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Abstract: A bivariate kernel density estimation (KDE) method was utilized to develop a stochastic
framework to assess how agricultural droughts are related to unfavorable meteorological conditions.
KDE allows direct estimation of the bivariate cumulative density function which can be used to extract
the marginal distributions with minimal subjectivity. The approach provided excellent fits to bivariate
relationships between the standardized soil moisture index (SSMI) computed at three- and six-month
accumulations and standardized measures of precipitation (P), potential evapotranspiration (PET),
and atmospheric water deficit (AWD = P − PET) at 187 stations in the High Plains region of the
US overlying the Ogallala Aquifer. The likelihood of an agricultural drought given a precipitation
deficit could be as high as 40–65% within the study area during summer months and between 20–55%
during winter months. The relationship between agricultural drought risks and precipitation deficits
is strongest in the agriculturally intensive central portions of the study area. The conditional risks of
agricultural droughts given unfavorable PET conditions are higher in the eastern humid portions
than the western arid portions. Unfavorable PET had a higher impact on the six-month standardized
soil moisture index (SSMI6) but was also seen to influence three-month SSMI (SSMI3). Dry states as
defined by AWD produced higher risks than either P or PET, suggesting that both of these variables
influence agricultural droughts. Agricultural drought risks under favorable conditions of AWD were
much lower than when AWD was unfavorable. The agricultural drought risks were higher during the
winter when AWD was favorable and point to the role of soil characteristics on agricultural droughts.
The information provides a drought atlas for an agriculturally important region in the US and, as such,
is of practical use to decision makers. The methodology developed here is also generic and can be
extended to other regions with considerable ease as the global datasets required are readily available.

Keywords: bivariate joint distribution; stochastic risk assessment; Ogallala Aquifer; High Plains
Aquifer; agricultural droughts; meteorology; water resources management

1. Introduction

Agricultural droughts have resulted in billions of dollars of losses in recent years and have
caused other socio-ecological impacts [1,2]. In addition to devastating fragile rural economies,
agricultural droughts have the potential to disrupt global food security [3]. Droughts are also known
to decrease structural sugars and lignin content and thus affect the ethanol yields in biorefining
operations [4]. Thus, drought-related water deficits can also impact renewable energy production.
Therefore, understanding agricultural droughts is of paramount importance for sustaining rural
economies and fostering food security and energy independence.

Agricultural droughts arise when the soil moisture is affected by enhanced atmospheric dryness
brought forth by precipitation deficits and associated temperature increases over an extended period.
This latter situation is referred to as meteorological drought. Soil moisture deficits affect plant growth,
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alter the microbial ecosystem, and affect soil structure and its physical properties (e.g., infiltration
capacity) [5–8]. Soils can sometimes absorb the effects of meteorological droughts but at other times
continue to persist in a drier than normal state even after the cessation of meteorological droughts [9,10].
Therefore, understanding how meteorological droughts propagate through agricultural systems is
important to develop insights related to mitigating agricultural drought impacts in the short-term,
as well as guide long-term climate adaptation policies [11,12].

Mathematical models based on the principles of mass balance are commonly used to quantify
agricultural droughts [13–17]. These models often utilize a generic conceptual representation of the
system of interest (e.g., a farm or a watershed) and develop pertinent governing equations using
the water balance principle, along with other standard parameterizations of relevant hydrological
processes (e.g., the Thornthwaite equation for potential evapotranspiration). The soil moisture is
assumed to be the key master variable [18] and hydrological fluxes are all stated as functions of soil
moisture [15]. As soil moisture measurements are challenging [19,20] and long-term measurements
of soil moisture are not available in many parts of the world, these models are often calibrated and
evaluated based on their ability to model other physical processes (e.g., streamflow) that are controlled
by soil moisture dynamics [15].

Model-derived soil moisture data are standardized to create a standardized soil moisture index [9,
12] in a manner analogous to the standard precipitation index [21] used to define meteorological
droughts. The abbreviation SSMI (standardized soil moisture index) is used to refer to a standardized
agricultural drought index in this study. Model-based standardized soil moisture indices are being
widely used to monitor agricultural droughts. For example, the United States Drought Monitor (USDM)
uses the leaky bucket model [15,22] developed by the Climate Prediction Center (CPC) of the National
Oceanic and Atmospheric Administration (NOAA) to define soil moisture anomalies [23]. A primary
advantage of such models is that they utilize hydrometeorological parameters (i.e., temperature and
precipitation) as model forcing terms. Therefore, such models provide a convenient approach to
evaluate how meteorological droughts propagate through agricultural systems.

