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Abstract: The classical approach to flood frequency analysis (FFA) may result in significant jumps in
the estimates of upper quantiles along with the lengthening series of measurements. Our proposal
is a multi-model approach, also called the aggregation technique, which has turned out to be an
effective method for the modeling of maximum flows, in large part eliminating the disadvantages of
traditional methods. In this article, we present a probability mixture model relying on the aggregation
the probabilities of non-exceedance of a constant flow value from the candidate distributions;
and we compare it with the previously presented model of quantile mixture, which consists in
aggregating the quantiles of the same order from individual models. Here, we defined an asymptotic
standard error of design quantiles for both statistical models in two versions: without the bias of
quantiles from candidate distributions with respect to aggregated quantiles and with taking it into
account. The simulation experiment indicates that the latter version is more accurate and allows
for reducing the quantile bias with respect to the unknown population quantile. For the case study,
the 0.99 quantiles are determined for both variants of aggregation along with the assessment of its
accuracy. The differences between the two proposed aggregation methods are discussed.

Keywords: flood; maximum flow; statistical model; design quantile; models aggregation; standard
error; bias

1. Introduction

The extreme hydrological phenomena, such as heavy rainfalls, floods, droughts, and storm surges,
have been within the interest of scientists for decades. The floods, as the one of natural hazards causing
the greatest threat to the life and property of the population and the national economy, are investigated
especially now in the days of global climate change [1–5]. Estimating the probable maximum flow
in subsequent years is an issue of flood frequency analysis (FFA). According to the principles of
hydrological practice, a maximum flow is the greatest instantaneous peak flow of floods in a period
of interest, e.g., a hydrological year, season, etc. Maximum flows are determined by the National
Hydrological Service by direct measurement of the flow rate in hydrometric profiles on the river.
When it is not possible to measure the flow during the culmination (due to dangerous conditions for
the measurement teams or too fast hydrological response of the catchment preventing teams from
arriving on time), the peak flow is then estimated on the basis of the maximum water level and the
current flow rate curve.

In the classical approach to FFA, the procedure involves matching the probability distribution to a
series of maximum annual or seasonal flow data and determining for this distribution a quantile of a
given (usually high) order. The most commonly used is a quantile of the non-exceedance probability
p = 0.99 (x0.99) , which represents the probable maximum flow that, in stationary conditions, is exceeded
on average once in a hundred years [6,7]. The upper quantiles of the distribution of annual maximum
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flows, called flood quantiles, are design and control characteristics of hydrotechnical structures exposed
to high waters or protecting against their negative consequences. Moreover, the upper quantiles are
used to determine flood zones and they are the basis for developing strategies to reduce flood risk
and loses.

When the annual maxima series is a mixture of winter (snowmelt) and summer (rainfall) flows,
a seasonal approach is used [8–11] that involves the selection of distributions for individual seasons
and estimation of their parameters separately. Then, the distribution of annual maxima is determined
by means of the selected seasonal distributions. In the case of assuming the independence of the
seasonal maximum flows, an annual distribution takes the form of the product model [12–14]. Polish
hydrological conditions allow for assuming the independence of seasonal peak flows [8,9,15]. However,
in the case of dependent seasonal maxima, the distribution of the annual maximum flows can be
modeled, for example, using the copula function [15,16]. The seasonal approach is recommended
not only because of the genetic heterogeneity of the series of annual maxima for rivers with a mixed
thaw-rain flood regime, but an important advantage is that the seasonal approach ensures a logical
relationship between seasonal and annual quantiles. The annual quantiles are not smaller than the
seasonal quantiles of the same order [17,18].

The true probability distribution of seasonal or annual peak flows is not known; therefore,
the choice of the appropriate model distribution and the method of estimating its parameters have
always been and still remain the most important decisions in the FFA. In practice, one of the two actions
is used: either the adoption of one established probability distribution for all hydrological stations in a
given country or region [19–21], in particular in Poland [22,23], or the second possible action is the
selection of the best distribution from the set of candidate distributions [12,24–26] according to the
selected discrimination criterion [27,28]. Especially the latter approach may result in significant jumps in
the values of the upper quantiles of the distribution along with the lengthening series of measurements.
This is the result of changing the parameter values of the current distribution with the incoming new
data value, or the result of changing the distribution type, usually from light-tailed to heavy-tailed
distribution and the opposite. A classification of distributions commonly used in hydrology with
respect to their tail behavior is presented by e.g., Ouarda et al. [29] or El Adlouni et al. [30].

The multi-model approach to FFA proposed by the authors in Bogdanowicz [31] and
Markiewicz et al. [32,33], also called aggregation, has turned out to be an effective method of describing
the probability distribution of seasonal maximum flows, largely eliminating the disadvantages of
traditional methods. The quantile estimates, and thus design values, are much more stable with a
growing length of data series than in the case of the classical selection of the best fitted distribution.
Markiewicz et al. [33] investigated the problem of the objective selection of models for aggregation; this
is of particular importance in the range where the classical FFA reveals a high variability in quantile
estimates over the time.

