
water

Article

Open-Surface Water Bodies Dynamics Analysis in
the Tarim River Basin (North-Western China), Based
on Google Earth Engine Cloud Platform

Jiahao Chen 1,2 , Tingting Kang 1,2, Shuai Yang 1,2, Jingyi Bu 1,2 , Kexin Cao 1,2 and
Yanchun Gao 1,*

1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and
Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
chenjiahao18@mails.ucas.ac.cn (J.C.); kangtt.14b@igsnrr.ac.cn (T.K.); yangs.17b@igsnrr.ac.cn (S.Y.);
bujy.16b@igsnrr.ac.cn (J.B.); caokx.18s@igsnrr.ac.cn (K.C.)

2 College of Resources and Environment, University of the Chinese Academy of Sciences,
Beijing 100049, China

* Correspondence: gaoyanc@igsnrr.ac.cn; Tel.: +86-010-6488-8991

Received: 6 July 2020; Accepted: 6 October 2020; Published: 11 October 2020
����������
�������

Abstract: The Tarim River Basin (TRB), located in an arid region, is facing the challenge of increasing
water pressure and uncertain impacts of climate change. Many water body identification methods
have achieved good results in different application scenarios, but only a few for arid areas. An arid
region water detection rule (ARWDR) was proposed by combining vegetation index and water index.
Taking computing advantages of the Google Earth Engine (GEE) cloud platform, 56,284 Landsat 5/7/8
optical images in the TRB were used to detect open-surface water bodies and generated a 30-m annual
water frequency map from 1992 to 2019. The interannual changes and trends of the water body area
were analyzed and the impacts of climatic and anthropogenic drivers on open-surface water body area
dynamics were examined. The results show that: (1) ARWDR is suitable for long-term and large-scale
water body identification, especially suitable for arid areas lacking vegetation. (2) The permanent
water area was 2093.63 km2 and the seasonal water area was 44,242.80 km2, accounting for 4.52%
and 95.48% of the total open-surface water area of he TRB, respectively. (3) From 1992 to 2019,
the permanent and seasonal water bodies of the TRB all showed an increasing trend, with obvious
spatial heterogeneity. (4) Among the effects of human activities and climate change, precipitation has
the largest impact on the water area, which can explain 65.3% of the change of water body area. Our
findings provide valuable information for the entire TRB’s open-surface water resources planning
and management.

Keywords: open-surface water bodies; Landsat image; Google Earth Engine; Tarim River Basin;
climate change

1. Introduction

Open-surface water bodies, including lakes, rivers, streams, reservoirs, and ponds, are extremely
important water resources for agriculture, aquaculture, industrial production, aquatic, and terrestrial
ecosystems [1]. As a type of land cover, open-surface water bodies play an important role in climate
regulation, biogeochemical cycles, and surface energy balance [2]. Climate change and increased
climate variability can strongly impact open-surface water resources [3–5], causing significant intra-
and inter-annual water bodies area changes [6,7]. Due to climate change and human activities,
permanent water bodies have been reduced by nearly 90,000 km2, 2.02% of the all water bodies from
1984 to 2015 [8]. In recent decades, many countries, especially developing countries, have experienced

Water 2020, 12, 2822; doi:10.3390/w12102822 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-1432-7218
https://orcid.org/0000-0001-6791-4235
http://dx.doi.org/10.3390/w12102822
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/10/2822?type=check_update&version=2


Water 2020, 12, 2822 2 of 27

a rapid urbanization process. Changes in surface water caused by human activities strongly affect
surface temperature, soil moisture, biodiversity, and ecosystem functions [9]. Therefore, monitoring
the dynamic changes of open-surface water is of great significance to the health of the natural
environment and the sustainable development of the social economy [10].

Remote sensing technology has the advantages of wide coverage, instantaneous imaging, high
spatial resolution, short revisit period, and fast data acquisition, and it is now widely used in
the identification of surface water bodies and their change detection [10–21] on a large scale. Common
remote sensing data sources used to detect open-surface water bodies include Moderate Resolution
Imaging Spectrometer (MODIS) images [10–14], Landsat images [15–19], Sentinel images [20,21], etc.
However, traditional open-surface water bodies studies, due to the difficulty of processing large
amounts of satellite imageries [22], usually use fewer imageries of large scale areas at a particular
period. In recent years, cloud-based high-performance data computing platforms such as Google Earth
Engine (GEE) [23], NASA Earth Exchange (NEX), Data Cubes, etc. [24] have been developed rapidly.
Among them, GEE was widely used in various studies [25], such as on drought monitoring [26], land
use/land cover [27], fire monitoring [28], mine mapping [29], evapotranspiration [30], city [31], rice [32],
wetland changes [33], vegetation cover [34], and open-surface water body detection [8,22,35]. For
example, Pekel et al. [8] published a dataset of water bodies changes based on the GEE platform
for global large scale long series; Deng et al. [36] analyzed the characteristics of the spatiotemporal
changes of surface water bodies in the Yangtze River Basin from 1984 to 2018; Wang et al. [22] studied
the spatiotemporal changes of surface water bodies in the middle reaches of the Yangtze River based
on GEE; and Wang et al. [35] used GEE to conduct a meticulous study on the long-term sequence
dynamics of Poyang Lake. Thus, GEE provides a new perspective for studying the dynamics of long
time series of open-surface water bodies.

Current water bodies extraction algorithms mainly include water bodies recognition algorithms
based on band combination (single-band threshold method [37], multi-band spectral relationship
method [38], water body index and threshold method [39–42]), and machine learning classification
algorithms (random forest [35], support vector machine [43], etc.). Among them, the most prevalent is
the water body index method based on band combination, such as Tasseled Cap Wetness (TCW) [44],
Normalized Difference Water Index (NDWI) [41], Modified Normalized Difference Water Index
(MNDWI) [42], Water Index 2015 (WI2015) [40], Automated Water Extraction Index (AWEI) [39],
Revised Normalized Difference Water Index (RNDWI) [45], and Enhanced Water Index (EWI) [46].
Beeri et al. [47] combined three water indexes, Sum457, ND5723, and ND571, and proposed a new
algorithm SNN. Sum457 was developed by Al-Khudhairy et al. [48]. ND5723 and ND571 can further
reduce the effects of aerosols and other atmospheric substances. The water index method looks for
the strongest and weakest water bodies characteristic reflection bands in the multi-spectral image and
expands with the help of proportional calculation. The water index method has obvious advantages
in suppressing disturbance factors such as vegetation, shadow, soil, etc. but is too dependent
on the strength of the ground feature relationship. When the land feature relationship weakens,
the water body index method cannot obtain satisfactory results. Because the use of a single water
body detection index may confuse water bodies and vegetation, combining the vegetation index can
improve the accuracy of water bodies identification. Menarguez [49], based on the Land Surface Water
Index (LSWI), NDWI, MNDWI, Normalized Difference Vegetation Index (NDVI) [50], and Enhanced
Vegetation Index (EVI) [51], proposed a water bodies extraction algorithm, and their results show
that this integrated method is more sensitive to water bodies signals. On this basis, Zou et al. [52]
proposed a new water detection rule: when a pixel meets the conditions EVI < 0.1 and MNDWI >

NDVI or MNDWI > EVI, it is regarded as water. This detection rule has been applied to different
scales and different types of water detection tasks in the United States [53], Oklahoma [52], Mongolian
Plateau [54], and Poyang Lake [35] and has achieved good results. This water detection rule effectively
solves the problem of confusion between vegetation and water bodies [52], which is suitable for water
body detection tasks in wet areas with lush vegetation, but some pixels with a vegetation index less
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than the water body index will also be mistakenly identified as water, especially in the arid area with
sparse vegetation. Thus, this water body detection rule needs to be modified to make it more suitable
in the arid area.