As parameters describing meteorological characteristics cannot be predicted with certainty,
they are best described in a probabilistic manner. Soil moisture estimates derived using these
parameters will also tend to be uncertain and exhibit variability. Therefore, the relationship between
meteorological forcings and soil moisture-based drought indicators are best studied using stochastic
frameworks. Stochastic methods are increasingly being adopted to study risks in agricultural
systems [24]. Such a framework would help evaluate how agricultural drought risks (defined using a
soil moisture-based indicator) are dependent upon meteorological forcings, such as precipitation and
potential evapotranspiration.

There is a growing recognition that understanding mechanisms controlling droughts is a
requirement for managing them properly [25–28]. A framework to evaluate the relationships
between meteorological and agriculture-related drought indicators has been proposed, making use of
contingency tables [10] and splitting the agricultural and climate indicators into drought and no-drought
climate states. This study extends that framework by evaluating the relationships over the full range
of climate states and using probabilistic relationships to model joint agricultural drought and climate
state indicators.

The overall goal of this study is to develop a stochastic framework to establish relationships
between agricultural drought risks and meteorological drivers such as precipitation and potential
evapotranspiration. More specifically, a nonparametric kernel density estimation (KDE) framework has
been utilized in this study to facilitate the development of joint and conditional probability distributions
between agricultural drought and meteorological forcings. KDE offers several advantages in not only
providing flexible and robust methods to derive marginal and joint distributions, but also in minimizing
subjectivity associated with the selection of suitable parametric models for describing the relationships
between hydrological variables [29,30]. While the study has some technical commonalities with other
studies that aimed to develop joint drought risk indicators [9,31], the goal here is very different and
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focused on the use of stochastic frameworks to elucidate how changes in meteorological forcings affect
agricultural drought risks and not on developing a joint drought index perse. The developed framework
is presented next and illustrated by applying it to the US High Plains region overlying the Ogallala
Aquifer to understand factors affecting agricultural droughts in this agriculturally important region.

2. Methodology

2.1. Soil Moisture Modeling

While the proposed stochastic framework is model agnostic, the leaky bucket model [15,22] is
adopted here for illustration. This model is known to provide suitable soil moisture predictions for
quantifying agricultural droughts and is widely used for monitoring soil moisture anomalies [23].
Furthermore, the model, while built using the fundamental principle of mass balance, is also
parsimonious and can be run with readily available data. As such, it provides a suitable
conceptualization to illustrate the developed methodology.

Details of the leaky bucket model can be found in Huang et al., (1996) [15]. Briefly, the model
evaluates the soil moisture dynamics in the upper 1–2 m (root zone) of the soil over an area A. The basic
governing equation is given as:

dW
dt

= P(t) − E(t, W, PET) −R(t, W) −G(t, W) (1)

where W is the soil moisture analogue (in mm) aggregated over the area A and root zone depth;
P, E, R, and G represent precipitation, evapotranspiration, runoff, and deep percolation fluxes,
respectively, and take the units of mm/month. E, R, and G are assumed to be a function of soil
moisture W. The relationships between the hydrological fluxes and soil moisture are stated using
four parameters—µ,α,m,Wmax where Wmax is the maximum soil moisture that can be held in the
root zone and µ,α,m are essentially fitting parameters. The actual evapotranspiration (E) is also a
function of potential evapotranspiration (PET), which is computed as a function of temperature using
the Thornthwaite PET model. These unknown model coefficients must be obtained via calibration.
Huang et al., (1996) provide estimates for these parameters based on calibration studies carried out
using watersheds in Oklahoma [15]. The calibrated model was shown to possess reasonable skill for
use in drought monitoring studies based on comparisons from other locations [22], and is particularly
suited for use in the illustrative case study, which also shares similar geographic characteristics to
which the model was calibrated.

2.1.1. Standardized Soil Moisture Index (SSMI)—An Agricultural Drought Indicator

The soil moisture W computed using the model can be averaged over a time period T and used to
calculate the agricultural drought index (referred to as the standardized soil moisture index or SSMI
here) using the same steps that are used to calculate the standardized precipitation index, SPI [9,12,21].
For example, the time period T can be taken as three months and six months to represent intra-season
and full season droughts [10]. Once the SSMI is computed, the severity (S) of the drought indicator can
also be obtained via summation over a fixed duration (D) of interest (e.g., annual, summer, winter).
The intensity (I) can then be calculated as the ratio of the severity (S) over (fixed) duration (D). While this
approach does not give the actual duration of a drought event, it is nonetheless useful to simultaneously
evaluate droughts of different severities or intensities over a duration of interest [32]. As growing
seasons can generally be defined as a set of specific months, this approach of evaluating drought
severity and intensity over a specified duration is advantageous in agricultural applications and as
such adopted here. Meteorological forcings responsible for agricultural droughts can be obtained by
summing up the atmospheric water fluxes over the adopted duration (D).
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2.1.2. Relationship Between the Agricultural Drought Indicator (SSMI) and Meteorological Fluxes

Let PD and PETD be the precipitation and potential evapotranspiration fluxes aggregated over a
duration D. The atmospheric water deficit (AWD) can then be written as [33]:

AWDD = PD − PETD (2)

In this study, PD, PETD, and AWDD are used as indicators of meteorological conditions. To facilitate
a consistent comparison across space and time, these two indicators are standardized in a manner
analogous to the SSMI. These standardized indicators are like the standardized precipitation index
(SPI) and the standardized precipitation evapotranspiration index (SPEI) drought indicators, but only
account for the total precipitation, potential evapotranspiration, and atmospheric water deficit that
are summed over a duration of interest (i.e., summer, winter, annual) and unlike the SSMI are not
accumulated using a rolling average of three and six months because, while the SSMI is known to
show greater persistence over time due to moisture stored in the soil, the atmospheric conditions are
assumed to be more volatile as the storage in the atmospheric compartment is not usually significant
over a parcel of land.

Let ST,D be the severity of the SSMI corresponding to an averaging time period of T and summed
over a duration of interest D. Let F(PD), F(AWDD), and F(ST<D) denote the marginal distributions of
standardized precipitation and standardized atmospheric water deficit (AWD) and severity of SSMIT,
respectively. Similarly, F(ST,D, PD) and F(ST,D, AWDD) represent the joint distributions between
the agricultural drought severity and meteorological fluxes—precipitation and atmospheric water
deficit—computed over time T.

For a given set of cutoffs, the relationship between marginal and joint distributions of drought
severity and meteorological flux (MD = {PD, AWDD}) can be specified using the relationships presented
in Table 1.

Table 1. Relationships between agricultural drought severity and meteorological flux (M).

MD ≤MD,C MT >MT,C Marginal
ST,D ≤ ST,D,C F

(
ST,D, MD,C

)
F
(
ST,D

)
− F

(
ST,D, MD,C

)
F
(
ST,D

)
ST,D > ST,D,C F

(
ST,D

)
− F

(
ST,D, MD,C

)
1− F

(
ST,D

)
− F(MD) + F

(
ST,D, MD,C

)
1− F

(
ST,D

)
Marginal F(MD) 1− F(MD) 1

Similarly, the conditional distribution between agricultural drought severity given some
information about the meteorological flux can be obtained using the Kolmogorov rule:

F(ST,D
∣∣∣MD) =

F(ST,D, MD)

F(MD)
(3)

For example, the cut-offs (−0.8: −1.2 (moderate drought); −1.3: −1.5 (severe drought); −1.6: −1.9
(extreme drought) and ≤ −2.0 (exceptional drought)) were adopted here based on recommendations of
the US Drought Monitor (USDM) for meteorological droughts [23].

2.1.3. Estimation of Marginal and Joint Distribution Functions

The estimation of marginal and joint distributions is an important aspect of stochastic risk
assessment. There are several approaches developed in the literature to model these distributions.
Parametric distributions (e.g., the Gumbel logistical model) have been adopted in some flood frequency
studies [34]. Copula-based approaches have been widely used to develop joint distributions from the
knowledge of marginals [35]. Empirical joint distribution functions have also been used to model
droughts [9]. Kernel density estimation (KDE) is used here to model the required joint distributions.
KDE is a nonparametric method that has found usage in hydrology to model marginal [29] as well as
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joint distributions [30]. KDE procedures offer greater flexibility and accuracy in modeling distributions,
especially the tail behavior. In addition, KDE does not make assumptions about the underlying
distributions. It is always difficult in hydrology to know a priori the underlying distribution of
the data, and the final distribution is selected from a small set of candidate distributions which
may not be optimal [29,36]. The KDE approach can be used to directly fit cumulative distribution
functions [37], which can overcome difficulties that may be associated with numerical integration of
certain probability density functions. Rather than fitting two separate marginals and a copula for
joint distribution, the cumulative distribution function (CDF) of the joint distribution can be directly
integrated out, thus minimizing the subjectivity and error propagation during the estimation process.
KDE also extends the range over which the distribution is fit and therefore is capable of extrapolating
values out of the range of observations, much more so than empirical plotting position formulas.
Therefore, KDE offers several advantages over other existing methods used for obtaining joint and
marginal distributions.

The basic idea of KDE is to approximate the probability density function as a summation of a set of
kernel functions. Mathematically for a d-variate dataset, the KDE of the probability density function
(PDF) can be written as:

f(X; H) =
1
n

n∑
i=1

1
h

KH(x−Xi) (4)

where n is the number of data points, K is a kernel density function, H is the bandwidth matrix (which
need not be a constant), x = X = (x1, x2, . . . , xd)T are the scale parameters, and Xi is a d-dimensional
data vector (X1,I, X2,I, . . . , Xd,i)T given i = 1, 2, . . . , n. The kernel K is a symmetric probability density
function, usually taken to be Gaussian, and the bandwidth matrix H is symmetric and positive-definite.