The aim of the study is to extend and improve the aggregation approach proposed so far by the
authors by:

1. adding a new way of aggregation of distributions—the first variant of aggregation, presented
by the authors in [31–33], is based on the averaging the values of quantiles of the same order
from candidate distributions—here referred to as the mean magnitude (MM) variant. In this
paper, it is compared with a new variant of aggregation, named the mean frequency (MF) and
based on the averaging over the non-exceedance probabilities (p) of the determined flow value
for candidate distributions;

2. introducing the analysis of the accuracy of aggregated quantile for both ways of aggregation—so
far the analysis of the accuracy of the aggregated quantiles has been a missing element of the
aggregation procedure. Here, the analytical form of the asymptotic standard error of aggregated
quantile is derived for both aggregation variants. Apart from the classic standard error, its version
with the bias of quantiles from candidate distributions relative to the aggregate quantile is
also presented.
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The paper is organized as follows. After introducing the topic, consequences of the best distribution
selection procedure on design in the aspect of growing series of observations are presented in Section 2,
i.e., they are significant shifts (visibly unrealistic) in the values of the design quantiles. To mitigate
this problem, the authors propose two mixture models, i.e., aggregation of distributions by means of
quantiles and by probabilities, defining them in the Methods section. Then, the accuracy of 0.99 quantile
in both mixture models, expressed as asymptotic standard error of its estimate, is developed and
examined in Section 4. The next section yields the comparison of the properties of both ways of
aggregation for the selected case study. Summary and conclusions are given in the last section.

All calculations in this paper were made with the use of Fortran software developed by the authors,
repeatedly tested and routinely used in many of our research and study works. The calculations were
supported and verified by Excel and Mathematica software.

2. Case Study—Consequences of the Classical Approach to FFA

A classical approach to FFA consists of choosing the best probability distribution for describing the
data series, in the sense of discrimination criteria, from among hypothetical distributions commonly
used for statistical modeling of hydrological extremes. Due to the lack of the knowledge on the true
probabilistic model of maximum flows and the limited length of hydrological series, the discussion on
the correct choice of the statistical model of maximum flows is unjustified. The criteria of matching a
model to empirical data may indicate the best model among the extreme value distributions, but their
discrimination power remains low. Moreover, when the length of the series increases (even only
by a year), the best model may differ from the one previously selected. Since the best distributions
selected in subsequent years of assessment may have different tail thicknesses [30], the estimates of
design quantiles can vary significantly from year to year. This problem occurs to a greater or lesser
extent for most of the maximum flow data series tested. Here, it is illustrated by the example of the
summer maximum flows for the Koszyce Wielkie gauging station on the Biała Tarnowska river, whose
hydrological regime is still natural. Biała Tarnowska is located in the south of Poland with the springs
on the slopes of Lackowa Mountain between Krynica-Zdrój and Wysowa —right next to the border
with Slovakia. Being 105 km long, Biała Tarnowska is the largest right-bank tributary of the Dunajec
river (the tributary of the Vistula river) after the Poprad. The basin area of the Biała Tarnowska is
983 km2, most of which has a typical mountain character. The slope in the upper reaches is 8.6%, in the
lower—about 0.9%. The annual sum of precipitation ranges from about 1000 mm in the upper part of
the basin to about 700 in the lower part. The river is characterized by large water level fluctuations (up
to 8 m downstream), and sudden summer floods. Rainfall floods in summer (with mean peak flow
value of 240 m3/s) dominate winter snowmelt floods (mean peak flow 121 m3/s).

The location of the Koszyce Wielkie station and the observed summer maximum flows from
1951–2016 are shown in Figure 1.

Figure 1. Data of the Koszyce Wielkie gauging station on the Biała Tarnowska river: (a) location in
Poland; (b) observed summer maximum flows.
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The data consider the period 1951–2016. The calculations have been carried out by gradually
lengthening the initial sample 1951–1975 (25 elements) by one year until 2016, so the maximum length
of the series is 66 years. For each sample length, the parameters of all five distributions (see Table 1)
have been estimated using the maximum likelihood method (MLM) [34]; then, each distribution has
been tested by χ2 and Kołmogorov–Smirnov goodness of fit tests [35]. Except for only a few cases,
all the distributions met both goodness of fit tests for each sample length. The distribution that did
not meet the test was removed from current calculation. Finally, the Akaike information criterion
(AIC) [36] was used to select the best fitted model among candidates. A variability of the selection of
the best distribution along with the related 0.99 quantile for summer maximum flow is depicted in
Figure 2 (in black).

