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Abstract: A two-dimensional non-hydrostatic shallow-water model for weakly dispersive waves is 

developed using the least-squares finite-element method. The model is based on the depth-

averaged, nonlinear and non-hydrostatic shallow-water equations. The non-hydrostatic shallow-

water equations are solved with the semi-implicit (predictor-corrector) method and least-squares 

finite-element method. In the predictor step, hydrostatic pressure at the previous step is used as an 

initial guess and an intermediate velocity field is calculated. In the corrector step, a Poisson equation 

for the non-hydrostatic pressure is solved and the final velocity and free-surface elevation is 

corrected for the new time step. The non-hydrostatic shallow-water model is verified and applied 

to both wave and flow driven fluid flows, including solitary wave propagation in a channel, 

progressive sinusoidal waves propagation over a submerged bar, von Karmann vortex street, and 

ocean circulations of Dongsha Atolls. It is found hydrostatic shallow-water model is efficient and 

accurate for shallow water flows. Non-hydrostatic shallow-water model requires 1.5 to 3.0 more cpu 

time than hydrostatic shallow-water model for the same simulation. Model simulations reveal that 

non-hydrostatic pressure gradients could affect the velocity field and free-surface significantly in 

case where nonlinearity and dispersion are important during the course of wave propagation. 

Keywords: hydrostatic; non-hydrostatic; ocean circulation; shallow-water equations; solitary wave; 

von Karmann vortex street; weakly dispersive 

 

1. Introduction 

An accurate prediction of multi-scale ocean waves and flows is important in physical 

oceanography, marine hydrodynamics, as well as ocean and coastal engineering. The hydrostatic 

shallow-water models (SWMs) have been widely used in studying flows in rivers, lakes, estuaries, 

and oceans [1–3]. The hydrostatic assumption is valid in many cases and hydrostatic SWMs have 

been successfully used in numerous engineering applications. However, there are many cases this 

assumption is questionable. Due to the hydrostatic and non-dispersive assumption of the hydrostatic 

SWMs, their application to short period waves, abrupt changes in bed topographies, and stratification 

due to strong density gradients become limited and result in inaccurate predictions [4–8]. 

Generally, two groups of numerical methods for relaxing the limitations of the hydrostatic and 

non-dispersive assumption and simulating deep water waves have been developed. One is the 

Boussinesq-type model attributed to the pioneer work of [9,10], and another approach is proposed 

by using the Reynolds-Averaged Navier–Stokes (RANS) equations with the non-hydrostatic pressure 
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[11–17]. The classical Boussinesq-type equation [9] mainly described vertical velocity profile with a 

polynomial for weakly nonlinear dispersive waves. Subsequently, the constrains have been further 

released using optimal expansion levels, higher-degree polynomials, higher-order derivatives, and 

multiple layers [10,18–20]. 

Many non-hydrostatic models that solve non-overturning free-surface flows using single-valued 

height method have been developed. Conventionally, a large number of vertical layers (e.g., 10–40) 

with finer resolution near the free surface are utilized to resolve dispersive and non-linear features 

of water waves [21–25]. Note that non-hydrostatic pressure is taken into account for most part of the 

water column but a hydrostatic pressure relation is still adopted at the top-layer cell. Later, efficient 

non-hydrostatic models [26–32] rigorously treat the top-layer non-hydrostatic pressure effect. The 

required vertical layers are dramatically reduced to a relatively small number (2–5 layers, an order 

of magnitude smaller than those required in traditional models), effectively decreasing the 

computational expenses. 

