of this study is to determine how skillful probabilistic streamflow forecasts are if they
are made using high-resolution ensemble PQPF information directly, with the probability of exceedance
rainfall amounts determined from the probabilities that had been assigned to several QPF thresholds as
opposed to using member QPFs. Such an approach takes advantage of the fact that statistical techniques
such as Gaussian smoothers add value to the ensemble PQPFs. Two operational/quasi-operational
high-resolution ensembles are used to compute the rain amounts associated with various probabilities
of exceedance in a similar manner to NCRFC’s PQPF forecasts. Then, these values are input into
a hydrologic model to test how well this PQPF application works for short-term, warm-season
probabilistic streamflow prediction. The streamflow predictions are compared to the operational
predictions from the NCRFC.

2. Materials and Methods

2.1. Study Basins and Case Selection

Eleven basins in Illinois, Iowa, Minnesota, and Wisconsin were selected for this study (Table 1,
Figure 1). The basins fall within the forecasting region of the North Central River Forecasting Center
(NCRFC). This region is characterized primarily by forested hills and lakes in Minnesota and Wisconsin
and plains and farmlands in Illinois and Iowa. The uppermost forecast points on the rivers were
selected to eliminate the need to model the inflow of water from upstream locations.

Table 1. Study basins, basin area, United States Geological Survey (USGS) gauge number, National
Weather Service (NWS) forecast point identification, and the number of events analyzed for each
basin. Bold signifies the gauges for which the North Central River Forecasts Center (NCRFC) issues
probabilistic streamflow forecasts.

Basin Area USGS Gauge Station NWS ID Number of Events

Kickapoo at Ontario (WI) 303 km2 05407470 ONTW3 10
Fox River at Waukesha (WI) 326 km2 05543830 WKEW3 11

Turkey River at Spillville (IA) 458 km2 05411600 SPLI4 11
Squaw Creek at Ames (IA) 528 km2 05470500 AMEI4 14

Pecatonica East at Blanchardville (WI) 572 km2 05433000 BCHW3 14
Pecatonica West at Darlington (WI) 707 km2 05432500 DARW3 8

Des Plains at Russell (IL) 785 km2 05527800 RUSI2 6
South Skunk River at Ames (IA) 816 km2 05470000 AMWI4 14

Wapsipinicon River at Tripoli (IA) 896 km2 05420680 TLPI4 7
Volga River at Littleport (IA) 901 km2 05412400 VLPI4 6

Root River at Pilot Mound (MN) 1463 km2 05383950 PRMM5 8Water 2020, 12, x FOR PEER REVIEW 4 of 17 
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Figure 1. Location of the study basins.

The study period spans 14 June–5 October 2018. To be selected, the streamflow events had to have
evidence of a sharp increase in streamflow due to forecasted precipitation, and the observed maximum
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discharge had to exceed a value higher than the 75% exceedance of the June–September streamflow
climatology for that basin based on the available data from the United States Geological Survey
(USGS). A total of 109 events were examined across the 11 basins, with 33 of the events exceeding the
action stage.

2.2. Precipitation Forecasts

PQPFs from two different operational/quasi-operational high-resolution ensemble systems were
tested in this study: The High-Resolution Rapid Refresh Ensemble (HRRRE) of the Earth System
Research Laboratory and the High-Resolution Ensemble Forecast version 2.0 (HREF) of the National
Centers for Environmental Prediction. The HRRRE consisted of 9 members that ran over a half
contiguous United State (CONUS) domain during the summer of 2018, with 3 km horizontal grid
spacing (Table 2). The members were created using random variations in the zonal winds, temperature,
and water vapor as part of the initial and boundary conditions of the individual members [19]. Random
atmospheric perturbations were generated by using the first 36 members of the Global Data Assimilation
System (GDAS) formatted to fit on the HRRRE domain. In addition, random perturbations were
applied to soil moisture (Trevor Alcott, NOAA, September 2018, personal communication). Each of
the members used the same microphysics scheme, Aerosol-Aware Thompson [33], and planetary
boundary layer (PBL) scheme, Mellor–Yamada Nakanishi Niino [34]. From the HRRRE, PQPFs were
provided for four different 6-hour Accumulated Precipitation (APCP) thresholds: 12.7, 25.4, 50.8,
and 76.2 mm. These PQPF values were generated by determining how many of the members exceeded
these thresholds at each grid point. This fraction of the members provided a probability value for the
APCP thresholds. Afterward, a Gaussian spatial smoother with a radius of 24 km was applied to the
specific grid point to limit extreme differences between neighboring grid points [19].