Table 1. Cumulative distribution functions used in the paper.

Distribution Cumulative Distribution Function (CDF)

Gamma (Ga) F(x) =
γ[k, (x− ε)α]

Γ(k)

Weibull (We) F(x) = 1− exp
[
−

(x− ε
α

)k
]

Inverse Gaussian (IG) F(x) =
1
2

[
2− er f c

(
−α+ (x− ε)k/α

√
x− ε

)
+ exp(4k)er f c

(
α+ (x− ε)k/α
√

x− ε

)]
Generalized exponential (GE) F(x) = [1− exp(−αx)]k

Log-normal (LN) F(x) =
1
2

er f c
(
−

In(x) − α

k
√

2

)
γ[a, b] =

∫ b
0 za−1 exp(−z)dz is the lower incomplete beta function [37] (p. 762); er f c(z) = 2

√
π

∫
∞

z exp
(
−t2

)
dt is the

complementary error function [37] (p. 766).

Figure 2. The quantiles x0.99 of the best (according to the AIC criterion) distribution of the
maximum summer flows in Koszyce Wielkie station along with an increasing number of observation
series and quantiles aggregated by quantile magnitude method (MM) from candidate distributions.
Key to the distributions: Ga—Gamma, We—Weibull, GE—Generalized exponential, IG—Inverse
Gaussian, LN—Log-normal.

Figure 2 shows the quantile sudden rises in the period 1990–2000 associated with the selection of
the best distribution that has a heavier tail (IG, LN) than the counter-candidates (Ga, We, GE) [30].
The value of the design quantile nearly doubled. This situation is particularly inconvenient for
hydrological information users (e.g., designers, engineers, stakeholders), who expect from hydrologists
not only raw statistical analysis results, but also their evaluation and possible correction. Using the
aggregation method presented in our previous papers, the 0.99 quantile has been determined for each
year of assessment based on a set of five candidate distributions (red line in Figure 2). Note that
the aggregate values of design quantile have relatively small fluctuations that are acceptable from a
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practical point of view. Apart from the two visible peaks, the aggregate quantile values are higher
than the quantile values estimated on the basis of the best-matching distribution; this is the result
of including light and heavier tail distributions in the analysis. When determining design quantiles,
both by selection of the best distribution and by aggregating quantiles, it is particularly important to
correctly define the set of candidate distributions (which should meet the goodness of fit tests at first).
A set of heavy tailed distributions will result in higher estimates of upper quantiles than in the case
of light tailed distributions, equally well matched to the data in the main probability mass for both
sets of distributions. Both extremes are undesirable from the point of view of practitioners, engineers.
Overstated estimates of design values increase the costs of hydrotechnical investments, and lowered
estimates increase the risk of flooding and other damage with the occurrence of large waters.

3. Methods

3.1. Probability Distributions for Modeling of Maximum Flows

For flood frequency modeling, the probability distributions with no upper bound of domain
and non-negative skewness are usually used. In this paper, five distributions are investigated:
gamma (Ga), Weibull (We), inverse Gaussian (IG), generalized exponential (GE), and log-normal (LN).
Their cumulative distribution functions (CDF) are presented in Table 1, where: ε ≥ 0 is a location
parameter, α > 0 is a scale parameter, k > 0 is a shape parameter, and random variable x ≥ ε.

The Ga, We, and LN distributions are commonly used in the FFA, while the IG and GE distributions
have been introduced to flood frequency modeling of Polish data by Strupczewski et al. [38] and
Markiewicz et al. [32], respectively. As investigated in Markiewicz et al. [32,33], the latter two
distributions with the location parameter equal to zero are suitable for modeling of maximum flows
for Polish rivers.

3.2. Two Aggregation Schemes

The aggregation of distributions can be done in two ways:

1. the aggregation by a mixture of quantile values of the same order obtained from candidate
distributions (MM—Mean magnitude), which has been presented in our previous papers [31–33].

2. the aggregation by a mixture of probability from candidate distributions obtained for fixed
quantile value (MF—Mean frequency), which is our new and original proposal.

The schematic illustration of two aggregation variants is shown in Figure 3 for two distributions
and probability of non-exceedance p = 0.99. The aggregation procedure can be easily extended to any
number of CDFs.

Figure 3. Two schemes of aggregating distributions: (a) aggregation of quantiles (MM—mean
magnitude); (b) aggregation of probabilities of non-exceedance (MF—mean frequency).
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3.3. Aggregation by Quantile Mixture—Mean Magnitude (MM)

Since this variant of aggregation has been presented in detail in our previous papers and also used
for non-stationary flood analysis by Debele et al. [39], here only the basic principles of MM aggregation
are briefly recalled.