For example, [16] proposed an edged-based Keller-box scheme to exactly assign zero surface 

pressure without any approximation. Further applications of this model can be found in [17,32]. For 

a staggered grid system, [27] utilized an integration method to tackle the top-layer hydrostatic 

pressure assumption. Besides, several interpolation or extrapolation approaches [28–31] have also 

been implemented in non-hydrostatic models. Generally, these models with two or three layers can 

resolve wave dispersion up to a dimensionless relative water depth kh ≈ 1 or 2.5, respectively, where 

k and h are the wave number and water depth. Continuous research effort is to establish a theoretical 

framework for the interpretation of wave dispersion/nonlinearity [32,33] and to predict a broader 

range of surface wave motions with improved numerical accuracy and efficiency, e.g., [29,34–38] In 

addition to shallow-water flows, further application of efficient non-hydrostatic models in predicting 

near-shore wave transformation and weakly dispersive tsunami propagation [20–32], therefore, 

becomes promising. 

To date, the non-hydrostatic models have been regarded as the most general simulation tool for 

the coastal research, especially with the aid of advanced computer capacity today [33,35]. Non-

hydrostatic models are often developed based on their hydrostatic predecessors [16,26,28]. In this 

study, a non-hydrostatic shallow-water model is developed and applied to simulate ocean 

circulations of Dongsha waters. The model is based on the hydrostatic predecessor [39,40] and 

employs the semi-implicit method as well as least-squares finite-element formulation. Compared 

with Galerkin and other numerical methods, least-squares finite-element method enjoys many 

programming and computational advantages, such as the use of single approximating space for all 

variables, and the choice of approximating spaces not being subjected to the Ladyzhenskaya–

Babuska–Brezzi (LBB) condition. Therefore, mixed formulation, collocation grid arrangement, and 

convection scheme are unnecessary [41,42]. More importantly, the resulting system of equations of 

LSFEM is symmetric, positive-definite (SPD), and can be used with an efficient element-to-element 

conjugate gradient method [43]. 

Several benchmark cases with available analytical solutions, experimental data, and numerical 

results from other models are used to validate the model. Finally, the model is applied to simulate 

ocean circulations of Dongsha waters. The paper is structured as follows. In Section 2, the non-

hydrostatic shallow-water equations and least-squares finite-element formulation are introduced. 

Model verification and applications are presented in Section 3. Based on the computation results, 

discussions are made in Section 4 and conclusions are drawn in Section 5. 

2. Materials and Methods 

Depth-integrated two-dimensional non-hydrostatic shallow-water equations and numerical 

methods are briefly introduced in this section. 

2.1. Shallow-Water Equations 

The two-dimensional depth-averaged non-hydrostatic shallow-water equations are derived 

from the depth-averaged Navier–Stokes equations and read. 
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where H(x, y, t) = (x, y, t) − h(x, y) is the total water depth, h(x, y) is the bottom elevation, (x, y, t) is 

the surface elevation,  is the density, g is the gravitational acceleration, U, V and W are depth-

averaged velocities in the x, y and z directions, respectively, q is the non-hydrostatic pressure at the 

bed surface, and Sx and Sy are source terms including the bottom frictions and viscous stresses, 

respectively [44–46]. The pressure is decomposed into hydrostatic (ph) and non-hydrostatic (q) 

components as in [11–17,24–32,44–46] and Keller-box scheme [47] for vertical gradient approximation 

of the non-hydrostatic pressure in the formulation. 

  hp g z q p q       (5) 

Equations (1)–(4) is solved with linear distributions assumed in the vertical direction for both 

the non-hydrostatic pressure and the vertical velocity. 

2.2. Numerical Method and Least-Squares Finite-Element Method 

A semi-implicit method similar to that in [11–17,24–32,44–46] is employed in this study. The 

depth-integrated non-hydrostatic SWM is solved semi-implicitly: (1) the provisional flow velocity is 

first implicitly solved using the hydrostatic shallow-water equations; (2) the non-hydrostatic 

pressure, which is implicitly obtained by ensuring a divergence-free velocity field, is used to correct 

the provisional velocity, and (3) finally the depth-integrated continuity equation is explicitly solved 

for the free-surface elevation to satisfy global mass conservation [11–17,24–32,44–46]. -method and 

least-squares finite-element method are used for time-stepping and spatial discretization, 

respectively. 