The Tarim River is the longest inland river in China, the fifth-largest inland river in the world
and is a typical arid-zone inland river. In the past 60 years, due to the intensive human economic
and social activities in the TRB, the natural ecosystems have been severely damaged, resulting in
a series of environmental problems. Such as 321 km of downstream flow disruption, drying up of lakes,
a significant decline of groundwater level, extensive decay of desert riparian forests, intensification of
desertification process, and damage to biodiversity [55], which have affected the economic and social
development of the oasis in the basin and the survival of the people. Thus, it is necessary to explore
the temporal and spatial dynamic changes of the open-surface water bodies in the TRB. However,
most previous studies on the dynamic changes of open-surface water bodies in the TRB were limited
to the analysis of individual years and individual regions [56,57], and there were some deviations in
the results. Therefore, we used the big data advantage of the GEE platform to analyze the changes of
open-surface water bodies in the TRB by using all available historical images.

The objectives of this study were: (1) to propose a new water detection rule for the arid region
water detection task; (2) to analyze the long-term changes of open-surface water bodies in the TRB from
1986 to 2019 based on the GEE platform and all available Landsat imagery; and (3) to analyze the causes
of changes of open-surface water bodies in the TRB. Besides, the study can help the understanding of
long-term changes in the open-surface water bodies in the TRB and promote the development of water
resources management in the TRB.

2. Materials and Methods

2.1. Study Area

The TRB is located in northwestern China (73◦10′–96◦38′ E and 34◦55′–43◦48′ N) (Figure 1). It
is the largest inland river basin in China, with an area of 1.085 × 106 km2, about 11.3% of the total
area of China. The TRB has a complex geographical environment, with the Tianshan Mountains in
the north, the Kunlun Mountains in the south and west, and plains and deserts in the middle and
east [58] (Figure 1a). Affected by the geographical location and terrain, TRB belongs to the typical
temperate arid continental climate, which has little rain and strong evaporation. The average annual
precipitation is 124.08 mm, and it is concentrated in the western and northern mountainous areas
(Figure 1b). The evaporation capacity is 1800–2900 mm. The average annual temperature is 10.7 ◦C,
and the highest temperature in the year is 39–42 ◦C [59], The temperature presents a spatial law of
decreasing from the interior of the basin to the marginal mountainous area (Figure 1c).

In this study, the TRB is divided into nine sub-basins: the Hotan River Basin (HT), the Yarkant
River Basin (YK), the Kashgar River Basin (KS), the Aksu River Basin (AKS), the Weikan-Kaidu-Peacock
River Basin (WKP), Rivers in Southern Xinjiang (SR), the Tarim Main Stream (TMS), the Taklamakan
Desert (TD), and the Kumtag Desert (KD).

Following clockwise, HT originates from the mountains in the southwest and merges into
the Tarim River. YK originates from the mountains in the west and flows east to the Tarim Basin. KS
is located in the northwest of the TRB and does not flow into the mainstream. AKS is the largest
source of water for the Tarim River [60], which is located in the northwest of the Tarim Basin. WKP is
located in the northern TRB, originating from the Tianshan Mountains, including the Weigan River
Basin, the Kaidu River Basin, and the Peacock River Basin. SR is on the southern edge of the Tarim
Basin, including some small river basins such as that of the Qarqan River. TMS does not produce its
flow [60], relying entirely on the source of water supply; its starting point is located at the confluence
of the Yarkant River, Aksu River, and Hotan River and belongs to Lake Tetema. TD is located in
the center of the Tarim Basin, the largest desert in China, and the second-largest flowing desert in
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the world [61], with extremely scarce precipitation. KD is located in the eastern part of the Turpan
Basin, where precipitation is scarce too.

1 

(a) (b)

(c)

Figure 1. The DEM (a); precipitation (b); and temperature (c) in 2019 of the TRB. HT, Hotan
River Basin; YK, the Yarkant River Basin; KS, Kashgar River Basin; AKS, Aksu River Basin; WKP,
Weikan-Kaidu-Peacock River Basin; SR, Rivers in Southern Xinjiang; TMS, the Tarim Main Stream; TD,
Taklamakan Desert; KD, Kumtag Desert.

2.2. Data

This study collected all available Landsat 5, 7, and 8 surface reflectance images of the TRB from
1986 (Landsat 5 was launched in March 1984, but it did not image the TRB during 1984–1985) to
2019. Among them, the Landsat 5 and 7 surface reflectance datasets were generated by processing
the Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm, while the Landsat
8 surface reflectance datasets were generated by processing the Landsat surface reflectance code
(LaSRC) algorithm [62]. In this study, six spectral bands, including blue band, green band, red band,
near-infrared band, short-wave infrared 1 band, and short-wave infrared 2 band, were selected from
the surface reflectance image data of Landsat 5, 7, and 8 for the extraction of water bodies. Landsat 5
covered TRB for the first time in 1986 and terminated in 2012; Landsat 7 was launched in 1999, and
the scan line error occurred in 2003, but it continues to operate to this day; and Landsat 8 was launched
in 2013 and has been operating well until now. In total, 56,284 images from the Landsat series were
used in this study, including 19,771 Landsat 5 during 1986–2012; 25,060 Landsat 7 during 1999–2019;
and 11,453 Landsat 8 during 2013–2019. The spatial distribution, temporal distribution, and month
distribution of total observation counts from 1986 to 2019 are presented in Figure 2.

Moreover, to analyze the relationship between water bodies area and climate factors (precipitation,
temperature, and evapotranspiration), PERSIANN-CDR daily precipitation data [63] and 3-h Global
Land Data Assimilation System (GLDAS) product [60] from 1984 to 2019 were selected. The Joint
Research Centre (JRC) global surface water dataset [8] was used to filter the obvious classification
errors (e.g., mountain shadow) in the water bodies extraction results. Besides, SRTM DEM data were
used to demonstrate the elevation of the TRB.
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 Figure 2. The Landsat image of the study area: (a) the spatial distribution, (b) temporal distribution,
and (c) seasonal distribution.
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2.3. Methods

2.3.1. Original Water Detection Rule

To reduce the problem of commission errors in the mixed pixels of water bodies and other land
cover types, especially vegetation on wet surfaces [64] in MNDWI, Zou et al. [52] combined MNDWI
and vegetation indices (NDVI and EVI) to weaken the influence of vegetation on the water map
algorithm. Specifically, only pixels with stronger water signals than vegetation signals (MNDWI >

NDVI or MNDWI > EVI) are detected. To further remove the noise caused by vegetation, EVI is used to
eliminate vegetation wetland pixels (EVI < 0.1). Therefore, only those pixels that meet the rule MNDWI
> NDVI or MNDWI > EVI and EVI < 0.1 are classified as open-surface water pixels. The remaining
pixels are classified as non-water pixels.