The idea of distributions aggregation assumes that the value of the upper (design) quantile
obtained in this way will be less sensitive to the error of the distribution selection, which is a key
decision in the analysis of the frequency of floods. The aggregated quantile of the order p

(
xp

)
is shown

schematically in Figure 3a and defined as a weighted average of the form:

xp =
m∑

i=1

wi·
(
x̂p

)
i

(1)

where
(
x̂p

)
i
is the quantile calculated on the basis of i-th from among m considered distributions, and wi

is the weight assigned to a subsequent distribution. The weights are determined on the basis of the
AICi criterion value as:

wi =
exp

(
−

1
2δi

)
∑m

k=1 exp
(
−

1
2δk

) (2)

where:
δi = AICi −min(AIC1, . . . , AICm), i = 1, . . . , m (3)

are the differences between the AIC criterion value for a given model and the smallest value in the
whole set, which indicates the best model.

The weights wi for models with the same number of parameters are expressed by the
likelihood function:

wi =
Li

max∑m
k=1 Lk

max (4)

and, like in Equation (2), they can be interpreted as the probability that the data are derived from the i-th
of the m distributions considered. If we assume a priori that equally probable candidate distributions
{Mi, i = 1, . . . , m} with equal number of parameters form a population of distributions M, then the
reliability (probability) of the Mi model conditioned by observed flow series

{
x j, j = 1, . . . , n

}
(data)

can be specified as:

P(Mi|data) =
P(data|Mi)

P(data|M)
=

P(data|Mi)∑m
k=1 P(data|Mk)

=
Li

max (dx)n∑m
k=1 Lk

max (dx)n =
Li

max∑m
k=1 Lk

max = wi (5)

This conclusion results directly from the definition of probability and is a special case of the
Bayesian model averaging (BMA) [40,41].

3.4. Aggregation by Probability Mixture—Mean Frequency (MF)

To the best of our knowledge, so far there has been no proposal in the literature to aggregate
distributions by averaging probabilities of non-exceedance using the weights defined by Equation (5).
However, there is literature on probability mixtures models where the weights are assessed by
proportion of elements coming from different populations or estimated as additional parameters in
estimating procedure, e.g., [42].

Aggregation of candidate distributions according to the probability of non-exceedance, shown
schematically in Figure 3b, can be defined by a formula similar to Equation (1) in the MM variant, namely:

F
(
xp

)
=

∑m

i=1
wiF̂i

(
xp

)
(6)
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where F is the cumulative distribution function of the aggregated distribution, F̂i are distribution
functions of the candidates, and the weights wi are determined on the basis of the AIC value, as in the
MM variant. Note that F

(
xp

)
= p, but F̂i

(
xp

)
, p as presented in Figure 3b.

Equation (6) for two distributions takes the form:

F
(
xp

)
= w1F̂1

(
xp

)
+ w2F̂2

(
xp

)
(7)

Therefore, the density function for the aggregated distribution F is determined by Equation (8):

f
(
xp

)
= w1 f1

(
xp

)
+ w2 f2

(
xp

)
(8)

where f1 and f2 are the probability density functions of the distributions that are averaged. Similar to
the averaging of quantiles, the averaging of probabilities is also a special case of the Bayesian model
averaging BMA.

4. Accuracy of Aggregated Quantile

4.1. Analytical vs. Numerical Form of Standard Error

The assessment of the accuracy of the design quantile estimates is an essential part of the estimation
procedure, which was missing in our previous studies on the MM aggregation method.

To determine the accuracy of quantile estimate, two measures are used: the standard error (SE),
which results from the randomness of the sample based on which we make the estimation, and the
systematic error (B—bias), which results from the approximation the unknown population distribution
by assumed distribution. The general formulas for SE and B errors of quantile estimate x̂p are given by
Equations (9) and (10), respectively:

SE
(
x̂p

)
=

√
var

(
x̂p

)
=

√
E
[
x̂p − E

(
x̂p

)2
]

(9)

B
(
x̂p

)
= E

[
x̂p − xp

]
(10)

Both types of error are contained in the mean square error (MSE) or in the root of the mean square
error (RMSE):

RMSE
(
x̂p

)
=

√
SE2

(
x̂p

)
+ B2

(
x̂p

)
(11)

The value of true quantile is obviously unknown and in hydrological practice of the FFA the bias
error is not determined. If the distribution used is accepted by goodness of fit tests, we expect that the
bias error of the design quantiles, resulting from the incorrect selection of the statistical model, will be
small in comparison with the accuracy of the maximum flow data, for example, and therefore the bias
value will be irrelevant. Nevertheless, in the literature, there are papers concerning the simulation
studies on the accuracy of the estimates of large quantiles under the assumption of true and then false
hypothetical distribution with applying various estimation methods [27,43–45]. It has been shown that,
in the case of wrong distribution assumption, the MLM method gives the largest bias of the estimates
of high quantiles among all estimation methods, and the bias generally increases with increasing
sample size.