Table 2. Member configurations for the High-Resolution Ensemble Forecast version 2.0 (HREF) and
High-Resolution Rapid Refresh Ensemble (HRRRE) ensembles during the study period, including
initial conditions (ICs), lateral boundary conditions (LBCs), microphysics, and planetary boundary
layer schemes (PBL), grid spacing, and the number of vertical levels.

Member ICs/LBCs Microphysics PBL Grid Spacing Vert. Levels

HREF HRW NSSL NAM/NAM WSM6 MYJ 3.2 km 40
HREF HRW ARW RAP/GFS WSM6 YSU 3.2 km 50
HREF HRW MMB RAP/GFS Ferrier-Aligo MYJ 3.2 km 50

HREF NAM CONUS NEST NAM/NAM Ferrier-Aligo MYJ 3 km 60

HRRRE
9-MEMBERS

GDAS
(with random

permutations added)

Thompson
aerosol-aware MYNN 3 km 51

The HREF version 2 was a time-lagged ensemble built using four models [21], the first two
being variations of the Weather Research and Forecasting (WRF) model: High-Resolution Window
(HRW) National Severe Storms Laboratory model (NSSL) and HRW Advanced Research WRF
model (ARW) [35]. Additionally, two variations of the NOAA Environmental Modeling System’s
Nonhydrostatic Multiscale Model on the B-grid [36], NMMB, were used: the HRW NMMB and the
North American Mesoscale (NAM) Nest forecasting model [37]. In addition to the four members
mentioned above, the HREF additionally used four time-lagged members from the same models that
were initialized 12 h prior to create an ensemble with 8 members. HREF forecasts were generated
twice a day, at 00 and 12 UTC, on a full CONUS domain with a 3 km horizontal grid. The models
used different PBL and microphysics schemes. Both NAM members and the HRW NSSL used
the Mellor–Yamada Janjic PBL scheme [38], while the HRW–ARW used the Yonsei University PBL
scheme [39]. Additionally, the two WRF members used the WRF Single-Moment 6-Class microphysics
scheme [40], while the two NAM members used the Ferrier–Aligo scheme [41]. The HRRRE and HREF
system configurations are shown in Table 2. The rainfall thresholds for which the HREF generated
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probability values were 6.4, 12.7, 25.4, and 50.8 mm. HREF PQPF was created in the same way as that
of the HRRRE except that the Gaussian smoother used a radius of 40 km [21].

To convert from the four rainfall thresholds in the PQPF to rainfall amounts at the probability of
exceedance values of 5%, 10%, 25%, 50%, 75%, 90%, and 95%, a cubic interpolation was performed.
These exceedance values were selected to match the probability of exceedance values used by the
National Weather Service River Forecast Centers for discharge. Both HRRRE and HREF regularly had
predictions of zero probability of occurrence at rainfall amounts equal to or greater than 25.4 mm,
thereby reducing the number of unique data points below the necessary three required to complete the
cubic interpolation. As a result, it was necessary to expand the number of unique probability values to
perform the interpolation. Additionally, it was desired to remove the need to extrapolate beyond the
extremes of the PQPF values, as extrapolation can sometimes result in unrealistically large values.