Parameter estimation of the kernel density functions is carried out by minimization of the
mean integrated squared error (MISE). The MISE is the sum of the squared bias and variance. The
MISE depends upon the selected density (typically Gaussian) and the chosen bandwidth (which need
not be fixed) [38].

The cumulative distribution function (CDF) can also be written in a manner analogous to the KDE
as [39,40]:

F(X; H) =
1
n

n∑
i=1

1
h

WH(x−Xi) (5)

where the function WH satisfies the following property:

WH(t) =

t∫
−∞

KH(u) du (6)

According to Equation (5), WH is the cumulative distribution function corresponding to the
probability density function KH.

The estimation procedures detailed in Duong (2007) [41] are adopted here, as it can directly
estimate both the marginal and joint cumulative distribution functions necessary for risk analysis.
This approach also considers the off-diagonal matrix elements in the bivariate variance–covariance
matrix, which improves the ability to capture the correlation structure between the random variables.
The Wand and Jones (1994) [42] plug-in estimator was used to guide the bandwidth selection process.

The marginal CDF of individual random variables can be obtained from the joint CDF. For the
bivariate case (X = X1 and X2), the relationship between marginal and joint CDF is as follows:

F(X1) = Fx1,x2(X1,∞) and F(X2) = Fx1,x2(∞, X2) (7)

where F is the marginal univariate CDF and Fx1,x2 is the bivariate joint distribution of X1 and X2.
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Kernel density estimation can be carried out using software packages in R [43–45]. Once the
distribution functions are estimated using KDE, visual comparisons with empirical bivariate CDF [46]
and other goodness of fit measures can be calculated [47] to evaluate the reasonableness of the
distribution functions.

A flowchart depicting the workflow of the proposed risk assessment methodology is presented in
Figure 1.
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3. Illustrative Case Study

The Ogallala Aquifer is the largest aquifer in the US and spans over an area of nearly
450,658 square kilometers (174,000 square miles) extending over eight states. The area overlying the
aquifer (see Figure 2a) is predominantly rural and produces about 30% of the nation’s agricultural
output [48]. The region is comprised of five different climate types ranging from arid to humid
condftabeitions (Figure 2b). There is a pronounced precipitation gradient moving east to west, and the
average annual precipitation declines from nearly 750 mm/year to less than 340 mm/year (Figure 2c).
A temperature gradient can be seen moving along the north–south transect of the study area (Figure 2d).
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Portions of the Ogallala Aquifer have undergone severe depletion [49], which has increased the
reliance on precipitation by farmers. The region is known for its erratic climate characterized by hot
summers and mild to cold winters. Droughts are a recurring phenomenon in this region and their effects
are often exacerbated by lack of suitable drought adaption [50]. Groundwater production from the
already stressed Ogallala Aquifer is also known to increase during droughts [51]. Understanding how
droughts propagate through agricultural production systems is not only important to develop suitable
short-term contingency measures, but also for promoting effective water conservation programs that
prolong the useful life of the aquifer. Sustaining the Ogallala Aquifer is not only important to the
viability of the rural economies of the region, but also is critical for ensuring food security of urban
areas that depend on it [3]. Therefore, the Ogallala Aquifer provides an excellent test bed to explore
how precipitation and temperature impact agricultural droughts.

Precipitation, temperature, and PET data necessary for calculating AWD (Equation (2)) were
obtained from the Climate Research Unit (CRU, version 4.03), University of East Anglea, Norwich, UK
from 1901 to 2018. This dataset has been widely used in many climate related studies, and has
been developed using several thousand weather stations across the world [52] and is available on a
0.5◦ × 0.5◦ grid which yields 187 locations across five different climate zones within the study area.
PET data in the CRU dataset are based on the modified Penman–Monteith equation and account for
both thermal and wind effects. The standardized precipitation and atmospheric water deficit were
computed using this dataset. Please refer to Table S1 in Supplementary Material for additional details
on data and their sources used in this study.

The leaky bucket model of Huang et al., (1996) [15] and van der Dool et al., (2003) [22] was extended
to cover the entire period of interest and used to compute monthly SSMI values for three-month
(intra-seasonal) and six-month (inter-seasonal) accumulations. To be consistent with the original
formulation, the PET values (Equation (1)) were computed from temperature and latitude data using
the Thornthwaite equation. The computed monthly SSMI values were then summed over summer
(April–September), winter (October–March), and annual timescales to obtain agricultural drought
severities at each station.

Joint KDE distributions were fit separately at each station, which were then used to obtain
marginal distributions using Equation (6) and the procedures outlined by Duong, (2007) [41].
The one-dimensional and two-dimensional Gringorten plotting position formulas (Gringorten,
1964 [53] and Yue et al., 1999 [46]) were used along with the Kling–Gupta Efficiency (KGE)
measure [47] to evaluate the KDE fits. All computations were performed within an R statistical and
programming environment [45].