2.3.2. Arid Region Water Detection Rule

Although Zou et al.’s [52] rule has been widely used and achieved good results [22,35,53], we found
that this water detection rule does not perform well in the TRB. Some pixel points in the bare ground
meet the above detection rules, but their visual interpretation results are not water bodies, because
many pixels in the arid region meet the vegetation index is smaller than the water index, but their
water index is also small or even negative. For further research on the causes of misclassification, we
randomly selected 50 water samples and 50 samples that were misidentified as water by Zou et al.’s [52]
water detection rule and obtained the average spectral curves (Figure 3) of two different land types. As
shown in Figure 3, the spectra of the two types of samples are very different, the values of each band of
the misidentified sample are higher than the water sample, the reflectance of the water sample increases
from the blue band to the green band and then continuously decreases, the reflectance of the sample
misidentified as water continuously increases from the blue band to the red band, and the reflectance
of the red and near-infrared bands is approximately the same and continuously decreases. Although
the spectral curves of the two types of samples were significantly different, both meet the water
detection rules for EVI < 0.1 and MNDWI > NDVI or MNDWI > EVI.Water 2020, 12, x FOR PEER REVIEW 7 of 28 
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Figure 3. Spectra of water samples and misidentified samples.

To improve the accuracy of water detection in arid regions such as the TRB, a new water detection
rule, the Arid Region Water Detection Rule (ARWDR), is proposed, which adds the limit of water
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index to the original water detection rule. After calculating MNDWI for these 50 water samples and
50 misidentified samples, the mean value of MNDWI of water samples was 0.595, and the variance
was 0.03; the mean value of MNDWI of misidentified samples was 0.079, and the variance was
0.008. Therefore, adding the restriction of MNDWI to the original water body identification rules
improved the recognition accuracy. Further research found that the mean value of the NDWI value of
the misclassified sample points with MNDWI > 0.1 was −0.103, and the variance was 0.005; therefore,
the restriction of NDWI > −0.1 can be added to further improve accuracy. Finally, we obtained the arid
region water detection rule: NDWI > −0.1, MNDWI > 0.1, EVI < 0.1, and MNDWI > NDVI or MNDWI
> EVI. To compare the advantages and disadvantages of ARWDR with other water detection methods,
this study further compared ARWDR with 10 other existing methods (Table 1).

Table 1. Water index list.

Method Index Threshold

MNDWI [42] MNDWI = (Bgreen − BSWIR-1)/(Bgreen + BSWIR-1) MNDWI > 0

WI2015 [40] WI2015 = 1.7204 + 171Bgreen + 3Bred − 70BNir −

44BSWIR-1 − 71BSWIR-2
WI2015 > 0

AWEInsh [39] AWEInsh = 4 × (Bgreen − BSWIR-1) − (0.25 × BNir +
2.75 × BSWIR-1) AWEInsh > 0

RNDWI [45] RNDWI = (BSir − Bred)/(BSir + Bred) RNDWI > 0
EWI [46] EWI = (Bgreen − BNir − BMir)/(Bgreen + BNir + BMir) EWI > 0

SNN [47]

Sum457 = BNir + BSWIR-1 + BSWIR-2
ND5723 = [(BSWIR-1 + BSWIR-2) − (Bgreen +

Bred)]/[(BSWIR-1 + BSWIR-2) + (Bgreen + Bred)]
ND571 = [(BSWIR-1 + BSWIR-2) − Bblue]/

[(BSWIR-1 + BSWIR-2) + Bblue]

(Sum457 < 0.188) or
(ND5723 < −0.457) or

(ND571 < 0.04) or
(Sum457 < 0.269 and
ND5723 < −0.234 and

ND571 < 0.40)

NDWI+ VI [49]

EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 ×
Bblue + 1)

NDVI = (BNir − Bred)/(BNir + Bred)
NDWI = (Bgreen − BNir)/(Bgreen + BNir)

EVI < 0.1 and
(NDWI > NDVI or

NDWI > EVI)

MNDWI + VI [52]

EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 ×
Bblue + 1)

NDVI = (BNir − Bred)/(BNir + Bred)
MNDWI = (Bgreen − BSWIR-1)/(Bgreen + BSWIR-1)

EVI < 0.1 and
(MNDWI > NDVI or

MNDWI > EVI)

LSWI + VI [49]

EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 ×
Bblue + 1)

NDVI = (BNir − Bred)/(BNir + Bred)
LSWI = (BNir − BSWIR-1)/(BNir + BSWIR-1)

EVI < 0.1 and
(LSWI > NDVI or

LSWI > EVI)

AWEI + VI [36]

EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 ×
Bblue + 1)

NDVI = (BNir − Bred)/(BNir + Bred)
AWEIsh = Bblue + 2.5 × Bgreen − 1.5 × (BNir +

BSWIR-1) − 0.25 × BSWIR-2
AWEInsh = 4 × (Bgreen − BSWIR-1) − (0.25 × BNir +

2.75 × BSWIR-1)

(AWEInsh − AWEIsh >
−0.1) and ((MNDWI > EVI)

or (MNDWI > NDVI))

ARWDR

EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 ×
Bblue + 1)

NDVI = (BNir − Bred)/(BNir + Bred)
MNDWI = (Bgreen − BSWIR-1)/(Bgreen + BSWIR-1)

NDWI = (Bgreen − BNir)/(Bgreen + BNir)

(NDWI > −0.1) and
(MNDWI > 0.1)
and (EVI < 0.1)

and ((MNDWI > EVI) or
(MNDWI > NDVI))

2.3.3. Water Bodies Extraction Process

This study was based on the GEE platform for the detection of open-surface water bodies in
the TRB. First, clouds, cloud shadows, and ice were masked according to the quality band of Landsat
surface reflectance products generated from the Fmask algorithm [65] (pixels with scan line errors were
also masked from the Landsat 7 image starting in 2003), and the remaining pixels were considered
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good observations for the next analysis. Each image was then processed using ARWDR to obtain
a preliminary water body distribution map. Mountain shadows and other classification errors were
finally removed from the JRC global surface water bodies distribution dataset [8,36]. The flow chart of
this study is shown in Figure 4.
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2.3.4. Change Analysis of Open-surface Water Bodies