To remove the need for extrapolation, the following two data points were used. First, we define
the probability of exceedance as follows: at that value of precipitation or above, a precipitation value
of greater than or equal to zero is equated to a probability of exceedance of 100%. As having rainfall
values less than 0 is impossible, this assumption closes the range of possible values for the interpolation
on the low end, representing the lightest rainfall amount. A second additional point was added at the
opposite end of the scale with a probability of exceedance of 0%. This point made use of the maximum
rainfall in the Midwest domain from any ensemble member. A value of 0.25 mm was added to this
value, making it impossible to find this value inside the domain, thereby justifying a probability of
zero for this rainfall amount to close the interpolation of the probability of rainfall exceedance on the
upper end of the dataset. With these two extra points, the cubic interpolation could be performed,
as shown in Figure 2.Water 2020, 12, x FOR PEER REVIEW 6 of 17 
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Figure 2. Example of the data interpolation technique used to transform the Probabilistic Quantitative
Precipitation Forecast (PQPF) values from the ensembles into rainfall amounts for various probabilities
of exceedance, with (a) showing the PQPF values from the High-Resolution Rapid Refresh Ensemble
(HRRRE, blue circles) with the additional boundary values (green triangles) from zero rainfall and the
absolute highest member rainfall amount inside the research domain, and (b) showing rainfall amounts
associated with the probability of exceedance values (red diamonds) used in the study, after running
the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation program.
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To perform the cubic interpolation, the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
program was used. Azizan et al. [42] found when comparing PCHIP and a not-a-knot (SPLINE)
approach to rainfall interpolation, the SPLINE could produce negative rainfall values, unlike the
PCHIP, which stayed positive. Additionally, the computational cost to interpolate with PCHIP was
less than with SPLINE or a Modified Akima Cubic Hermite Interpolation (Makima).

For the grid points where no rainfall was predicted in the models, the unique data points were
the 100% probability of exceedance of greater than or equal to zero rainfall and the 0% probability of
exceedance for the lowest rainfall threshold (6.4 or 12.7 mm). With these grid points, rainfall values of
2.54, 2.29, 1.78, 1.27, 0.76, 0.51, and 0.25 mm were assigned to the 95, 90, 75, 50, 25, 10, and 5 percentiles,
respectively. Although these values are arbitrary, the requirement mentioned earlier that observed
discharge had to exceed the climatological 75% occurrence for cases to be studied resulted in very few
of these dry points being used in the analyses that follow. After precipitation amounts at the different
probability of exceedance values were generated, grid points located within basins or in contact with
the edges of the basins were averaged to create the basin-averaged precipitation needed as input in the
hydrologic model (Figure 3).
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Figure 3. An example of clipping the HRRRE’s probability values for rainfall exceeding 25.4 mm over
the Skunk River on 14 June from 06-12 UTC.

To compare the streamflow forecasts made using the PQPF values to a standard representing
observations, streamflow forecast model runs also were completed using Stage IV data. Stage IV is a
spatially generated quantitative precipitation estimate using both radar and rain gauge measurements.
Stage IV precipitation data are created by the River Forecasting Centers at different time intervals,
including 1, 6, and 12 h [43]. For this project, the six-hour intervals were selected.

2.3. Hydrologic Prediction Model

Ensemble streamflow forecasts were generated using the spatially lumped Sacramento Soil
Moisture Accounting model (SAC-SMA) [44], which is the forecast model used by the NCRFC. Inputs
to the SAC-SMA are basin-averaged precipitation and potential evapotranspiration, and the output
is basin discharge. The SAC-SMA accounts for water storage and flows in the subsurface using
a two-layer soil structure. Each zone has free water storages that account for water drainage by
gravity and tension water storages that account for evaporation and transpiration. Evaporation
and transpiration are calculated based on the potential evapotranspiration for the time step and the
available water in the tension storage. Water inflow to the stream channel is a combination of surface
runoff, flow from the upper soil zone, and flow from the lower soil zones, which are computed as a
function of soil storages, percolation capacities, and precipitation rates and controlled by 13 primary
parameters [45]. Channel inflow is routed using a unit hydrograph to calculate basin discharge.
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The model was applied using the 6-hour time step used by the NCRFC for operations. Basin-specific
model parameters and unit hydrographs were obtained from the NCRFC for each study basin.
The SAC-SMA model states were initialized using a 5-day spin-up period starting from states obtained
from the NCRFC for a date 5 days prior to the forecasts followed by precipitation input up to the
forecast start date. In initial testing, it was found that a short spin-up period of about 4–8 timesteps was
needed for the simulated discharge to reach observed discharges values primarily due to uncertainty
in the states of the routing routine.