Nowadays, due to the increasing possibilities of computational techniques and development of
statistical software, to calculate the standard error, the Monte Carlo simulation methods, bootstrap
techniques are used, or the so-called likelihood function profile method when the MLM estimation
method is applied. All these methods are intensive computationally and give, in fact, reliable assessment
of quantile estimation error, but their results refer only to the analyzed specific cases. Due to the
possibility of comparing the effectiveness of various estimation methods and for the simplicity of
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calculations, the analytical form of assessing the asymptotic standard error is of greater value. Hence,
the analytical formula for the SE of p-order quantile is derived here for both aggregation variants.

4.2. Asymptotic Standard Error of Quantiles from the MM Method

The squared bias of the p-order quantile obtained by the MM aggregation method
(
xp

)
with

respect to a real, unknown value from the population
(
xp

)
can be expressed by a formula:

(
xp − xp

)2
=

∑m

i=1
wi

((
x̂p

)
i
− xp

)2
−

∑m

i=1
wi

((
x̂p

)
i
− xp

)2
(12)

The first term of the expression on the right side of Equation (12) is the square deviation of
quantiles estimated by the models included in the analysis, and the second is a measure of the diversity
of quantiles of aggregated models. From Equation (12), it follows directly that the greater the diversity
of models, the smaller the bias in assessing the aggregate model. Of course, as the variety of models
increases, the value of the first component also increases. When choosing models, it is necessary to
maintain the right proportions between model diversity and their accuracy [31,33,46].

To derive the analytical formula for the asymptotic standard error of the aggregated quantile from
the MM method, let us assume that xp is an aggregate quantile based on two candidate distributions
1 and 2, and their quantile estimates of the p-order are

(
x̂p

)
1

and
(
x̂p

)
2
, respectively. According to

Equation (1), there is an equality:
xp = w1·

(
x̂p

)
1
+ w2·

(
x̂p

)
2

(13)

Since xp,
(
x̂p

)
1
, and

(
x̂p

)
2

are random variables, the variance of the quantile var
(
xp

)
can be

determined:

var(xp) = var
(
w1·

(
x̂p

)
1
+ w2·

(
x̂p

)
2

)
= w2

1·var
((

x̂p
)
1

)
+ w2

2·var
((

x̂p
)
2

)
+ 2·w1·w2·cov

((
x̂p

)
1
,
(
x̂p

)
2

)
= w2

1·var
((

x̂p
)
1

)
+ w2

2·var
((

x̂p
)
2

)
+ 2·w1·w2·p

√
var

((
x̂p

)
1

)√
var

((
x̂p

)
2

) (14)

As the quantile estimates
(
x̂p

)
1

and
(
x̂p

)
2

were calculated based on the same series of data, they are
positively, strongly dependent, and the upper limit of the correlation coefficient p is 1. Assuming p = 1,
we obtain:

var(xp) ≤
(
w1·

√
var

((
x̂p

)
1

)
+ w2·

√
var

((
x̂p

)
2

))2
(15)

Thus, the standard error of the aggregate quantile can be estimated as:

SE(xp) � w1·

√
var

((
x̂p

)
1

)
+ w2·

√
var

((
x̂p

)
2

)
(16)

For more candidate distributions (m), the formula for the asymptotic standard quantile error
takes the form:

SE(xp) �
m∑

i=1

wi·

√
var

((
x̂p

)
i

)
(17)

The estimates of p-order quantile variances for individual distributions in Equations (14)–(17)
can be determined using the delta method [47,48], or the solutions presented in the literature can be
used [7,23–50].

In addition, it can be proved that the distribution of aggregated quantile is an asymptotically
normal distributed with a variance given by Equation (14), like the p-order quantile distribution in
individual models. However, the estimates of individual quantiles

(
x̂p

)
1
,
(
x̂p

)
2
, and, as a consequence,

the estimates of the aggregated quantile xp are biased. As mentioned before, the bias results from
the fact that the distributions used are models approximating only the unknown distribution of the
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population. Therefore, various estimation methods, including the MLM method used here, lead to
biased quantile estimates, especially in the range of the upper tail of distribution. The bias cannot be
determined or removed without knowing the true distribution, and thus remains unknown. Therefore,
in the classical flood frequency modeling, a systematic error (bias) is not included because it cannot be.
However, in the case of a multi-model approach, we can reduce the bias of the quantiles

(
x̂p

)
1
,
(
x̂p

)
2

related to the real, unknown value in the population by taking into account their bias in relation
to the aggregated quantile, which usually better describes the true quantile value than individual
candidate distributions.