The percentage of the number of times a pixel is identified as water in all good observations of
the pixel can be defined as the water inundation frequency (WIF) [36], which is calculated as follows:

WIF =

∑N
i=1 w
N

× 100% (1)

where N represents the number of good observations in a specific period, and w is a binary variable:
when w = 1, the pixel is water, and, when w = 0, the pixel is non-water. WIF is taken in the range
of [0%, 100%]. In previous studies [22,36,52], 75% and 25% were used as thresholds for classifying
permanent and seasonal water bodies: the pixel was considered a permanent water bodies when WIF
> 75%, a seasonal water bodies when 75% ≥WIF > 25%, and an invalid water bodies when WIF <

25%. In this way, the uncertainty of image data quality flags and other small probability problems in
image preprocessing are reduced. However, considering that the JRC Global Surface Water Occurrence
Layer was used in this study to mask mountain shadows and other classification errors and most of
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the water bodies in the TRB’s WIF are below 0.25, this threshold needs to be modified; thus, 75% and
1% were used as thresholds to classify permanent water bodies and seasonal water bodies. When WIF
> 75%, the pixel is considered as permanent water bodies; when 75% ≥WIF > 1%, it is considered as
seasonal water bodies; and, when WIF ≤ 1%, it is considered as an invalid water body. In addition,
a WIF greater than 1% and less than or equal to 100% is considered the maximum body of water.

Besides, this study used the Theil–Sen slope estimation method [66] to evaluate the long-term
change trend of open-surface water bodies. The formula for calculating the inclination is:

β = Median
[x j − xi

j− i

]
(2)

where j > i. β > 0 indicates that the series has an upward trend; β = 0 indicates that the series has no
trend; and β < 0 indicates that the series has a downward trend.

3. Results

3.1. Accuracy Comparison of Different Water Indexes

To compare the accuracy of ARWDR and other water body identification methods on TRB, six
Landsat tiles with less than 1% cloud cover in the TRB were selected for this study. they cover
various land types and typical water bodies in the TRB, including Lake Bosten, Lake Tetema, Daxihaizi
Reservoir, water bodies in Kashgar city, water bodies around Aksu farmland, and alpine lakes near
Altun Mountain, corresponding to permanent water bodies, seasonal water bodies, artificial water
bodies, urban water bodies, farmland water bodies, and mountain water bodies, respectively.

Each image was de-clouded by the Fmask algorithm [65], and then six bands of the Landsat 5, 7,
and 8 surface reflectance image data, including blue band, green band, red band, near-infrared band,
short-wave infrared 1 band, and short-wave infrared 2 band, were selected. We randomly generated
60,000 sample points on GEE and the type-stable sample points were preserved by visual interpretation,
resulting in a total of 50,817 sample points, including 4907 water bodies sample points and 45,910
non-water sample points.

Comparing the eleven methods with the samples obtained by visual interpretation, the overall
accuracy and kappa coefficients of the different methods are shown in Figure 5. It can be seen that
the overall accuracy and kappa coefficient of ARWDR are the highest, reaching 0.9972 and 0.9842,
respectively; thus, this study used ARWDR for water detection in TRB.

The reason is single water index method, used by, e.g., AWEInsh, EWI, RNDWI, WI_2015, MNDWI,
etc., has obvious advantages in suppressing interference factors such as vegetation, shadows, and
soil but is overdependent on the strength of the ground feature relationship. When the land feature
relationship weakens, the water body index method cannot obtain satisfactory results. Water body
identification rules combined with vegetation index, such as NDWI + VI, MNDWI + VI, LSWI +

VI, AWEI + VI, etc., use the relative value relationship between the vegetation index and the water
body index to effectively distinguish the water body from the vegetation. However, the water
body identification rules combined with the vegetation index only pay attention to the relative value
relationship between the vegetation index and the water index and ignore the limitations of the absolute
value of the water index. Therefore, in arid areas with sparse vegetation or no vegetation coverage,
some non-water pixels’ water index will be small, but still larger than the vegetation index, and those
pixels will be mistakenly identified as water. Therefore, for arid areas such as the TRB, combining
two water body identification schemes, using the relative relationship between the vegetation index
and the water index, and adding the absolute value limit of the water index, can further improve
the accuracy of water body identification; therefore, the recognition accuracy of ARWDR is higher than
that of the other ten water recognition methods.
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3.2. Spatial Distribution of Open-Surface Water Bodies in the TRB

The distribution of open-surface water bodies in the TRB is highly spatially heterogeneous
(Figure 6 and Table 2). About 52.65% of the permanent water bodies are distributed in the WKP,
followed by 20.87% of the permanent water bodies in the YK and less than 10% of the permanent
water bodies in the remaining seven regions. About 24.88% of the seasonal water bodies are located in
the WKP, followed by 16.27% of the seasonal water bodies in the SR. About 23.55% of the largest water
bodies are located in the WKP, followed by SR with 13.78% of the largest water bodies.

In general, the open-surface water bodies of the TRB are mostly distributed in the piedmont plains
and mountainous areas, and there are barely permanent water bodies in the deserts inside the basin.
This is because the TRB is far away from the ocean and surrounded by high mountains; therefore,
it is difficult for humid gases to enter the basin, and the climate is dry and evaporation is strong.
Precipitation is mostly distributed in mountainous areas (Figure 1b), so that surface water is formed
in mountainous areas. Runoff from precipitation and meltwater from mountain glaciers flow out of
mountainous areas, forming rivers in vast piedmont plains and forming lakes (e.g., Bosten Lake) in
low-lying places, or it flows into the mainstream of the Tarim River and then into the tail (e.g., Taitma
Lake). In the nine sub-basins, Bosten Lake is located at the lowest point in the local elevation and it
receives most of the runoff of the Kaidu River, therefore WKP has the largest permanent water body.
Because precipitation in the TRB is mainly distributed in the mountainous areas of YK. Therefore, YK
has the largest runoff among the sub-basins, its annual average runoff is 68.75 × 108 m3 [67], and its
open-surface water area is second only after WKP. Since the four sub-basins of KS, HT, SR, and AKS all
include some mountainous areas, their water areas are not much different, and they are all smaller
than WKP and YK. TMS receives runoff from WKP, YK, KS, HT, SR, and AKS [59], but does not include
mountain catchments, therefore its water body area is only greater than those of TD and KD. Since
TD and KD are almost desert areas, there are few water bodies in the two sub-basins. However, due
to the construction of the Lop Nur potash plant in KD, the permanent water body has increased by
1.52 km2, and the seasonal water body has increased by 372.65 km2.
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Figure 6. The spatial distribution of open-surface water bodies from 1986 to 2019 in the TRB: (a)
the source of the mainstream of the Tarim River, (b) Bosten Lake, (c) Daxihaizi Reservoir, (d) Yarkant
River, (e) Tetema Lake, and (f) Lop Nor Potash Plant.