2.4. Forecast Evaluation Statistics

To evaluate the performance of the forecasting technique, error (the difference between the
forecasted and observed values), percent difference (PD), and the rank probability score (RPS) were
computed. The PD is the average difference between the observed peak discharge (Qobs) and the
forecasted peak discharge (Qfcst) divided by the observed peak discharge for a set of N forecasts:

PD =
1
N

∑N

n=1

Qobs,n −Qfcst,n

Qobs,n
× 100%. (1)

PD was calculated for each probability of exceedance value and averaged by event and basin.
RPS provides an overall measure error for a set (M) of multi-category probabilistic forecasts [46–49]

and is calculated as:

RPS =
1

M− 1

J∑
j=1

(Fj −Oj)
2 (2)

where J is the number of forecast categories, F is the cumulative distribution of the forecast probability
across the forecast categories, and O is the cumulative distribution of the probability of the observed
event across the forecast categories where the value is either 0 (not observed) or 1 (observed).

The following four flow categories were used based on discharge thresholds defined by the
NCRFC for each basin (as in [29]): (1) flood event, defined as the peak discharge exceeding the minor
flood discharge; (2) action stage, defined as the peak discharge exceeding the action stage discharge
but lower than the minor flood discharge; (3) 50% of the action stage, defined as a the peak discharge
greater than half of the action stage but less than the action stage; and (4) nonevent, defined as the
peak discharge occurring at less than 50% of the action stage. When comparing NCRFC, HRRRE,
and HREF, forecast probabilities for each flow category were calculated using the discharge associated
with the 5%, 50%, and 95% exceedance probabilities, as these are the exceedance probabilities used
by the NCRFC. A linear interpolation was used to find the forecast probability for the four discharge
thresholds. RPS values range from 0 to 1, with 0 indicating a perfect forecast.

To compare the skill of the forecasts created in this study using HRRRE and HREF PQPFs to those
issued operationally, RPSs and relative percentage frequency were also computed for probabilistic
discharge forecasts generated by the NCRFC. Relative percentage frequency is the frequency of
occurrence for a given probability of exceedance. For example, for a reliable forecasting technique, out of
100 rainfall events, it would be expected that the observed rainfall would exceed the 25% probability of
exceedance approximately 25 times, while for the 90% probability of exceedance, this would occur
approximately 90 times. The NCRFC generates its probability of discharge exceedance forecasts
using a 46-member ensemble produced by the Weather Prediction Center (WPC). This ensemble
includes members from the Short-Range Ensemble Forecast (SREF) system (both ARW and NMMB),
GEFS (Global Ensemble Forecast System), and ECMWF (European Center for Medium-Range Weather
Forecasts) ensembles, and the deterministic runs of the GFS, NAM, WRF Hi-res ARW, WRF Hi-Res
NMMB, and ECMWF models [50]. The forecasts also take into account WPC’s own QPF forecast and
the non-time lagged HREF members. WPC creates rainfall forecasts at 9z and 21z, while the NCRFC
generates the probability discharge forecasts at 18z out to 168 h. Thus, NCRFC uses the 9z rainfall
forecasts from WPC to make the probability streamflow forecasts. In total, 79 forecasts out of the 109
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forecasts generated from the HRRRE and HREF forecasts across seven shared basins were used to
compare the NCRFC forecasts to those generated with our PQPF technique.