Based on Equations (9)–(11), the RMSE of the quantile
(
x̂p

)
i

from the i-th model with respect to
the aggregated quantile xp is expressed by Equation (18):

RMSE
((

x̂p
)
i

)
=

√
var

((
x̂p

)
i

)
+

((
x̂p

)
i
− xp

)2
(18)

while the RMSE of the aggregated quantile by the MM aggregation for m distributions is equal to:

RMSE
(
xp

)
=

m∑
i=1

wi

√
var

((
x̂p

)
i

)
+

((
x̂p

)
i
− xp

)2
(19)

4.3. Simulation Experiment on the Accuracy of Standard Error Formulas

In order to check how accurate is the approximation of the standard error of the quantile xp by
Equations (17) and (19), a numerical experiment was carried, which involved:

1. generating a 1000-element series of data from a given probability distribution serving as a
population distribution

2. fitting to the generated sample of two different distributions, determination of their weights,
p-order quantiles and aggregated quantile according to Equation (1)

3. generating 10,000 N-element data series from the population distribution
4. matching to each data series of two selected (in point 2) distributions, determining the weights of

both distributions, the values of the aggregated quantile (Equation (1)), its asymptotic standard
error (Equations (17) and (19)) and the confidence interval with a confidence level of 68.3%, called
a one-sigma confidence interval [39,51].

Generalized exponential distribution (GE) with the mean µ = 500 and coefficient of variation
Cv = σ/µ = 0.5 was used as the population distribution, and gamma (Ga) and log-normal (LN)
distributions were assumed as models. In the experiment, the two-parameter distributions were used.
The sample length was 50, which corresponds to the average length of the observation series of the
seasonal and annual maximum flows in Poland. The assumptions of the experiment, i.e., Cv value
and type of model distributions, are consistent with the hydrological regime of many Polish rivers.
The results of quantile estimation are shown in Table 2.

Table 2. Results of quantiles estimation in the simulation experiment (sample of 1000 elements).

Quantile x0.99 in the GE Population (m3/s) 1306.43

Quantile x0.99 assuming Ga distribution; estimated by MLM (m3/s) 1205.34

Quantile x0.99 assuming LN distribution; estimated by MLM (m3/s) 1391.19

Weight w1 of quantile x0.99 from Ga distribution (−) (Equation (2)) 0.232

Weight w1 of quantile x0.99 from LN distribution (−) (Equation (2)) 0.768

Aggregated (Ga and LN) quantile x0.99 (m3/s) 1347.98

Correlation coefficient of quantiles x0.99 from Ga and LN distributions (−) 0.96
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The relative asymptotic bias of the aggregated quantile relative to the population quantile is 3.18%
and is smaller in its absolute value than for quantile estimates from the Ga (−7.74%) and LN (6.49%)
distribution separately. The correlation coefficient of quantiles x0.99 from Ga and LN distributions
confirms the strong positive dependence of the quantiles and correctness of approximation used in
Equation (15).

The variance of 0.99 quantile from the LN distribution was estimated based on Rao and Hamed [7].
The procedure given there is in accordance with other literature sources. Meanwhile, in the case of the
variance of 0.99 quantile from the Ga distribution, there are discrepancies in the literature, so three
methods were used to determine it:

1. approximation according to Rao and Hamed [7]
2. the method according to Kaczmarek [49]
3. the method according to Banasik et al. [23].

Due to the various approximations proposed by the above authors, the variances of quantile
x0.99 from the Ga distribution differ from each other. As a consequence, we get three different values
of the variance of aggregated quantile determined for each of 10,000 generated 50-element samples,
which results in different coverage of the true value of the quantile x0.99 from the population by the
corresponding 68.3% confidence intervals. The probability of covering the true quantile value by the
confidence interval for the three versions of the variance assessment of the quantile from Ga distribution
is presented in Table 3. The results in the second column present the probability of coverage according
to Equation (17), i.e., without taking into account the quantiles bias, while the results in the third
column presents the probability of coverage according to Equation (19), i.e., with taking into account
the quantiles bias.

Table 3. The coverage probability of the true value of the quantile x0.99 by the 68.3% confidence interval
determined on the basis of Equations (17) and (19) for 10,000 samples of 50 elements and for three ways
(authors) of the variance assessment of the quantile from Ga distribution.

Author Probability of Coverage
According to Equation (17) (%)

Probability of Coverage
According to Equation (19) (%)

1. Rao and Hamed [7] 61.48 67.23
2. Kaczmarek [49] 63.13 68.39

3. Banasik et al. [23] 69.90 73.79

For both Equations (17) and (19), the results for the first two authors of the approximation of
the variance of quantile from the Ga distribution are consistent, i.e., for Rao and Hamed [7] and
Kaczmarek [49], while the approximation by Banasik et al. [23] yields higher values of the coverage
probability than the two previous methods and higher than 68.3%. This suggests that the third method
(Banasik et al. [23]) gives an overestimated value of 0.99 quantile variance from the Ga distribution.
An illustration of the coverage of the true quantile from population by the confidence intervals
according to approximation of Banasik et al. [23] are shown in Figure 4.