After linearizing the nonlinear terms and -method time-stepping, Equations (1a–1c) become 
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where superscript “n” and “n + 1” denote value of the current time step and new time step, 

respectively, with ���� = �� + Δ� and the time step size t ; label “~” is annotated as the value of 

previous iteration or the value of “n” time step. By the interpolations of finite-element method, the 

unknowns �
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Once the provisional flow velocity is obtained, a Poisson equation for the non-hydrostatic 

pressure can be formulated by the continuity equation with the provisional flow velocity, which is 

solved to ensure a divergence-free velocity field [11–17,24–32,44–46]. The obtained non-hydrostatic 

pressure is used to correct the provisional velocity 
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The superscript “c” denotes the correction. Equations (13) and (14) represents the final results of 

the flow velocity of the new time step. Free-surface elevation is then computed by the mass 

conservation Equation (1a) with the corrected velocities 
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Details of the semi-implicit procedure can be found in [11–17,24–32,44–46]. 
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3. Results 

The non-hydrostatic SWM is verified with a solitary wave propagating in a channel in Section 

3.1 and a sinusoidal wave passing over a submerged trapezoidal bar in Section 3.2, and applied to 

simulate von Karman vortex street in Section 3.3 and the ocean circulation of Dongsha Island water 

in Section 3.4. 

3.1. Solitary Wave Propagation in a Channel 

The solitary wave propagation is a nonlinear wave with finite amplitude. If the fluid is inviscid, 

the wave should maintain the shape and velocity during propagation process over a horizontal 

bottom. Solitary wave in a one-dimensional channel with a constant depth is used for model 

verification. An approximation of a solitary wave for the shallow-water equations is 
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where a is the amplitude, h is the constant water depth, and  c g a h   is the wave propagation 

speed. 

Simulation of the propagation of a solitary wave over a constant water depth H = 1.0 m with a = 

0.1 m in a channel of length L = 80 m is performed. The channel is divided into 2000 uniform 

quadrilateral elements, i.e., Δ� = Δ� = 0.04  m and Δ� = 0.005  s are used in computations. The 

corresponding Courant–Friedrichs–Lewy number CFL  0.4. Simulation starts with the wave profile 

and speed of Equations (16) and (17) at �� = 10.0 m and t = 0 s as the initial conditions. 

Figure 1 shows the evolution of the solitary wave at t = 6 and 12 s. The profile of free-surface (�) 

and velocity (U) of the traveling solitary wave obtained with the hydrostatic SWM becomes distorted, 

the leading front becomes steeper, and the trailing front becomes smoother during the propagation 

progress. However, the profile of free-surface and velocity of the traveling solitary wave computed 

with the non-hydrostatic SWM remains close to that of the approximation—the wave shape is well 

conserved during wave propagation. There is a small reduction of wave amplitude and magnitude 

of velocity at the beginning of simulation because the initial conditions approximated by the 

analytical solution, Equation (16) and (17), is not the exact solution of the non-hydrostatic shallow-

water equations, Equations (1)–(4). Similar observations were reported by [44,45]. 

 

(a) 

 

(b) 

Figure 1. Comparison of approximation and model results of (a) free-surface and (b) horizontal 

velocity at t = 6 and 12 s, respectively. 
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Figure 2 shows the non-hydrostatic pressure (q) and vertical velocity (W) at t = 6 and 12 s 

obtained by the non-hydrostatic model, and the hydrostatic SWM does not have this information. It 

can be seen there are minor oscillatory dispersive trailing waves. Overall, computed results of non-

hydrostatic SWM better resolve the salient characteristics of the propagating solitary wave than that 

of the hydrostatic SWM. 

 

(a) 

 

(b) 

Figure 2. (a) Non-hydrostatic pressure and (b) vertical velocity at t = 6 and 12 s obtained by the non-

hydrostatic shallow-water model. 