Although a purely apples-to-apples comparison of our forecasts to operational forecasts was not
possible because the forecasts were made at different times, to have the most appropriate comparison
possible, the NCRFC probability forecasts closest in time to the HRRRE and HREF run times were used.
For example, if 00 UTC HRRRE or HREF output was used, the 18 UTC NCRFC probability forecast
generated six hours beforehand was selected, and this occurred on 23 occasions. If 12 UTC HRRRE or
HREF output were used, archived radar imagery from the University Corporation for Atmospheric
Research [51] was examined to see if any significant rainfall occurred during the 12–18 UTC period.
If there was no rainfall in the basin during this period, the NCRFC probability forecasts generated at
18 UTC (six hours after the HRRRE and HREF initializations) were selected, which happened in 41 of
the HRRRE and HREF events initialized at 12 UTC. If rainfall was present in the basin before 18 UTC,
the previous 18 UTC forecast (18 h prior) was used, which happened 15 times. Thus, this approach
resulted in selecting NCRFC forecasts issued before the HRRRE and HREF forecasts almost half the
time, with those forecasts issued after the HRRRE and HREF the other half of the time, so any error
related to longer lead times for one forecast versus another should be relatively small. Additional
factors may influence differences in forecast skill such as the NCRFC forecasts using the much larger
WPC forecast ensemble of 46 members compared to HRRRE’s 9 and HREF’s 8 members. In the
results that follow, discharge forecasts based on the different probability of exceedance values derived
from HRRRE and HREF PQPF or issued by the NCRFC will be identified using the abbreviation of
HRRRE/HREF/NCRFC-__% where the percentage value refers to the exceedance value.

3. Results

A comparison of the discharges predicted by the different exceedance probabilities with observed
discharges averaged over the full sample of events can be seen in Table 3. As would be expected,
the percent differences were positive for the low probability of exceedance forecasts and became
negative for the high probability forecasts. Since the switch from positive to negative percent differences
happened between the 75% and 90% probability values, and not closer to 50% as might be expected,
a positive error in the streamflow forecasts is suggested. Both ensembles produced basin-average
rainfall amounts that exceed 225 mm for the 5% exceedance probability forecast. These values are
greater than the record 24-h maximum rainfall totals for most places in this region, and thus, they are
especially unrealistic as basin averages. The rainfall amounts and percent differences in the discharge
forecasts were higher for HREF-based forecasts than for HRRRE-based forecasts. Rainfall inputs from
the HRRRE and HREF were more similar for high and low exceedances probabilities than the values
in the middle (the biggest differences were at the 25% probability value), resulting in similar percent
differences in the discharge forecasts (Table 3). For the low rainfall amounts associated with a high
probability of exceedances, a large portion of that rain would go into soil storage in the SAC-SMA
model, limiting the amount of water available to produce discharge. At the low exceedance values,
the extremely high amounts of rainfall (in both precipitation forecasts) would result in much of
the rainfall going to runoff and producing similar high discharges in the SAC-SMA, despite some
differences in the basin-average precipitation inputs.

HRRRE-based forecasts had an average RPS of 0.29 (standard deviation, 0.06), which was better
than the HREF-based forecasts with an average RPS of 0.36 (standard deviation, 0.09) (Table 4).
This difference in RPSs is due to HREF producing higher rainfall amounts compared to HRRRE, which
results in forecasts that more seriously over-predict discharge in the higher flow categories. However,
when compared to the operational NCRFC forecasts, the HRRRE-based and HREF-based streamflow
forecasts had better RPSs; the average RPS for the NCRFC was 0.59 with a standard deviation of
0.07 (Table 4). The poorer RPS for the NCRFC forecasts was due to consistent underprediction of
the magnitude of peak discharge for the three different probability values used in these forecasts.
Since the NCRFC had a smaller spread in predicted discharge magnitude, the percentage of cases
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for which the observed discharge remained below that of any of the streamflow forecasts was lower,
60% of events, compared to HRRRE and HREF forecasts, which both were able to capture 100% of the
discharge events.

Table 3. Average error in m3 s−1 and percent difference (PD) for the probabilistic streamflow predictions
and basin-averaged rainfall amounts for 36 h forecasts in mm for all 11 basins and 109 events studied
for each probability of exceedance.

Probability of Exceedance 5% 10% 25% 50% 75% 90% 95%

Error
HRRRE-based 818 566 283 95.7 9.46 −20.9 −28.1
HREF-based 810 666 422 191 53.5 −2.83 −17.3

PD
HRRRE-based 3330% 2150% 1000% 321% 47.6% −26.5% −43.5%
HREF-based 3470% 2720% 1500% 619% 175% 15.8% −20.7%

Averaged
Rainfall

HRRRE 226 176 119 73.9 40.1 21.8 14.0
HREF 249 215 159 103 61.2 34.8 23.1

Table 4. Averages and standard deviations for rank probability scores (RPSs) for HRRRE, HREF,
and NCRFC ensemble streamflow predictions for the seven shared (all 11) basins.