4. Results and Discussion

4.1. Evaluation of KDE for Fitting Joint and Marginal Distributions

The goodness of fit of bivariate joint distributions among standardized precipitation (P),
standardized PET (PET), and standardized AWD (AWD) were evaluated using exploratory data
analysis (EDA) methods and KGE metrics.

Figure 3 presents a comparison of empirical and theoretical joint probabilities and KGE metrics
for the SSMI3-P pair at six representative stations in five different climate zones in the region
(see Figure 2b for station locations). Plots for other bivariate fits between SSMI3 and PET and AWD and
SSMI6 with P, PET, and AWD are presented in Supplementary Information in the interest of brevity
(see Figures S1–S17). Tables 2 and 3 present the goodness of fit metrics for SSMI and climate variables
used in the study.
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Figure 3. P-P Plot of SSMI3-P for summer months to visually evaluate the goodness of fit (GOF) of
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These plots and KGE metrics presented in Tables 1 and 2 capture and bracket the range of
variability noted within the study area. As marginal distributions are directly obtained from bivariate
CDFs, a good fit of the bivariate distribution is also an indication of a good fit of the marginals. The
P-P plots (not presented in the interest of brevity) and KGE statistics for marginals summarized in
Tables 2 and 3 indicate that the fits to marginals of both agriculture drought indicators and standardized
meteorological variables were also excellent, with all KGE values being greater than 0.90 and most of
them greater than 0.925. The correlation, bias, and variability terms were also reasonable, typically
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within ±5% of ideal values, and showed no systematic errors. The KDE models also exhibited a high
degree of fidelity in capturing the lower tail behavior, which is critical to drought studies.

Based on the visual comparisons and goodness of fit results, it was concluded that the KDE
provided excellent bivariate and univariate fits to the drought severity and corresponding standardized
meteorological fluxes at all sites and over a range of climate conditions. Therefore, the KDE-based
marginal and joint distributions were deemed suitable to conduct drought risk analysis and evaluate
how meteorology affects agricultural droughts.

Table 2. Goodness of fit statistics for the agricultural drought indicator (SSMI) at six representative
stations across climate zones (see Figure 2b for the locations of stations and corresponding climate zones).

Station

SSMI-3 SSMI-6

KGE KGE

Overall Correlation Bias Variability Overall Correlation Bias Variability

Summer

S1 0.949 0.999 1.016 0.952 0.940 0.999 1.009 0.941
S2 0.934 0.998 1.027 0.940 0.938 0.998 1.013 0.940
S3 0.944 0.998 1.013 0.945 0.931 0.998 1.020 0.934
S4 0.944 0.998 1.019 0.947 0.930 0.999 1.014 0.931
S5 0.956 0.999 1.006 0.957 0.936 0.999 1.015 0.938
S6 0.928 0.999 1.022 0.931 0.932 0.999 1.013 0.934

Winter

S1 0.924 0.998 1.020 0.926 0.929 0.998 1.013 0.930
S2 0.939 0.998 1.010 0.940 0.933 0.999 1.013 0.934
S3 0.919 0.998 1.019 0.922 0.942 0.999 1.013 0.943
S4 0.929 0.999 1.021 0.932 0.938 0.999 1.013 0.940
S5 0.936 0.998 1.020 0.940 0.924 0.998 1.023 0.928
S6 0.936 0.998 1.009 0.937 0.922 0.998 1.013 0.923

Annual

S1 0.933 0.999 1.018 0.936 0.904 0.998 1.025 0.908
S2 0.940 0.999 1.006 0.941 0.934 0.997 1.008 0.935
S3 0.935 0.998 1.020 0.938 0.924 0.999 1.021 0.927
S4 0.932 0.998 1.020 0.936 0.919 0.998 1.015 0.921
S5 0.945 0.998 1.007 0.945 0.939 0.998 1.009 0.940
S6 0.943 0.999 1.011 0.945 0.940 0.999 1.007 0.940

4.2. Variations of Agriculture Drought Risks with Precipitation

The joint distribution between SSMI3 and P for summer (critical growing season in the area) is
shown in Figure 4. Similar distributions for SSMI3 and P for winter and annual timescales and SSMI6 and
P for summer, winter, and annual periods can be found in Supplementary Information (Figures S18–S22).
The distributions show similar trends across the region, but subtle differences can be seen between
different stations. Stations S1, S3, and S4, which are in semi-arid and arid portions, show similar trends
compared to S2, S5, and S6, which represent the more humid portions of the study area, indicating that
variations in precipitation affect agricultural droughts. Figure 5 depicts a spatial variation of risks of
having moderate or higher intensity agricultural droughts (SSMI ≤ −0.8) given a moderate or higher
meteorological drought (Figure 4a,c,e), or when there is no meteorological drought as measured using
standardized precipitation (Figure 4b,d,f) for summer, winter, and annual time series. Figure 6 shows
similar variations for SSMI6, which represents full season drought. Variations of SSMI3 and SSMI6 for
other cut-offs (severe, extreme, and exceptional drought) are presented in Supplementary Information
(Figures S23–S28) where additional summary statistics for these cutoffs can also be found in Tables S2
and S3.
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Table 3. Goodness of fit statistics for marginal distributions of meteorological fluxes at six representative stations across climate zones (see Figure 2b for the locations
of stations and corresponding climate zones).