3.2. Propagation of Progressive Sinusoidal Waves over a Submerged Trapezoidal Bar 

A physical experiment of progressive sinusoidal waves passing over a submerged trapezoidal 

bar has been conducted [48], as illustrated in Figure 3. It has been used to verify several non-

hydrostatic models [29,44–46,49]. The objective is to test the capability of the non-hydrostatic models 

to simulate the relative strong interactions between nonlinear waves with the uneven bottom. The 

bottom topography is one of the major controlling factors, leading to significant reflection and 

transformation in wave field [38,50–52]. Besides, increased nonlinearity would further complicate 

their harmonic generation [48,53,54]. 

Figure 3 illustrates the geometry and experimental setup. The still water depth h = 0.4 m. 

Progressive sinusoidal waves with an amplitude a = 0.01 m and period T = 2 s are specified at the left 

inflow boundary, and they exit at the channel at right of the outflow boundary. Hydrostatic pressure 

assumption for shallow-water flows is generally valid for water depth parameter kh < 0.31. The values 

of kh in region I and II are 0.68 and 0.32, respectively. The value of kh ranges from 6 to 10 in region III 

based on a spectral analysis [54]. 

 

Figure 3. Illustration of the experiment set up of [48] for periodic wave propagation over a submerged 

bar. 
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The computational domain is discretized by a set of uniform of 875 quadrilaterals and 1752 

nodes, equivalent to grid size x =Δ�= 0.04 m, and a time step size of t = 0.004 s is chosen. Time 

history of computed free-surface elevation is plotted and compared with the experimental data of 

[48] and prediction of the five �-layers non-hydrostatic model of [29,49] at six different wave gauge 

locations (gauge 2–7) in Figure 4. 

 
 

  

  

Figure 4. Comparison of computed free-surface elevation (blue lines denote the prediction of 

hydrostatic shallow-water model (SWM), red lines non-hydrostatic SWM) with measurement data 

(circles) and 5�-layers of non-hydrostatic SWM of [29,49] (green lines) at gauge 2 to gauge 7. 

When the wave trains propagate onto the submerged step, the wave amplitude and steepness 

increase due to shoaling. Though model predicted shoaling coefficient (equivalent to the relative 

wave heightmax|�|/� = [2cosh��ℎ/(sinh2�ℎ + 2�ℎ)]� �⁄ ) 1.23 at gauge 3 agrees well with 1.34 by the 

Airy linear wave analytic solution [55], the model underestimates steeper shoaling waves on the 

upward slope at gauge 2 and 3 compared with the measurement data. Apparently, wave 

transformation here is a nonlinear process, not linear. The model captures the main features of the 

riding waves over the bar, wave trains travel with the correct phase speed, and higher harmonics are 

generated and secondary waves are developed, but are not obvious, at gauge 4 and 5. However, the 

predicted wave peak value is much smaller than the measured value and computed value of [29,49]. 
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Behind the step, the wave amplitude and steepness decrease at station 6 and 7. The nonlinearity of 

wave becomes weaker, yielding the release of the generated higher harmonic waves where wave 

dispersion is important. There are clearly visible discrepancies between prediction of non-hydrostatic 

SWM with the measurement data [48] and prediction of 5�-layers non-hydrostatic SWM [29,49]. 

These discrepancies mainly due to kh ranging from 6 to 10 in region III is out of the applicable range 

of the current one-layer depth-integrated non-hydrostatic SWM. Similar underestimates and 

discrepancies are reported in [44,45]. One-layer vertical integral non-hydrostatic SWM is not able to 

accurately resolve the details of vertical flow structures where nonlinearity and dispersion are 

important. Moreover, predictions with the hydrostatic SWM, neglecting the dispersion terms, is 

totally unrealistic and different from the predictions with measured data [48] and 5 - layers non-

hydrostatic SWM [29,49]. 