Average RPS Standard Deviation RPS

HRRRE-based 0.29 (0.28) 0.06 (0.10)
HREF-based 0.36 (0.34) 0.09 (0.12)

NCRFC 0.59 0.07

For the HRRRE-based and HREF-based forecasts, RPSs for individual basins ranged from 0.16
to 0.45, except for the Root River at Pilot Mound, MN (RPMM5), which had values of 0.49 and 0.61
(Figure 4). Forecasts for this basin are likely less skillful because RPMM5 is the largest basin studied,
resulting in especially large rainfall inputs to the SAC-SMA when the heavy amounts associated with
low probabilities of exceedance are applied to all grid points for all time periods. This would make
this basin more likely to experience unrealistically large discharges compared to others included in the
study and indicates that the PQPF application presented here is likely not suitable to larger watersheds.Water 2020, 12, x FOR PEER REVIEW 10 of 17 
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The streamflow forecast that most accurately captured the correct relative frequency of the
observed peak discharge was HRRRE-95% followed just behind by NCRFC-95% (Figure 5). Forecasts
NCRFC-50% and NCRFC-5% greatly underpredicted the frequency of peak discharge amounts, whereas
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the HREF and HRRRE forecasts overpredicted at those probability levels. Overall, HRRRE did a better
job at predicting the frequency of occurrences for the different probability values, having only a slight
overprediction in HRRRE-95% and HRRRE-90% that worsened from HRRRE-75% through HRRRE-5%,
where there were zero observed occurrences (Figure 5). HREF had poorer results with overprediction,
with an observed frequency of exceedance around 77% for HREF-95% and observed frequencies of
zero at HREF-25%.
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To provide some additional insight into the performance of the streamflow forecasting technique,
a flash flood event that occurred in the city of Ames, Iowa, on 14 June 2018 is described in more
detail. Ames is located at the junction of the Squaw Creek and Skunk River (Figure 3). On 13 June,
both streams were at or below the median discharge of ≈ 4.2 m3 s−1. In the early morning hours
(07 UTC) of 14 June, a line of multicellular convection in connection with a cold front moved over
the watersheds and produced heavy rain for the next twelve hours. According to the Iowa Mesonet
(https://mesonet.agron.iastate.edu/), the system deposited 107 mm of rainfall with a peak rainfall rate of
40.9 mm h−1. Other gauges monitored by the Community Collaborative Rain and Hail Snow Network
(COCORAHS) volunteers in the area had total measured accumulations as large as 178 mm. Stage IV
data showed that the heaviest total rainfall occurred over the Squaw Creek basin, with the majority of
the 6-h accumulation occurring between forecast hours 12 and 18, or 12–18 UTC. The observed peak
discharge for the Skunk River was 89.2 m3 s−1 (action stage is 122 m3 s−1), while Squaw Creek’s peak
discharge was 120 m3 s−1 (action stage is 108 m3 s−1).

HRRRE and HREF output from the runs at 00 UTC 14 June was used to forecast the discharge for
this event. Both the HRRRE and HREF PQPF values suggested that rainfall was going to occur in the
region of the Skunk and Squaw basins (Figure 6). HRRRE’s probability forecasts had a northward
shift compared to the observed STAGE IV precipitation, while HREF’s forecasts correctly focused the
heaviest rain over the basins.

For the Skunk River, the HRRRE and HREF-based forecasts produced hydrographs that were
similar to the observed in both in shape and timing (Figure 7). Note that an additional run of the
SAC-SMA was completed using STAGE IV measured precipitation data to indicate how the forecast
model would perform with QPE. The probability of exceedance value associated with a discharge most
similar to the observed discharge was 50%, which resulted in a peak slightly lower than the observed
peak discharge (Table 5). The NCRFC forecast largely underpredicted the event on the Skunk River;
the discharge associated with only a 5% probability of exceedance was small, at 6.4 m3 s−1, which was
almost 14 times smaller than that observed (Table 6).