Meanwhile, the coverage probability for the first two methods shows that the confidence interval
with using the standard error defined by Equation (17) is too narrow (second column in Table 3).
The probability of coverage for the first and second methods is approximately 61.5% and 63%,
respectively, which is significantly less than 68.3%. A coverage probability of around 68.3% is
obtained when, in addition to the standard error, the quantile bias is taken into account according
to Equation (19). Thus, the results of the simulation experiment confirm that Equation (17) is an
understated approximation of the standard error of quantile in the population.
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Figure 4. Realization of 68.3% confidence intervals against the true quantile value in the population.
Red dots correspond to the beginnings and black to the ends of the intervals.

4.4. Asymptotic Standard Error of Quantile from MF Method

The xp quantiles from the F1 and F2 models have asymptotically normal distributions with the
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where pF̂1(xp),F̂2(xp)
is the correlation coefficient between the probabilities of non-exceedance in the

F̂1 and F̂2distributions corresponding to the value of xp. Assuming pF̂1(xp),F̂2(xp)
= 1, we obtain a

convenient analytical estimate of the upper limit of the quantile variance in MF aggregation, in the form:
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The asymptotic standard error of the estimate of aggregated quantile using the MF method for
two distributions is therefore:
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and for m distributions, respectively:

SE(xp) �
∑m
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)
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) ·√vari
(
xp

)
(23)

The distribution of quantiles corresponding to xp in the MF aggregation is asymptotically normal
with the approximate variance given by Equation (23) and with the biased mean value. Taking into
account the bias of the quantiles of candidate distributions

(
xp

)
i

in relation to their aggregated value xp
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and assuming the correlation coefficient value between the quantiles equals to 1, we get the assessment
of the RMSE of the quantile xp in the form:

RMSE
(
xp

)
�

∑m

i=1

wi· fi
(
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)
f
(
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) ·√vari
(
xp

)
+

((
xp

)
i
− xp

)2
(24)

5. Case Study of MM and MF Methods of Distribution Aggregation

Both methods of aggregation statistical models are used to analyze the synthetic series of the
seasonal maximum flows. In each season, two probability distributions are considered: Pearson
type 3 distribution (P3) and three-parameter log-normal distribution (LN3), which are aggregated
by MM and MF methods. These distributions are illustrated in Figure 5. The weights of the LN3
and P3 distributions are adopted for winter: 0.499 and 0.501, for summer: 0.503 and 0.497. Thus,
both distributions describe a series of maximum seasonal flows in a comparatively right way in terms
of MLM estimation. If the classical methodology for choosing a better distribution was used, it would
be P3 for winter and LN3 for summer.

Figure 5. The cumulative distribution functions of maximum seasonal flows along with aggregated
models using MM and MF methods: (a) in summer; (b) in winter.

In Figure 5, instead of the usual probability scale, a reduced Gumbel variable is used to make the
differences in distribution tails more visible.

Comparing the MM and MF methods of distribution aggregation with respect to the quantile
values, both methods give similar results. The relative differences of the quantiles obtained from the
MF and MM methods with respect to the quantile value from MM are presented in Figure 6.

Figure 6. The difference between quantiles of the same order in MF and MM approach expressed in (%)
of MM value: (a) aggregated summer quantile; (b) aggregated winter quantile.
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In the range of the probabilities of non-exceedance from ~0.1 to ~0.9, the consistency of the results
of both aggregation methods is high. The largest relative differences occur in the upper tail of the
probability distribution and increase as the quantile order increases, reaching a value of about 4% for
the winter season and about 14% for the summer season. The presented result depends on the selected
candidate distributions; however, it should be expected that the general shape of the relationship
presented in Figure 6 is similar also for other pairs of distributions.

The results of 0.99 quantile estimation assuming P3 and LN3 distributions, then using MM and MF
aggregation, are presented in Table 4 along with the quantile uncertainty expressed by the asymptotic
standard error (6th–9th columns) and by the root mean square error (10th–11th columns). Thus,
the results in the latter two columns include the bias of quantile estimates of LN3 and P3 distributions
with respect to the aggregated quantile. For clarity, in the superscript of aggregation methods,
we provide the equation number on the basis of which the calculation was made. The Kaczmarek [49]
method was applied to assess the variance of the P3 distribution quantile.

Table 4. Comparison of seasonal quantiles x0.99 and their accuracy expressed by asymptotic errors
obtained from various ways of estimation. The superscripts of aggregation methods MM and MF
indicate the equation number which was used for the calculations (for two distributions, i.e., m = 2).