3.3. von Karmann Vortex Street 

The wake flow behind a bluff obstacle has been a subject of interest to engineers as well as to 

scientists for many years. The periodic alternate shedding of counter-rotating vortex pairs 

downstream the bluff obstacle is the so-called von Karmann vortex street. It is a classic fluid dynamic 

problem resulted from flow passing an obstacle at a certain range of Reynold’s number, i.e., 46 < Re 

< 1000 [56–58]. Bluff body wakes have significant different characteristic flow properties depending 

on the Reynolds number Re =����/��, where ��  is the characteristic velocity, ��is the characteristic 

length, and r  is the eddy viscosity, respectively. 

Both hydrostatic and non-hydrostatic shallow-water model are used to simulate the von 

Karmann Vortex shedding due to passing of uniform flow over a square obstacle. The length and 

width of the study domain are 400 and 200 m, respectively. A square obstacle with length and width 

equal to 20 m is located in the center of the mainstream flow. The still water depth is constant h = 4 

m. Flow enters the study domain from the left boundary with a constant speed rU = 0.2 m/s and exits 

the study domain from the right open boundary. Free slip boundary condition is employed for both 

top and bottom boundaries. The resulting Reynolds number Re = ����/�� = 400, where ��  = 0.2 m/s 

is the characteristic velocity, ��= 20 m is the characteristic length (square obstacle dimension), and 

r = 0.01 m2/s is the eddy viscosity, respectively. 

Figure 5a depicts the study domain and computational meshes, consisting of 20,996 nodes and 

20,754 quadrilaterals. Fine meshes are used near the square obstacle region, Figure 5b, where flow 

and wave field are expected to change more significantly than other areas. Simulation starts with the 

still water, i.e., fluid is motionless initially. It takes a short period of transition for the flow to develop 

and reach a periodic state. 

 

 

(a)  

(b) 

Figure 5. Study domain and computational meshes: (a) global view and (b) local view around the 

square obstacle. (unit measurement for x and y axis is m). 
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Figure 6 shows the comparison of time history of velocity components of point P, located at (25, 

15) and depicted in Figure 5b, by hydrostatic and non-hydrostatic SWM. As can be seen, the 

difference of predicted velocity components by hydrostatic and non-hydrostatic SWM is not 

significant—the amplitude of velocity components remains the same and phase shift increases in the 

long period of computations. The period (T) of oscillation of the von Karman vortex street is 480 s for 

hydrostatic SWM and 475 s for non-hydrostatic SWM, and the corresponding Strohal number St = 

Lr/UrT  0.208 and 0.210 for hydrostatic and non-hydrostatic SWM, respectively. This value is close 

to 0.218 obtained by the formula �� = 0.2698 − 1.0271/√Re given by [59]. 

 

(a) 

 

(b) 

Figure 6. Time history of (a) U and (b) V velocity component of point P, location shown in Figure 5b. 

Since the difference of prediction of hydrostatic and non-hydrostatic SWM is not significant and 

flow fields of the two models are visually indistinguishable, only the simulation results of hydrostatic 

SWM are shown. Figures 7 and 8 show the contours of velocity components and streamlines at t = 

T/2 and T. A well-organized von Karman vortex street is reproduced. 

 

t = T/2 

 

t = T/2 

 

t = T 

(a) 

 

t = T 

(b) 
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Figure 7. Contours of (a) U and (b) V of von Karmann vortex street at t = T/2 and T, respectively. (U-

contours ranges from −0.10 to 0.30 m/s with interval 0.05 m/s; V-contours ranges from –0.25 to 0.25 

m/s with interval 0.05 m/s.) (unit: m). 

 

t = T/2 

(a) 

 

t = T 

(b) 

Figure 8. Streamlines of von Karmann vortex street at t = (a) T/2 and (b) T. (unit: m). 

3.4. Ocean Circulation of Dongsha Water 

The Dongsha Islands, also known as Pratas Islands, are three atolls in the north of the South 

China Sea. They consist of one island, two coral reefs and two banks as well as lagoon, and channels. 