https://mesonet.agron.iastate.edu/
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Figure 6. PQPF for the period 12–18 UTC on 14 June from the HRRRE (a–c) and HREF (e–g) initialized
at 00 UTC 14 June, and Stage IV rainfall accumulations (12–18 UTC in d, 00 UTC 14 June–12 UTC
15 June in g) over the central Iowa area. The black outlines represent the basins of the Skunk River
(right) and Squaw Creek (left). The six panels on the left show PQPF at three different thresholds
(left 12.7 mm, middle 25.4 mm, and right 50.8 mm). The dashed red line represents the Stage IV
accumulation exceeding that rainfall threshold.Water 2020, 12, x FOR PEER REVIEW 12 of 17 
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Figure 7. Hydrographs from all exceedance levels in the (a) HRRRE-based and (b) HREF-based
forecasts for the 14 June 2018 event for Skunk River, with the NCRFC forecasts shown in dashed lines,
and the observed discharge from the USGS gauge (solid blue line with closed circles). The gray box in
the background signifies the time steps where PQPF was used. The y-axis displays the forecasted and
observed discharges in a logarithmic scale, while the x-axis shows the date and time.
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Table 5. Error (m3 s−1) for Skunk River and Squaw Creek ensemble streamflow predictions for different
probability of exceedance values for the 14 June event.

95% 90% 75% 50% 25% 10% 5%

Skunk
River

HRRRE-based −185 −185 −171 −137 94.3 371 615
HREF-based −179 −167 −150 −64.6 220 411 507

Squaw
Creek

HRRRE-based −86.7 −85.2 −66.0 −19.5 157 402 620
HREF-based −86.4 −77.9 −54.7 −9.60 163 430 561

Table 6. Percent of discharge that needed to be removed from the forecasted probabilities of exceedance
to calibrate them so that the observed frequency of discharge agreed with the probability of exceedance
values for the HRRRE-based and HREF-based probabilistic streamflow forecasts.

Probability of Exceedance 5% 10% 25% 50% 75% 90% 95%

HRRRE-based 60% 65% 64% 62% 45% 28% 22%
HREF-based 74% 80% 79% 79% 72% 54% 48%

The forecasted hydrographs for the Squaw Creek were similar to the observed in terms of shape
and timing (Figure 8). HRRRE-25% and HREF-50% were the discharge forecasts closest to the observed
peak for the two precipitation forecasts tested (Table 5). The NCRFC-5% exceedance discharge forecast
was again small: only 10.3 m3 s−1 (Table 6). Although overall, the forecasts overpredicted peak
discharge in this example case, the use of ensemble PQPF to generate discharge forecasts associated
with a flash flood before rainfall began would have provided a more skillful forecast than what was
available from the NCRFC approach.Water 2020, 12, x FOR PEER REVIEW 13 of 17 
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Given that the frequencies of the observed discharges were poorly matched to the forecast
exceedance probabilities, post-processing of the forecasts would likely be one way to improve them.
As one preliminary test, a simple calibration was performed iteratively removing a fraction of the
forecasted discharge from the discharge predicted at each exceedance probability threshold until the
forecasted probabilities of exceedance agreed with the observed frequency of discharge. All 109 cases
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were used to determine the appropriate average adjustment for each exceedance probability discharge.
The size of the reduction in water amount varied greatly between probabilities of exceedance levels
and the ensemble being considered. In many cases, more than 50% of the water had to be removed.
Using this adjustment, the average RPS for the calibrated HREF-based forecasts improved by 0.1, while
HRRRE-based scores improved by a smaller amount of 0.02. Another way to calibrate such forecasts
would be to adjust the probability of exceedance so that it matched the observed frequency. Using just
the 79 events for which the forecasts had been compared to observed frequencies in Figure 5, a test was
performed to determine the impact on the RPSs when the exceedance probabilities were adjusted to
match the observed frequencies. This adjustment substantially lowered the discharges associated with
the 5% and 50% exceedances, with less adjustment needed for the 95% value. With this test applied to
all 109 cases, the average RPS of the adjusted HREF-based forecasts improved by 0.14, which was a
nearly 50% improvement, while HRRRE-based scores improved by over 20%, which was a decrease
of 0.05. Our sample of cases was not large enough to allow us to split it into a true training set and
a separate test set for both of the calibration tests, although the second test did include 30 events
independent of those used to adjust the exceedance probabilities.