Station

Precipitation PET AWD

KGE KGE KGE

Overall Correlation Bias Variability Overall Correlation Bias Variability Overall Correlation Bias Variability

Summer

S1 0.942 0.999 1.012 0.943 0.928 0.998 1.026 0.933 0.932 0.999 1.013 0.933
S2 0.934 0.999 1.022 0.937 0.943 0.999 1.015 0.945 0.940 0.999 1.019 0.943
S3 0.919 1.000 1.031 0.926 0.932 0.998 1.019 0.935 0.951 0.999 1.015 0.954
S4 0.937 0.999 1.015 0.938 0.949 0.999 0.999 0.949 0.944 0.999 1.015 0.947
S5 0.939 0.999 1.014 0.940 0.955 0.998 1.005 0.955 0.940 0.999 1.013 0.942
S6 0.939 0.998 1.008 0.939 0.928 0.997 1.017 0.930 0.943 0.999 1.014 0.945

Winter

S1 0.925 0.999 1.008 0.925 0.956 0.998 1.000 0.956 0.923 0.999 1.025 0.927
S2 0.903 0.999 1.042 0.913 0.865 0.999 1.031 0.903 0.935 0.999 1.005 0.936
S3 0.940 0.998 1.010 0.941 0.932 0.999 0.999 0.932 0.924 0.998 1.021 0.927
S4 0.917 0.999 1.028 0.922 0.868 0.994 1.070 0.888 0.933 0.999 1.013 0.934
S5 0.939 0.999 1.006 0.939 0.934 0.998 1.021 0.938 0.919 0.999 1.018 0.922
S6 0.952 0.999 0.998 0.952 0.954 0.999 1.008 0.956 0.878 0.997 1.032 0.882

Annual

S1 0.938 0.999 1.013 0.940 0.943 0.999 1.012 0.945 0.930 0.999 1.018 0.932
S2 0.932 0.999 1.019 0.934 0.936 0.999 1.008 0.937 0.935 0.999 1.023 0.940
S3 0.942 0.999 1.015 0.944 0.914 0.998 1.030 0.920 0.922 0.999 1.027 0.927
S4 0.936 0.999 1.013 0.938 0.903 0.998 1.027 0.907 0.933 0.999 1.015 0.934
S5 0.938 0.999 1.013 0.939 0.935 0.997 1.012 0.937 0.955 0.999 1.008 0.956
S6 0.928 0.997 1.015 0.930 0.907 0.997 1.039 0.916 0.947 0.999 1.010 0.948
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Figure 6. Risk of moderate agriculture drought or higher using SSMI6 given standardized precipitation
being under (left panel) and no under (right panel) (a–f).

The risk computations in Figure 5 suggest that agricultural drought risks in the central portions
of the Ogallala Aquifer correspond strongly with summer and winter rainfall deficits. There is a
stronger correlation between meteorological and agricultural droughts during winter than during
summer in the southern portions. The northeastern portions (cold humid) of the study area
also show a moderate to strong correlation between agricultural and meteorological droughts.
However, the northwestern portions (cold arid) show a lesser coincidence between meteorological and
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agricultural droughts. Agricultural droughts tend to occur and persist in this region even when there
are no meteorological droughts. The southern portions of the aquifer also exhibit a relatively stronger
correlation between agricultural droughts and precipitation-related meteorological non-drought states.
Figure 6, which presents similar risk profiles using SSMI6, also shows similar trends but the risk
values are somewhat subdued as the accumulation period of six months dilutes the seasonal effects by
aggregating non-seasonal data.

The results presented in Figures 5 and 6 indicate that in the central portions of the study area,
precipitation has a relatively stronger influence on agricultural droughts, with an over 50% likelihood
of observing an agricultural drought given precipitation deficits. The risks are slightly lower in
the northwestern and southern portions where agricultural droughts are likely controlled by other
meteorological factors. In addition, agricultural droughts in the winter given precipitation deficits
exhibit a much greater variability across the study area, with risks ranging from nearly 11.6% to
over 40%. This variability points to the moisture holding capacity of the soils, especially during the
cooler winter months. Furthermore, while the likelihood of agricultural drought occurring under wet
conditions is lower than that under dry (precipitation deficit) conditions, the chances of having an
agricultural drought without precipitation deficits are higher in summer than in winter, pointing to
other meteorological factors influencing agricultural droughts as well.