Table 2. The area of open-surface water bodies from 1986 to 2019 in the TRB. HT, Hotan River Basin; YK,
the Yarkant River Basin; KS, Kashgar River Basin; AKS, Aksu River Basin; WKP, Weikan-Kaidu-Peacock
River Basin; SR, Rivers in Southern Xinjiang; TMS, the Tarim Main Stream; TD, Taklamakan Desert;
and KD, Kumtag Desert.

Zone Permanent Water
Bodies (km2)

Seasonal Water Bodies
(km2)

Max Water Bodies
(km2)

HT 128.05 4162.69 6609.00
YK 436.92 6048.67 12,041.59
KS 159.06 5418.37 11,455.65

AKS 99.95 4875.39 9309.38
WKP 1102.26 11,006.33 21,000.30

SR 105.26 7198.40 12,675.96
TMS 62.13 4663.80 12,183.94
TD 0 248.05 1415.35
KD 0 621.14 2186.54

Total 2093.63 44,242.80 88,877.70

This research has identified the open-surface water bodies of TRB from the perspective of remote
sensing, calculated the submerged frequency per pixel according to ARWDR, and distinguished
permanent water bodies, seasonal water bodies, and non-water. However, water bodies, such as lakes,
rivers, and reservoirs, are not classified from the perspective of hydrology. Therefore, we selected six
representative water bodies (Figure 6a–f) to analyze the functionality for natural or anthropogenic
environments. We also calculated the long-term dynamic changes in the area of these six typical water
bodies (Table S1) and created dynamic maps of the historical changes of these six typical water bodies
(Figure S1a–f). Figure 6a is the source of the mainstream of the Tarim River and is also an important
cotton and wheat production area [68]. In addition to several rivers, there are also reservoirs such as
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Shengli Reservoir. These water bodies provide irrigation water for agricultural production in this
area. Figure 6b is Bosten Lake, which is the main water source of Korla and undertakes the task of
ecological water delivery to the lower reaches of the Tarim River [69]. Figure 6c is a series of reservoirs
headed by the Daxihaizi Reservoir. The Daxihaizi Reservoir was built in 1960 to irrigate local crops but
caused some side effects such as water cuts in the downstream. Therefore, it has completely withdrawn
from agricultural irrigation since 2012 and assumed the task of ecological water delivery to the lower
reaches of the Tarim River. Figure 6d is a part of YK, which has the largest agricultural irrigation area
in Xinjiang, with high-quality cotton and commercial grain base, and provides plenty of irrigation
water for agricultural production in this area [70]. Figure 6e shows Tetema Lake, the tail of the Tarim
River. Due to ecological water transportation, Lake Tetema, which had been dry for nearly 30 years,
was restored to its surface. This is of great significance to the downstream ecological restoration and
the improvement of the ecological vulnerability of the tail Lake area. More importantly, the restoration
of Tetema Lake protected the natural green corridors of the lower reaches of the Tarim River [71],
preventing TD and KD from converging. The wetland area of Tetema Lake has reached 511 km2, and
the vegetation coverage increased significantly [72]. Figure 6f shows the Lop Nur Potash Plant. It is
a huge artificial water body built to alleviate the shortage of potash fertilizer in China. It will promote
the economic development of Xinjiang, relieve the pressure of China’s import of potash fertilizer, and
promote the development of China’s agriculture to a higher level [73].

3.3. Monthly Changes in Open-Surface Water Bodies in the TRB

The open-surface water bodies in the TRB showed a clear seasonal difference, with the area of
open-surface water bodies decreasing rapidly from January to April, decreasing slowly from April
to July, reaching its lowest value in July, rising slowly from July to October, and rising rapidly from
October to December in a “single-valley” trend. The largest area of permanent and seasonal water
bodies in January was 4487.97 and 67,809.51 km2, respectively, and the smallest are of permanent
and seasonal water bodies in July was 1691.16 km2 and 10,566.24 km2, respectively (Figure 7). This is
due to the gradual rebound of temperature in the TRB from January to April, the evapotranspiration
increasing, the plants gradually entering the rejuvenation period, and the moisture required for
growth reaching maximum, which led to the reduction of open-surface water bodies area. During
April–July, temperatures rise to their maximum for the whole year, evapotranspiration of surface water
bodies increases to the maximum, but the melting of snow in the mountains gives the river water
recharge so that the reduction of open-surface water bodies reaches a relatively calm state. During
August–December, temperatures gradually decrease, evapotranspiration decreases, the moisture
required for plant growth decreases, and the open-surface water bodies area increases [74].

We can find similar characteristics of monthly variation in the nine sub-basins of the TRB (Figure 8),
that is, the area of water bodies was large in winter and small in summer. The maximum surface
water bodies area of each sub-basin appears in January, while the minimum surface water bodies area
varies from sub-basin to sub-basin, with the minimum water bodies area of KD appearing in May,
in June in TD and YK, in July in TMS, HT, and WKP, and in August in RS, AKS, and KS. This may
be due to the different climate characteristics and planting structure of each sub-basin. For example,
unlike other sub-basins, the minimum water area of TMS does not gradually increase from August to
December but experiences another valley value in October (Figure 8g). This is because TMS is the main
grain-producing area with a large area of winter wheat, and October is the winter wheat irrigation
period [75], which leads to a decrease in the open-surface water area.
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Figure 7. The monthly variation of surface water bodies for 1984 to 2019 in the TRB.

1 
 

 

Figure 8. The monthly variation of surface water bodies for 1984 to 2019 in the (a) HT; (b)YK; (c) KS; (d)
AKS; (e) WKP; (f) SR; (g) TMS; (h) TD; and (i) KD. HT, Hotan River Basin; YK, the Yarkant River Basin;
KS, Kashgar River Basin; AKS, Aksu River Basin; WKP, Weikan-Kaidu-Peacock River Basin; SR, Rivers
in Southern Xinjiang; TMS, the Tarim Main Stream; TD, Taklamakan Desert; and KD, Kumtag Desert.

3.4. Yearly Changes in Open-Surface Water Bodies in the TRB

Notably, because the Landsat 5 images from 1986 to 1991 did not fully cover the entire TRB,
images for these six years were not used in calculating the annual change in open-surface water bodies
in the TRB, and the analysis was calculated starting in 1992.

Over the last 28 years, the area of permanent water bodies increased slowly but not significantly
(5.1 km2/year, p = 0.0735), while seasonal and maximum water bodies experienced a sharp increase
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of 744.0 and 754.7 km2/year, respectively, and the trend in both was extremely significant (p < 0.001).
Regime shift detection revealed mutation points in three water body types: permanent water bodies
did not produce mutations over 29 years, while both seasonal and maximum water bodies produced
mutations in 2010 (Figure 9). The trends in permanent water bodies, seasonal water bodies, and
maximum water bodies area in the nine sub-basins of the TRB were similar to the whole basin
with an upward trend except for the permanent water bodies in AKS (−0.17 km2/year) and WKP
(−8.16 km2/year), and the mutation points for the three types of the water bodies area in each sub-basin
were not concentrated but were located within the period 2001–2013 (Figure 10 and Table 3).