Techniques such as the Schaake Shuffle [52], which reorders the ensemble output to recover
variability in the forcing variables, thereby eliminating the uniform precipitation forcing in time and
space, might also lead to improvement. A limiting factor in completing this technique is that it requires
the user to have a sizeable sample of historical data to force into the correct order based on climatology.
Another post-processing technique to reduce errors in probabilistic streamflow forecasts is the “logistic
regression” discussed in [53]. Crochemore et al. [54] showed that bias correcting the precipitation
forecasts prior to input into the hydrologic model can lead to improved streamflow forecast skill as
measured with the continuous ranked probability skill score. However, they also state that improving
the reliability of precipitation forecasts does not always improve the reliability of the streamflow
forecasts, and watersheds that had the most “room for improvement” benefitted the most from the
bias correction [54]. The testing of more complex pre- and post-processing methods was beyond the
scope of the present work but should be examined in future research.

4. Discussion

This study examined a technique that derived rainfall time series for different probabilities of
exceedance from ensemble PQPF and used it as input to the SAC-SMA hydrologic model to generate
ensemble streamflow forecasts. Two different convection-allowing ensembles, HRRRE and HREF,
were tested for 109 events across 11 small-scale basins throughout the Upper Midwest. A variety of
different techniques were used to analyze forecasts of peak discharge, and comparisons were made
with probabilistic streamflow forecasts generated by the NCRFC.

The HRRRE-based forecasts had the best ability to predict streamflow as indicated by the lowest
average RPS of 0.32, and the best agreement between the predicted exceedance probabilities and the
frequency that observed discharges exceeded these values. HRRRE likely performed better than HREF
because it had lower predicted precipitation amounts for all of the probability of exceedance values
examined, which were more similar to the observed rainfall. For HREF-based forecasts, the higher
predicted precipitation amounts led to discharge forecasts that, on average, overpredicted the peak
discharge. Finally, the NCRFC forecasts frequently underpredicted observed discharge, resulting in
the worst RPSs and an increase in the number of times the observed discharges exceeded forecasted
discharges associated with the exceedance probabilities. A case study focused on the 14 June Ames
flood event suggests that the forecasting technique presented here may provide improved information
compared to current forecasting methods to give emergency personnel and the public early information
about the possibility of streamflow rises.

The discharge values associated with low probability of exceedance forecasts for both the HRRRE-
and HREF-based forecasts were unreasonably large, with no observations having discharges as high as
those predicted. The high rainfall amounts associated with low probabilities of exceedance are applied
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at all grid points within a basin, resulting in unreasonably high discharge forecasts. This problem was
especially prevalent for the Root River, the largest basin examined, indicating that the overprediction
worsens with basin size, as would be expected due to the application of the same exceedance amounts
at all grid points in a basin.

This problem could be reduced in the future by calibrating the probability of exceedance values,
such as by adjusting them to match observed frequencies during a training period, or by decreasing
rainfall amounts associated with given probabilities of exceedance so that the magnitude of the
predicted discharges would be reduced, or by calibration of the streamflow forecasts related to the
exceedance values themselves. Two simple preliminary tests applied to the streamflow forecasts
resulted in improvements in skill for the HREF-based forecast, with smaller improvements for the
HRRRE-based one. Another refinement that might improve this technique would be to use an analysis
of the spatial distribution of QPE from multiple warm-season rainfall events to determine the typical
areal pattern of precipitation. This analysis of the spatial distribution would require the ability to
distinguish between different types of convective systems occurring in the model output. Then,
the distribution pattern could be used to adjust the rainfall amounts associated with PQPF values
over the basins. Combining these techniques would allow the use of multiple different exceedance
values in the spatial averaging, instead of a single blanket exceedance probability. This would allow
more accurate precipitation forcing to be fed into the hydrologic model during each timestep and take
advantage of the presumed value added by the analysis that enters into the PQPF that is absent from
the raw QPF members.
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