Quantile x0.99 (m3/s)
Accuracy of Quantile x0.99 (m3/s)

SE (x0.99) RMSE (x0.99)

Estimation method LN3 P3 MM MF LN3 P3 MM(17) MF(23) MM(19) MF(24)

Summer 2050 1220 1630 1600 565.9 193.7 380.9 379.5 581.4 547.0

Winter 599 482 541 534 124.5 66.3 95.4 92.9 112.8 108.1

One can see a high similarity of 0.99 quantile estimates aggregated by the MM and MF methods,
as well as similar compatibility of their SE and RMSE errors, which are slightly smaller for the MF than
for MM. The slight difference in the weights assigned to the analyzed distributions makes it possible to
change the best matching distribution as the observation series lengthens, and therefore the value of
the design quantile can be changed. Meanwhile, the aggregated distributions remain more resistant to
such changes.

Similarly, a consistent result is obtained in a numerical experiment. For the 1000 element series,
the value of 0.99 quantile aggregated by the MM method is 1347.98 m3/s, while, by the MF method,
is 1347.81 m3/s. The difference of two estimates is negligible. When written in the format used by
the Polish Hydrological Service, i.e., with three significant digits, both estimate values are equal
to 1350 m3/s.

6. Conclusions

An aggregation by a mixture of probabilities of non-exceedance has been proposed in this paper
as a new variant of multi-model approach in flood frequency analysis. This method, named mean
frequency (MF), is compared with an aggregation by a mixture of quantiles presented in previous
authors’ papers and called mean magnitude here (MM). For both aggregation variants, analytical
formulas were derived for the asymptotic standard error of the estimate of p-order quantile and
for its root mean square error, which takes into account the bias of the estimates of quantiles from
the candidate distributions with respect to the aggregated quantile. In the numerical experiment,
the correctness of the derived formulas in the MM aggregation was verified, comparing the theoretical
and simulated probability of covering the true population quantile by the asymptotic confidence
interval (confidence level 68.3%).

The MM aggregation can be interpreted as measuring the same quantity with various measuring
instruments whose role is played by the candidate distributions. Averaging the results of such
“measurements” corresponds to the idea of reducing measurement uncertainty by averaging the results
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of various measurements. The MF approach is based on the assumption that the measurement series is
subject to a probability distribution, which is a mixture of candidate distributions in the proportions
determined by the assigned weights wi.

Due to the possibility of wide use of MM and MF aggregation methods in various (broad)
calculations, e.g., quantiles of the distribution of annual peak flows, the following issues should
be noted:

When using the MM and MF aggregation methods in practice, the following issues should
be noted:

1. the MM method allows for determining the p-order quantile of aggregated distribution as a
simple and explicit form (Equation (1)), while the MF method requires a numerical solution of
Equation (6), assuming F(x) = p.

2. in the MF method, there is an explicit form of the cumulative distribution function and the density
function of aggregated distribution F. In the MM method, these functions can be determined
only numerically.

3. Calculation of the accuracy of the p-order quantile in the MM method requires the determination
of the variance of the same-order quantile for the candidate distributions, in the MF method, it is
necessary to determine the variance of quantiles at a wider range of probability values.

Both the current and previous research of the authors on aggregation methods show that these
methods prove to be a useful and productive approach to flood frequency analysis. Compared with
the classic selection of the best-fit distribution, aggregation methods are less sensitive to wrong model
selection and give estimates of design quantiles more stable when extending the observation series.
The studies conducted in this article on the two proposed methods of aggregation MM and MF
show that:

1. Aggregation by quantile mixture (MM) leads to slightly different results than aggregation by
probability mixture (MF) with respect both to the p-order quantile value and its uncertainty.

2. The largest difference in quantile values from both approaches occurs for high probabilities of
non-exceedance as p > 0.99, i.e., in the upper tail of model distributions.

3. In the probability range representing the main mass of the distribution, when the density functions
are similar, both aggregation methods are approximately consistent.

4. The derived analytical formulas for the asymptotic standard error for MM and MF aggregation can
be used to approximate assessment of the accuracy of the p-order quantile, effectively competing
with other simulation techniques of this assessment

5. A more accurate estimate of the 0.99 quantile accuracy is obtained when the bias of quantiles of
candidate distributions is included.

6. Taking into account the bias of the quantile from individual distribution Fi in relation to the
aggregated quantile allows for reducing the bias of the quantile from distribution Fi relative to
the unknown quantile value in the population.

Both quantile and probability mixture models provide a promising tool for parameter estimation
that may be useful in various (broad) areas, especially in the life sciences—for example, when some
parameters of the experiment are out of the control or when the experiment cannot be repeated under
the same conditions. Our research on this subject will be continued.
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31. Bogdanowicz, E. Podejście wielomodelowe w zagadnieniach estymacji kwantyli rozkładu wartości
maksymalnych [Multimodel approach to estimation of extreme value distribution quantiles]. In Monografie
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