Figure 9 depicts the location of Dongsha Atolls and the surrounding water. There are gaps in the 

northwest and southwest of the atolls. The Dongsha Island, located in the middle of gaps, forms the 

northern and southern channels which leads (exits) water into (from) the atolls at northern and 

southern sides of Dongsha Island, respectively. 

 

(a) 

 

 

 

 

 

(b) 

Figure 9. (a) Location of Dongsha Atolls and the surrounding water. (Source from ETOPO1 [60]), (b) 

Study area and map of Dongsha Island. (Source from Google Maps [61]). 

There is a sand spit which is commonly referred to as the “swaying dragon tail”. The sand spit 

takes shape from the process of alongshore drift and sedimentation by nearshore currents at the 

headland. The phenomenon of swaying dragon tail is influenced by waves and tides induced by the 

northeast monsoons and southwest monsoons. The sediment gradually drifts from north to south in 

the winter and from south to north in the summer. By the in-situ observation, it has been shown that 

the swaying dragon tail suffers the inappropriate coastal protections such as the constructions of 
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armor units, groins and detached breakwaters around the island, leading to the vanishing of some 

special landscapes. 

Coastal erosion is a serious problem in Dongsha Island by natural factors (e.g., sea level rise) as 

well as human being actions. Recent measurements [62] of the Dongsha Atolls show that the water 

depth is about 2–22 m and the averaged velocity is 0.06 m/s and 0.24 m/s in the internal atoll and 

external atoll, respectively. During the flood tides, the counterclockwise current mainly exchanges 

water masses through the northern channel to the internal atoll. At the same time, the southern 

channel emerges a weaker current and presents an uneven spatial distribution of speed. An opposite-

direction current exits near the southern channel and northern channel in internal atoll during flood 

tides. During the ebb tides, the mainstream current exits from northern channel, and the southern 

channel produces the vortexes repeatedly. 

POM (Princeton Ocean Model) is widely used by oceanic and atmospheric models. In the early 

1980s, the model was used primarily to coarse-resolution simulations of the large-scale ocean 

circulation. With the advancement of computer hardwares and numerical algorithms, the model is 

able to handle high-resolution coastal ocean processes [63]. POM has been applied to simulate the 

ocean circulation and transportation of substances of Dongsha waters [64]. However, the flow field 

of the internal atoll is not considered in the model due to the coarse mesh resolution used. A high 

resolution two-dimensional non-hydrostatic shallow-water model is applied to study the 

hydrodynamics of the Dongsha water. The computational domain length and width are 152 km and 

92 km, respectively. Figure 10 plots the computational meshes, total 35,923 nodes and 17,788 

elements. The complex topography and coastline is approximated using the smaller meshes to 

achieve the accuracy, as shown in Figure 10a. The high resolution of meshes is applied around the 

atoll region where large change of flow field is expected. In contrast, the relative large meshes are 

used for smooth changing flow field areas. The interpolation method of IDW (inverse distance 

weighted) is used to interpolate water depth from ETOPO1 [60] to non-hydrostatic SWM, shown in 

Figure 10b. 

 

(a) 
 

(b) 

unit measurement for x and y axis is m 

Figure 10. (a) Global view of meshes and (b) the bathymetry contour of computational domain. 

The harmonic analysis is similar to the spectral analysis of investigation by [62]. The tide is 

mainly composed of diurnal tides K1 and O1 and semi-diurnal tides M2. The period of diurnal tide K1 

is used in the modeling. Boundary conditions used are no flux across the north and south boundaries, 

open boundary condition on the east boundary, and a K1 tide is specified on the west side in the 

Dongsha ocean circulation modeling. Simulation of flow starts from the static state, and it takes a 

period of time to reach a periodic state. Parameters used for simulations of Dongsha ocean 

circulations are listed in Table 1. 
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Table 1. Parameters used in the Dongsha ocean circulations modeling. 