4.3. Variation of Agriculture Drought Risks with Potential Evapotranspiration

The joint distribution of SSMI3 and PET for the summer months is shown in Figure 7
(the distributions of SSMI3-PET for other time periods and SSMI6-PET for all times can be found in
Supplementary Information (Figures S29–S33). Unlike precipitation whose deficits (or negative values)
indicate drought, positive values of standardized PET correspond to higher temperatures and are
indicative of atmospheric deficits. Again, while trends of joint distributions are similar, variations in joint
probabilities can be seen across stations. In the semi-arid to arid portions, PET influences become
less strong moving northwards (stations S1, S3, and S4), which is to be expected given that the
climate becomes cooler up in the north. A similar trend of less strong influence between SSMI3
and summer PET can also be seen in the humid portions of the study area (stations S2, S5, and S6)
but with much lower variability. The SSMI3-PET distributions for winter and annual timescales
presented in Supplementary Information (Figures S29 and S30) indicate similar trends in arid portions,
but PET has a slightly higher influence on agricultural droughts in the drier northern portions during
winter months. The relationships at an annual scale are largely controlled by summer PET values,
which tend to be higher than winter PET values. The risks of agricultural droughts due to given
unfavorable PET conditions are much less variable across the study area during the winter months,
with risks ranging from 22.9% to slightly over 44%, especially in comparison to precipitation deficit
conditions (see Figure 5).

Figures 8 and 9 indicate that agricultural drought risks (as measured using SSMI3 and SSMI6)
during summer months are also strongly correlated to PET (see Figures S34–S39 for other cut-offs).
Higher values of PET generally caused by higher temperatures affect soil dryness. A comparison of
probabilities from PET (Figures 8 and 9) and standardized precipitation (Figures 5 and 6) indicates that
the impacts of PET on agricultural drought risks during summer are generally less compared to risks
arising from precipitation deficits, but are nonetheless significant.
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Figure 9. SSMI6 risks of moderate or higher agricultural droughts under standardized PET being
at moderate or higher (left panel) and lower than moderate (right panel) conditions (a–f).

In contrast, the soil moisture deficit risks computed using SSMI6 (presented in Figure 9) are
more greatly influenced by PET than precipitation (Figure 6). Thus, precipitation plays a greater
role in controlling short-term intra-seasonal risks, but PET plays a bigger role over longer periods.
This result likely arises because seasonal variations in temperature and winds (factors controlling
PET) exhibit greater persistence than precipitation, which tends to exhibit greater seasonal volatility.
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Therefore, PET plays a much bigger role in controlling soil dryness in the southern portions of the
study area, which are characterized by lower rainfalls and higher temperatures. PET has a significant
influence in the central and more humid northeastern and northcentral portions of the study area
during winter months. The study area is characterized by cooler winters in these regions, so even
small changes in temperature can have a large effect on soil dryness.

The right panel of Figures 8 and 9 evaluates the risk of observing agricultural droughts when the
standardized PET values are close to or less than the historical means. These graphs, therefore, depict the
conditions other than PET in driving agricultural droughts. The risks of droughts are much smaller
when the PET values are below their statistical averages. However, these values exhibit a clear
increasing trend moving from east to west, much like the decreasing precipitation gradient depicted
in Figure 2c. Therefore, the results again point to the importance of precipitation in controlling the
agricultural droughts within the study area.

4.4. Variations of Agriculture Drought Risks with Atmospheric Water Deficit

Figure 10 illustrates the joint distribution of SSMI3 with standardized atmospheric water deficit
(AWD). Based on Equation (2), negative values indicate below normal atmospheric water (PET > P)
and therefore drought conditions. The shape of the KDE distribution more closely resembles the
bivariate joint distribution functions of SSMI3-P shown in Figure 4, more so than the SSMI3-PET shown
in Figure 7, once again highlighting the relative importance of P over PET in defining agricultural
droughts during summer months. Bivariate distributions for SSMI3-AWD for winter and annual
timeframes and SSMI6-AWD for all three time periods are presented in Supplementary Information
(Figures S40–S44).

Variations between bivariate distributions at different stations can be seen in Figure 10. The SSMI3
risk diminishes somewhat going northward in the arid portion of the study area (stations S1, S3,
and S4) as well as in the more humid portions (stations S2, S4, and S5) albeit with lower sensitivity.
This northward variation is consistent with the temperature gradient shown in Figure 2d, indicating
that while the general shape of the SSMI3-AWD is influenced by precipitation, PET affects the
regional variability of these distributions and therefore agricultural drought risks to net atmospheric
water deficit.