1 
 

 

Figure 9. The inter-annual dynamics of water bodies areas during 1992–2019, with the Theil–Sen
(TS) trends fitted in dashed lines and the average annual area regime shifts denoted in bold lines: (a)
permanent water bodies; (b) seasonal water bodies; and (c) maximum water bodies.
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Figure 10. The annual variation of open-surface water bodies for 1992 to 2019 in the (a) HT; (b) YK;
(c) KS; (d) AKS; (e) WKP; (f) SR; (g) TMS; (h) TD; and (i) KD. HT, Hotan River Basin; YK, the Yarkant
River Basin; KS, Kashgar River Basin; AKS, Aksu River Basin; WKP, Weikan-Kaidu-Peacock River
Basin; SR, Rivers in Southern Xinjiang; TMS, the Tarim Main Stream; TD, Taklamakan Desert; and KD,
Kumtag Desert.

Table 3. Statistical summary of surface water bodies area dynamics in TRB’s nine zones. HT, Hotan
River Basin; YK, the Yarkant River Basin; KS, Kashgar River Basin; AKS, Aksu River Basin; WKP,
Weikan-Kaidu-Peacock River Basin; SR, Rivers in Southern Xinjiang; TMS, the Tarim Main Stream; TD,
Taklamakan Desert; and KD, Kumtag Desert.

Zone Water Body Type Abrupt Point Rate of Change (year−1)

Area (km2) p-Value

HT
Permanent Water bodies 2.29 * <0.001
Seasonal Water bodies 2009 65.03 * <0.001

Max Water bodies 2009 65.75 <0.001

YK
Permanent Water bodies 3.07 0.0515
Seasonal Water bodies 46.35 * 0.0024

Max Water bodies 54.77 * 0.0016

KS
Permanent Water bodies 0.70 0.759
Seasonal Water bodies 2013 79.80 * <0.001

Max Water bodies 2013 74.34 * <0.001

AKS
Permanent Water bodies −0.17 0.493
Seasonal Water bodies 2011 99.80 * <0.001

Max Water bodies 2011 100.15 * <0.001

WKP
Permanent Water bodies 2006 −8.16 * <0.001
Seasonal Water bodies 2003 147.95 * <0.001

Max Water bodies 2003 143.80 * <0.001

SR
Permanent Water bodies 2012 3.467 * <0.001
Seasonal Water bodies 2008 155.06 * <0.001

Max Water bodies 2008 154.30 * <0.001
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Table 3. Cont.

Zone Water Body Type Abrupt Point Rate of Change (year−1)

Area (km2) p-Value

TMS
Permanent Water bodies 0.45 0.412
Seasonal Water bodies 2003 96.98 * <0.001

Max Water bodies 2003 99.35 * <0.001

TD
Permanent Water bodies 2013 0.33 * <0.001
Seasonal Water bodies 7.37 * <0.001

Max Water bodies 7.68 * <0.001

KD
Permanent Water bodies 2008 7.47 * <0.001
Seasonal Water bodies 2001 12.02 * <0.001

Max Water bodies 2001 21.66 * <0.001

* indicates a significant value with 95% confidence interval.

To further study the interannual variation of surface water bodies, we show the conversion
among permanent water bodies, seasonal water bodies, and non-water and the influence factors of
open-surface water bodies in Sections 3.5 and 3.6, respectively.

3.5. Conversions of Open-Surface Water Bodies in the TRB

This study divided the entire study period (1986–2019) into three sub-periods (1986–1999,
2000–2010, and 2011–2019) to further demonstrate the conversion among permanent water bodies,
seasonal water bodies, and non-water bodies in the TRB, the result is shown in Figure 11.
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Figure 11. The conversion of open-surface water bodies in the TRB.

Between the first two stages (1986–1999 and 2000–2010), the change in water bodies type was
mainly the mutual conversion between seasonal water bodies and non-water, with 20,476.64 km2 of
seasonal water bodies converted to non-water and 10,932.33 km2 of non-water converted to seasonal
water bodies and a decrease in seasonal water bodies and an increase in non-water. This was followed



Water 2020, 12, 2822 17 of 27

by the mutual conversion between permanent and seasonal water bodies, with 345.27 km2 of permanent
water bodies converted to seasonal water bodies and 372.96 km2 of seasonal water bodies converted
to permanent water bodies and an increase in permanent water bodies and a decrease in seasonal
water bodies. Finally, there was the mutual conversion between permanent and non-water, with only
18.46 km2 of permanent water bodies converted to non-water and 11.62 km2 of non-water converted to
permanent water bodies. Between the latter two stages (2000–2010 and 2011–2019), the change in water
bodies types continued to be dominated by the mutual conversion between seasonal and non-water,
with 8876.55 km2 of seasonal water bodies converted to non-water and 15,467.51 km2 of non-water
converted to seasonal water bodies and an increase in seasonal water bodies and a decrease non-water.
This was followed by the mutual conversion between permanent and seasonal water bodies, with
249.12 km2 of permanent water bodies converted to seasonal water bodies and 392.77 km2 of seasonal
water bodies converted to permanent water bodies and an increase in permanent water bodies and
a decrease in seasonal water bodies. Finally, there was the mutual conversion between permanent and
non-water, with only 2.29 km2 of permanent water bodies converted to non-water and 11.74 km2 of
non-water converted to permanent water bodies. The overall (from 1986–1999 to 2011–2019) change in
water bodies type is mainly the mutual conversion between seasonal and non-water, with 13,849.46 km2

of seasonal water bodies converted to non-water bodies and 10,827.56 km2 of non-water converted to
seasonal water bodies and a decrease in seasonal water bodies and an increase in non-water. This was
followed by the mutual conversion between permanent and seasonal water bodies, with 289.72 km2 of
permanent water bodies converted to seasonal water bodies and 454.37 km2 of seasonal water bodies
converted to permanent water bodies and an increase in permanent water bodies and a decrease in
the area of seasonal water bodies. Finally, there was the mutual conversion between permanent and
non-water, with only 7.14 km2 of non-water converted to permanent water bodies and no permanent
water bodies converted to non-water.

During 1986–1999, permanent water bodies totaled 2004.021 km2, seasonal water bodies totaled
49,741.98 km2, and non-water totaled 65,258.19 km2. During 2000–2010, permanent water bodies totaled
2024.861 km2, seasonal water bodies totaled 40,169.98 km2, and non-water totaled 74,809.35 km2.
During 2011–2019, permanent water bodies totaled 2091.214 km2, seasonal water bodies totaled
46,585.29 km2, and non-water totaled 68,327.5 km2. It can be seen that the area of permanent water
bodies has been increasing slightly during the three stages. Seasonal water bodies have experienced
a trend of decreasing and then increasing. On the contrary, non-water has experienced a trend of
increasing and then decreasing.