Length of Computed 

Domain (L). 

Width of Computed 

Domain (W) 

Period of K1 
Tide (T) 

Mesh Size 
(x) 

Time Step 
(t) 

152 km 92 km 86,160 s 120–5000 m 100 s 

Figure 11a,b shows the measured flow field at ebb tides and flood tides [62]. Computed flow 

fields at ebb and flood tides by non-hydrostatic SWM are similar to the flow field of measurements, 

as shown in Figure 11c,d. The concentrated flow mainly exits from northern channel and a clockwise 

moving vortex is observed along the northern edge of the channel at ebb tides. The concentrated flow 

mainly enters from the northern channel and a counterclockwise moving vortex is observed along 

the edge of the northern channel at flood tides. The flow field presents an opposite pattern in the 

southern channel, and the flow is weaker in the southern channel compared with that in the northern 

channel due to the influence of topography in the southern channel at flood tides. 

 
 

(a) (b) 

 

(c) 

 

(d) 

unit measurement for x and y axis in (a) and (b)
 
is ° and (c) and (d) is m 

Figure 11. The measured flow field at (a) ebb tides and (b) flood tides, and the computed flow field 

at (c) ebb tides and (d) flood tides. 

A computational mesh of POM, total of 8447 nodes, 14,999 triangular elements, and 20 non-

uniform vertical layers, has been applied to Dongsha water. Bathymetry of the atoll is assumed to be 

shallow for computational stability. Figure 12a–c illustrates the distribution of flow field at ebb tides 

and flood tides by POM, respectively. The flow moves from west to east in ebb tides. The velocities 

are large at northern and southern channels and around the Dongsha Island. In contrast, in the flood 
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tides, the flow moves from east to west. Figure 12a–d shows the comparison of predicted flow field 

of POM and non-hydrostatic SWM in ebb tides and flood tides, respectively. 

Periodically moving vortexes persist around the upper and lower edge of the northern and 

southern channels of Dongsha Atoll. The mainstream flow exits the interior atoll from the northern 

channel at ebb tides. In the meantime, there is a pair of moving vortices—a clockwise vortex in the 

north edge of the northern channel and a counterclockwise vortex in the south edge of the southern 

channel. The mainstream flows enter the interior of atoll from the northern channel at flood tides, 

and the moving vortices change the direction of rotations comparing that of ebb tides. The clockwise 

moving vortex in the southern channel becomes weaker because of the effect of terrain at flood tides. 

General features of simulated flow field compared reasonably similar to that of the flow field of 

measurements. Value of computed speed 0.1–0.3 m/s by non-hydrostatic SWM is smaller than 0.8–

1.0 m/s by the POM. The discrepancy is mainly attributed to the modification of atoll and the top-

layer flow field of POM compared with the depth-averaged flow field of non-hydrostatic SWM. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

unit measurement in x and y axis is m 

Figure 12. The distribution of flow field near the Dongsha Island at (a), (c) ebb tides and (b), (d) flood 

tides by POM and non-hydrostatic SWM, respectively. ((a) and (b) are from [62]). 

  



Water 2020, 12, 2832 14 of 17 

 

4. Discussion 

Hydrostatic pressure assumption for shallow-water flows is generally valid for water depth 

parameter kh < 0.31. Hydrostatic SWM is efficient for modeling shallow water flows where variation 

of vertical scale is much smaller than the variation of horizontal scale. To relax the constraints of 

hydrostatic pressure assumption and non-dispersion, a non-hydrostatic shallow-water model is 

developed for weakly dispersive waves. 