Figure 11 depicts the short-term agricultural drought risks given that the atmospheric moisture
deficit is dry or unfavorable (AWD ≤ −0.8) or not dry (AWD > −0.8). Similar maps for other
cut-offs can be found in Supplementary Information (Figures S45–S47). A comparison of AWD
(Figure 11) with P (Figure 5) and PET (Figure 8) indicates that AWD risk profiles are largely consistent
with the patterns noted in analogous risk calculations based on standardized precipitation alone
(Figure 5). However, the magnitudes of the risks are somewhat higher (~49–~60%) when AWD is
used compared to P or PET alone, especially for summer and winter seasons. This result again
highlights that the regional-scale agricultural drought trends are largely controlled by precipitation,
but PET variations affect the magnitude of the drought risks. Similar trends can also be seen for SSMI6
(Figure 12); the regional trends in long-term droughts are largely conditioned by precipitation, but PET
also plays a role (albeit small). However, PET represents a larger role in controlling the magnitude of
the risks. Refer to Supplementary Information (Figures S48–S50) for SSMI6 maps corresponding to
other cut-offs. Boxplots summarizing variability of all drought risks corresponding to different cut-offs
can be found in Figures S51–S52 for SSMI3 and SSMI6.
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Figure 12. Agricultural drought risk based on SSMI6 given dry (AWD≤−0.8) and not dry (AWD > −0.8)
atmospheric water states. (Dry states depicted in Figures (a,c,e) and not dry states in Figures (b,d,f)).

Figures 11 and 12 also show that agricultural risks when AWD is not under dry conditions are
higher in the northwestern and southern portions, which are characterized by higher aridity during
summer months; this extends over the entire northern portion of the study area during the winter
months, as these areas are characterized by cold but dry winters. Furthermore, the risk of agricultural
droughts given no atmospheric dryness (as measured using AWD) is generally the lowest in comparison
to similar risks of agricultural droughts given above moderate precipitation or below moderate PET.
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This result follows from the fact that the magnitude of agricultural drought risks that correlate more
strongly to AWD than P or PET alone and include both of these factors therefore accounts for a higher
level of agricultural risk. However, factors in addition to AWD affect the likelihood of occurrence of
agricultural droughts but to a much smaller degree. Soil characteristics are implicitly accounted for
using the scaling coefficients in the leaky bucket model. Intrinsic soil properties are not fully captured
by the model, and the agricultural drought risks when AWD is not dry can be due to variations in soil
properties across the study area.

5. Summary and Conclusions

The soil moisture is the master variable controlling agricultural droughts. As long-term records of
soil moisture are not readily available in most areas, evaluation of multi-decadal and century-scale
soil moisture drought evaluations rely on water balance models. These models use climatic fluxes
(i.e., precipitation and evapotranspiration) to estimate soil moisture (referred to here as soil moisture
analogs). Soil moisture analogs and agricultural drought indicators derived from them provide a
convenient way to evaluate how meteorological droughts propagate through soil systems and affect
agricultural droughts.

Stochastic relationships between the standardized soil moisture index (SSMI) computed
at three- and six-month accumulation scales, standardized precipitation, standardized PET,
and standardized AWD values for summer (April–September), winter (October–March), and annual
(October–September) timescales were developed using kernel density estimation (KDE) protocols.
KDE offers several advantages, as bivariate distributions can be direct fit and marginals can be
integrated out. This approach, therefore, avoids the need to select different distribution functions
for marginals and joint distribution and thus minimizes the subjectivity associated with the model
selection process. The approach was used to fit bivariate and marginal distributions at 187 sites in the
High Plains region that is underlain by the Ogallala Aquifer (the largest aquifer in the US). Excellent fits
were noted based on visual inspections and use of Kling–Gupta Efficiency metric and its components,
adding confidence to this model building approach.

The bivariate joint distributions and marginal distributions were used to then compute conditional
probabilities and evaluate agricultural drought risks given P, PET, or AWD being in unfavorable and
favorable states. The results indicate that precipitation is a major influence on agricultural droughts and
the likelihood of an agricultural drought given a precipitation deficit could be as high 40–65% within
the study area during summer months and between 20–55% during winter months. The relationship
between agricultural drought risks and precipitation deficits is strongest in the central portions of
the study area. The conditional risks of agricultural droughts given unfavorable PET conditions are
higher in the eastern humid portions than the western arid portions of the study area. In general,
unfavorable PET had a higher impact on SSMI6 but also seemed to influence SSMI3 to some degree.
Dry states as defined by atmospheric water deficits (AWD) provided higher risks than P and PET,
suggesting that both P and PET influence agricultural droughts. Agricultural drought risks under
favorable conditions of AWD were much lower than when AWD was unfavorable. The agricultural
drought risks were higher during the winter when AWD was favorable and point to the role of soil
characteristics on agricultural droughts.

The information presented in this paper and the associated Supplementary Information provides
a comprehensive risk-based drought atlas for an agriculturally important region in the US, and as such
is of practical use to decision makers. The methodology developed here is also generic and can be
extended to other regions with considerable ease, as global datasets required are readily available.
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