Ran [76] found that, during the 25 years from 1990 to 2015, the main changes occurred among
water bodies, unused land, and grassland, while the transformation of water bodies from cropland,
forest, and residential land is relatively small. This showed that, during the entire period from
1986–1999 to 2011–2019, human activities were not the main reason for the mutual transformation
between seasonal water bodies and non-water. We found that the conversion of non-water into
seasonal water bodies mainly occurred in the western mountainous where glaciers are distributed over
a large area. This may be due to the increase in temperature in the past 30 years, which has accelerated
the melting of snow and ice in the mountains (Table 4). In recent years, there have been many studies
on TRB’s glaciers [77–81]. Affected by topography, climate, glacier structure, and other factors, TRB’s
glaciers have obvious regional differences, but the overall trend is to shrink. The meltwater covered
the non-water near the glacier and forms water bodies. The transformation of water bodies into
non-water mainly occurred in the inner plains of the basin. This may also because of the increase in
temperature, which led to strong evaporation, and part of the seasonal water bodies was transformed
into non-water.
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Table 4. Changes of typical glaciers in the TRB during recent decades.

Typical Glaciers Time
Interval

Area
Change
(km2)

Rate of
Change

(%)

Annual
Change

(%·year−1)

Changes in Ice
Reserves

(km3)

Glacier No. 72, Qingbingtan,
Tomur Peak [79] 1964–2009 −1.53 −14.7 −0.03 −0.0141

Kunlun Mountains [80] 1976–2011 −1243.6 −12 −0.34 —
West Kunlun Peak District

[80] 1990–2011 −16.83 −0.62 −0.03 —

West Kunlun Mountains [81] 1977–2013 −91.12 −2.95 −0.08 −20.21
Qogir North Slope Glacier

[78] 1978–2014 −53.37 −6.81 −0.19 —

Kelechin River Basin [77] 1978–2015 −145.78 −8.00 −0.22 —

Similar to the overall trend from 1986–1999 to 2000–2010, the area of permanent water bodies
increased slowly, the area of seasonal water bodies declined, and the area of non-water increased.
The changes mainly occurred between seasonal water bodies and non-water. Human activities at
this stage were not the main factors affecting the transformation of surface types. Rising temperature
caused the conversion of non-water in mountainous into water bodies, and the conversion of seasonal
water bodies in plains to non-water was through melting glaciers and enhanced evaporation.

From 2000–2010 to 2011–2019, the area of permanent water bodies increased slowly, seasonal water
bodies rose rapidly, and the area of non-water bodies declined. Changes still happened mainly between
seasonal water bodies and non-water. Human activities at this stage were still not the main factor
affecting the transformation of land types. Rising temperature caused the non-water in mountainous
into water bodies, and the plain seasonal water bodies were transformed into non-water by melting
glaciers and enhanced evaporation respectively. However, the increase in precipitation during this
period has made up for the evaporation of plain areas. Therefore, seasonal water bodies have risen
rapidly, while non-water bodies have declined.

3.6. Relationship between the Climatic Factors and Yearly Maximum Water Bodies

From 1992 to 2019, the area of TRB’s maximum water body area showed an upward trend. During
this period, we calculated the Pearson correlation coefficients between the maximum water body area
and annual precipitation, annual temperature, and annual evapotranspiration. On the interannual
scale, the maximum water area of the TRB is significantly correlated with precipitation, annual average
temperature, and annual evapotranspiration (p < 0.001, p = 0.0019, and p = 0.0023, respectively)
(Figure 12). The highest correlation coefficient is annual precipitation, followed by temperature and
evapotranspiration (0.653 > 0.649 > 0.552) (Figure 12).

It is well understood that the increase in precipitation directly affects the area of water bodies.
The increase in temperature also expands the area of water bodies by accelerating the melting of ice
and snow. Therefore, both have a significant positive correlation with water bodies. However, we
were surprised to find that evapotranspiration is also significantly positively correlated with water
bodies. The influencing factors of evapotranspiration in TRB include solar radiation, soil heat flux,
air temperature, humidity, air pressure, air resistance, etc. [82]. According to that, the increase in
evapotranspiration can be explained from two aspects: (1) the expansion of the water body area
provides more underlying surfaces that are easy to evaporate [82]; and (2) rising temperature provides
a sufficient source of heat for evapotranspiration. Moreover, the increase in evapotranspiration did
not offset the positive effects of precipitation and melted ice and snow on the expansion of the water
area. The combination of all conditions resulted in a positive correlation between the water area
and evapotranspiration.
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Figure 12. The Pearson correlation coefficient between water area and (a) annual precipitation (The
red dot represents 2016 and the blue dot represents 2017), (b) annual temperature, and (c) annual
evapotranspiration from 1992–2019. The black lines in the figure are linear regression curves. The gray
area represents the 95% confidence interval.

In Figure 12a, there are two very significant outliers (marked by red (2016) and blue (2017)). In
2016, there was the largest precipitation in 29 years (314.2 mm), but the maximum water area appeared
in 2017. This may be caused by two reasons: (1) There could be a time lag from precipitation to runoff

and convergence into surface water bodies. When studying the relationship between the water area
and precipitation of Poyang Lake, Wang et al. [35] found that there was a 1–2-month lag between
the change in water area and precipitation. Therefore, the maximum of water area in the TRB will
be slightly later than the maximum rainfall. (2) To reduce the uncertainty of the image data quality
mark and the potential errors caused by other small-probability problems in image preprocessing, this
study set water bodies with WIF < 1% as non-water. Therefore, in 2016, a large area of short-lived
temporary water bodies occurred due to a large amount of precipitation, but, for most pixels, their WIF
was less than 1% so they were classified as non-water, resulting in the surface water area not reaching
the maximum value with precipitation.

4. Discussion

4.1. Comparison with JRC Yearly Water Classification History

In this section, we compare our results with JRC Yearly Water Classification History (v1.1) [8],
a dataset generated from 3865,618 scenes in Landsat 5, 7, and 8 images covering the global spatiotemporal
distribution of surface water bodies during 1984–2018. The dataset classifies each pixel into two
categories, namely water bodies and non-water, where water bodies are divided into permanent water
bodies and seasonal water bodies based on whether they are identified each month, the sum of which
is considered the maximum water bodies area of the JRC data. The results are shown in Figure 13.
Overall, the spatial distribution pattern and temporal trends of surface water bodies were similar
between the two datasets, and the permanent water bodies in both this study and JRC have changed
little over time. However, there was a big difference between the two: the multi-year average of
permanent water bodies based on JRC data was 9471.44 km2, 7027.5 km2 more than in this study, and
the multi-year average of seasonal water bodies based on JRC data was 26,647.7 km2, 6161.9 km2 more
than in this study. This is because the JRC defines permanent water bodies and seasonal water bodies
differently from this study. JRC defines permanent and seasonal water bodies according to the number
of months that are identified as water bodies in a year, considered as permanent water bodies if all
12 months are identified as water bodies, and considered as seasonal water bodies if the number of
months that are identified as water bodies falls within the 1–11 interval. Thus, the JRC results are
larger than this study.
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4.2. Attribution of Open-Surface Water Bodies Changes in the TRB

There is a good correlation between the maximum water bodies area in the TRB and precipitation.
The results indicate that precipitation is an important factor in controlling the changes of open-surface
water bodies in the TRB. In addition, the entire TRB showed a trend of slightly increasing precipitation
from 1992 to 2019; in particular, in 2016, against the backdrop of a super-strong El Niño event [83],
the average precipitation in the TRB in 2016 reached 314.2 mm [63] (Figure 12), the highest since 1961.
The increase in precipitation has been accompanied by an increasing trend of permanent, seasonal
water bodies in the TRB from 1992 to 2019.