Both wave and flow driven fluid flows, including solitary wave propagation in a channel, 

propagation of progressive sinusoidal waves over a submerged bar, von Karmann vortex street, and 

ocean circulations are numerically investigated. It is found that the difference between predictions of 

hydrostatic and non-hydrostatic SWM is insignificant for flow-induced fluid flows, where dispersion 

plays a minor role in these situations. However, for wave-induced fluid flows, difference between 

predictions of hydrostatic and non-hydrostatic SWM can become pronounced, especially for 

nonlinear waves traveling from deep water to shallow water and encountering the uneven 

bathymetry. 

Hydrostatic SWM cannot accurately model the solitary wave propagation in a constant water 

depth channel and progressive sinusoidal waves propagation over a submerged trapezoidal bar, 

where both dispersion and nonlinearity play an important role. Non-hydrostatic SWM can accurately 

predict the solitary wave propagation, but cannot model well the progressive sinusoidal wave 

propagation over a submerged trapezoidal bar, because the water depth parameter kh ranging from 

6 to 10 behind the bar is out of applicable range of the present one-layer depth-integrated non-

hydrostatic SWM. Therefore, to accurately simulate the nonlinear dispersive free-surface flows, a 

multi-layer, non-hydrostatic shallow-water model following [26,27] is suggested for the future study. 

Hydrostatic SWM (HSWM) is computationally efficient for modeling shallow water flows than 

the non-hydrostatic SWM (NHSWM) modeling. In general, NHSWM takes 1.5 to 3.0 more cpu time 

than HSWM does for the same simulation. The most cpu consuming part of NHSWM computations 

is to solve the Poisson-type equation for the non-hydrostatic pressure. It takes about 40%-70% of the 

cpu time of the computations, depending on the complexity of wave/flow fields, number of degree-

of-freedoms (nodes and elements), treatment of the boundary conditions, and convergence criterion, 

etc. Moreover, the increase in the percentage of cpu time for solving the non-hydrostatic pressure 

equation is larger than linear proportion when increasing the number of nodes and elements. 

Since the least-squares formulation is employed, the resulting system of equations of Poisson-

type non-hydrostatic pressure is symmetric and positive-definite. Therefore, Jacobi precondition with 

element-by-element conjugate gradient method [43] is used to solve the resulting system of 

equations. Furthermore, numerical solution of the non-hydrostatic pressure is prone to numerical 

oscillations. To suppress the oscillations, either a finer mesh resolution or smoothing is employed. In 

this study, the Laplacian smoothing is used. 

For applications involving short period waves, abruptly changing bed topographies, and 

stratification due to strong density gradients, the hydrostatic assumption is invalid. To accurately 

simulate the nonlinear dispersive free-surface flows, a multi-layer non-hydrostatic shallow-water 

model following [26,27] is suggested for the future study. 

5. Conclusions 

A non-hydrostatic shallow-water model is developed and applied first to three benchmark tests 

and then to the ocean circulation surrounding Dongsha Atolls of the South China Sea. Least-Squares 

Finite-Element Method (LSFEM) is used to solve the non-hydrostatic shallow-water equations. There 

are many advantages of LSFEM compared with popular Galerkin and other methods, such as a single 

approximating space can be used for all variables and the choice of approximating spaces is not 

subject to the Ladyzhenskaya–Babuska–Brezzi (LBB) condition. Therefore, mixed interpolation 

formulation, collocation grids and convection scheme are not necessary. More importantly, the 

resulting system of equations of LSFEM is symmetric, positive-definite (SPD), and therefore, can be 

used with an efficient element-to-element conjugate gradient method. 
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Difference between predictions of hydrostatic and non-hydrostatic SWM for von Karmann 

vortex street and ocean circulation of Dongsha water is found insignificant. However, computations 

with the non-hydrostatic SWM require much more computer resources and cpu time compared with 

computations with the hydrostatic SWM. For instance, it takes about twice cpu time to model the von 

Karmann vortex street with non-hydrostatic SWM than with hydrostatic SWM, and about 2.5 times 

cpu time to model the ocean circulation of Dongsha water with non-hydrostatic SWM than with 

hydrostatic SWM. 
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