Moreover, there is no doubt that precipitation is not the only climatic factor that influences changes
in open-surface water bodies in the TRB. Open-surface water bodies in the TRB showed a clear “single
valley” trend, with a sharp decline from January to April, a slow decline from April to July, a slow rise
from July to October, and a sharp rise from October to December. This is because temperature controls
the phenological effect, snowmelt, and evaporation, which together cause the open-surface water
bodies of the TRB to show obvious intra-year differences. In this study, we observed an upward trend
in the correlation coefficient between the maximum water bodies and yearly precipitation from 1992 to
2019. The likely reason is that the impact of human activities on the TRB has decreased over the past few
years. Many studies have demonstrated the effects of human activities on surface water bodies [54,84].
The TRB has experienced intense human activity over the years, with complex impacts on open-surface
water bodies. On the one hand, over the past 60 years, the TRB has been subjected to intensive human
economic and social activities centered on the exploitation and use of water resources, and, as a result of
agricultural irrigation, grazing, urban expansion, and the construction of inappropriate water facilities
such as the Daxihaizi Reservoir, open-surface water bodies have been encroached upon by other
land-use types, the lower Tarim River has been completely cut off, and the tail of the river—Lop Nor
and Lake Tetema—dried up in 1970 and 1972, respectively, resulting in a rapid decline in open-surface
water bodies. However, human activities can also increase the area of surface water bodies. In KD,
for example, the region experienced a significant increase in permanent water bodies as a result of
the construction of the new Lop Nor Potash Plant. Comparing the open-surface water bodies in KD
during 1986–2000 and 2001–2019 (before and after the construction of the Lop Nor Potash Plant), it was
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found that the permanent water bodies in KD increased by 1.52 km2 and the seasonal water bodies
increased by 372.65 km2; in addition, due to the implementation of the ecological water transfer project
to the lower Tarim River in 2000, the water bodies of Lake Tetema, which had been dried up since 1972,
were restored; comparing the open-surface water bodies in the Tetema Lake region during 1986–2000
and 2000–2019 (before and after the ecological water transfer), it was found that the permanent water
bodies in the Tetema Lake region increased by 2.31 km2 and the seasonal water bodies increased by
616.9 km2, indicating the great influence of human activities on the increase of surface water bodies
(Figure 14).

1 
 

 

Figure 14. Open-surface water bodies: (a) before (1986–2000) and (b) after (2001–2019) the Lop Nor
Potash Plant; and (c) before (1986–2000) and (d) after (2001–2019) the ecological water delivery.

In short, precipitation is the main factor that affects the interannual variability of the water body
area, while temperature controls the intra-year variation in TRB. Human activities have positive and
negative effects on the change of water body area, but it is limited to local areas and not the main factor.

4.3. Advantages and Uncertainties of This Study

In previous studies, water body detection was performed by setting constant thresholds for water
indices, which can be subjective, time-consuming [39], and difficult to extrapolate to other regions due
to differences in images and locations [85]. Zou et al. [52] did not use fixed thresholds but performed
water body detection based on a combined MNDWI and EVI/NDVI relationship, which can well
distinguish vegetation from water bodies and perform well in heavily vegetated areas but not in
unvegetated bare ground. Therefore, based on these two types of water detection ideas, a new water
bodies identification rule (ARWDI) for arid regions with sparse vegetation cover was established in this
study by setting different thresholds (−0.1 and 0.1) for the two water indices of NDWI and MNDWI,
combined with the relationship of water index and vegetation index.

Most of the water bodies indices have more omission errors than commission errors [39,40].
The mixed pixels at the edges of water bodies may be the major reason for water pixel omission [40].
In contrast, Zou et al.’s [52] detection rule has a greater commission error than omission error, with
many non-water pixels identified as water. The classification errors in this study were mainly due to
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commission error, with 98 water samples identified as non-water and 41 non-water samples identified
as water bodies. Low albedo surfaces, including shadows of mountains, buildings, and clouds, are
a major source of commission errors in water detection [39,86]. Although cloud quality bands are used
for masking clouds in data preprocessing, undetected residual clouds and cloud shadows can still
cause commission errors. In this study, the water frequency threshold (0.01) was used to remove most
of the noise from the water frequency map. However, along with the noise removal, the frequency
threshold also removes some temporary water signals, which may lead to an underestimation of
the water bodies area.

5. Conclusions

In this study, we proposed a surface water body identification rule, ARWDR, which is applicable
to arid areas. ARWDR effectively solves the problem that Zou et al.’s [52] rule cannot effectively
distinguish between bare soil and water bodies. Then, we investigated the long-term changes of
open-surface water bodies in the TRB from 1992 to 2019 based on all available Landsat 5, 7, and 8
images in the GEE platform by ARWDR. The open-surface water bodies were classified into permanent
water bodies and seasonal water bodies according to the inundation frequency. The spatial distribution
and monthly and annual changes of permanent water bodies and seasonal water bodies in the TRB
over the past 28 years were calculated. Overall, this study provides the following conclusions:

(1) The distribution of surface water bodies in the TRB shows obvious spatial heterogeneity. The water
bodies are mainly distributed in mountainous areas and piedmont plains, and there are almost
no permanent water bodies in the basin.

(2) Phenological effects and snowmelt and evaporation, which are affected by temperature changes,
together cause the surface water bodies of the TRB to show obvious intra-year differences, that is
decreasing from January to July, and then increasing to December.

(3) From 1992 to 2019, with the increase of precipitation, the implementation of ecological water
transportation, and other measures, the permanent water bodies and seasonal water bodies of
the TRB showed an increasing trend.

The results are meaningful as a further reference for watershed management of TRB in the context
of climate change to ensure the security of water resources. However, this study did not thoroughly
investigate the effects of human activities on the long-term changes of TRB’s open-surface water bodies.
In the next work, we will use more economic and social data (such as population, GDP, cultivated field
area, and irrigation water consumption) to investigate the changes and explore the reasons.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/10/2822/s1,
Figure S1: Dynamic maps of the historical changes of six typical water bodies. (a) the source of the mainstream
of the Tarim River, (b) Bosten Lake, (c) Daxihaizi Reservoir, (d)Yarkant River, (e) Tetema Lake, and (f) Lop Nor
Potash Plant.
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