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Abstract: Bubble collapse near the liquid-liquid interface was experimentally studied in this paper,
and the dynamic evolution of a laser-induced bubble (generation, expansion, and collapse) and the
liquid-liquid interface (dent and rebound) were captured by a high-speed shadowgraph system.
The effect of the dimensionless distance between the bubble and the interface on the direction of the
liquid jet, the direction of bubble migration, and the dynamics of bubble collapse were discussed.
The results show that: (1) The jet generated during bubble collapse always directs toward the denser
fluid; (2) bubble collapses penetrate the interface when the bubble is close to the interface; (3) three
different shapes of the liquid-liquid interface—that is, a mushroom-shaped liquid column, a spike
droplet, and a spherical liquid droplet—were observed.

Keywords: bubble collapse; interface rebound; density; laser-induced cavitation

1. Introduction

The appearance of bubble cavitation has brought many serious hazards, such as the generation of
noise [1], the destruction of materials [2,3], and the decline of hydraulic mechanical performance [4].
Still, it has provided various benefits as well, for example, medicine [5], petrochemical [6], and emulsion
preparation [7]. Bubble collapse near the liquid-liquid interface can also be seen near a seabed covered
by crude oil or the interface between soft tissue and body fluid [8]; thus, it is very critical for deep-sea
oil production and bioengineering. As a pressure difference exists between the inside and outside of
a bubble, bubble instability will cause aspheric collapse, a high-speed jet, and shock waves [9-13].
However, people do not fully understand the mechanism behind the damaging effect. For a long
time, people have been debating what factors dominate the destruction strength of bubble collapse,
especially the bubble jet and the shock wave emitted upon the bubble collapse. Extensive experimental
results have proven that bubble jets develop under pressure gradients in a liquid, such as that due
to gravity or a nearby boundary [14,15]. The jet velocity can reach hundreds of meters per second,
so a bubble jet is an important cause of material damage. Shock waves are also one of the reasons
for the destruction of a material when a bubble collapses. This is because the surrounding fluid is
highly squeezed and rebounds rapidly after the bubble collapses [16-18]. Because of the high pressure
and high-speed jet generated when cavitation bubbles collapse, it has attracted widespread attention.
Research on cavitation shows that the jets and shock waves generated during the collapse of cavitation
are related to the destruction of materials. The use of shock wave lithotripsy during the collapse of
cavitation is also a good use of cavitation in medicine [19].
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In the work of Supponen et al. [20], the researchers quantified jet-driving pressure anisotropy
with a dimensionless vector parameter C to quantify jet intensity, which represents a dimensionless
version of the Kelvin impulse [21] and is in its general form defined as:

C= _VpRmaxAp_1 (1)

Here, the minus sign ensures that the pressure gradient direction is toward the C direction.

Vp represents the pressure gradient that drives the jet, Rmax is the maximum bubble radius, and Ap is

the collapse driving pressure, which is defined as the difference between the vapor pressure and the

pressure at infinity. For bubbles collapsing near the liquid-liquid interface, the anisotropic parameters

can be expressed as [20]:

2 (p1—p2)
——n
(p1+p2)

where p is the corresponding liquid density and # is the normal unit vector on the surface pointing to
the bubble center. It can be seen from Equation (2) that if p; < pp, it can be regarded as a problem of
cavitation of bubbles near the rigid wall. On the other hand, when p; > p», it means that the bubble
collapse is near the free interface. y is defined as a nondimensional distance of the bubble center from
the liquid-liquid interface:

¢ = 0.195y @)

H

Rmax

y - ®)

In past research, the collapse of bubbles near rigid walls and free interfaces and in the gravity field
has received extensive attention. However, the collapse of bubbles near the liquid-liquid interface has
received much less attention. Chahine and Bovis [22] stated, in 1980, that the direction of the bubble jet
mainly depends on the dimensionless distance between the bubble and the interface, but this conclusion
is limited to experiments with approximately p; = 1.2p,. Orthaber and Zevink [23] discussed the
interaction between ultrasonic cavitation bubbles and the interface in 2020. Zhang et al. [8] used Euler’s
finite element model to simulate the non-spherical collapse of bubbles at the liquid-liquid interface.

In the present paper, the dynamics of bubble collapse near the liquid-liquid interface
(a water-fluorinated oil interface) were experimentally investigated. A cavitation bubble was generated
near the interface through laser pulses, and the effect of dimensionless distance on the bubble collapse
was detailed.

2. Experimental Approach

2.1. Experiment Setup

As shown in Figure 1, the experimental system mainly included a DG645 delay trigger (Stanford
Research Systems, Sunnyvale, CA, USA), a computer operating system, a non-stroboscopic adjustable
brightness light source, a filter, a laser treasure Dawa-300 solid-state laser (Beamtech Optronics Co.,
Ltd., Beijing, China ), a NacHx-6 high-speed camera (Vehicle Test System Ltd., Shanghai, China),
a total reflection mirror, a beam expander, a focusing lens, and a glass water tank. The solid-state
laser was produced by Leibao with an adjustable frequency with a range of 1-10 Hz, a maximum
laser output power of 300 mJ, and a pulse spot diameter of 7 mm. The solid-state laser was used as
the excitation light source and the same optical axis was placed with the reflector. The total reflector
was placed at 45°, and the focusing lens was placed directly below the total reflector; the glass water
tank used in the experiment was 10 cm x 10 cm X 10 cm, and was placed under the focusing lens.
The high-speed camera and computer were connected by a bayonet Nut Connector line. In order to
avoid the high-brightness laser damaging the camera’s photosensitive chip, we started shooting after
the laser trigger. The pulsed laser light emitted by the solid-state laser was reflected by the 45° total
reflector, with the laser parallel to the focusing lens for focusing, and finally, the vertical focusing was
incidentally on the water tank. When the energy density was greater than the breakdown threshold
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of the medium, light breakdown occurred, resulting in cavitation. The size of the bubble could be
adjusted by controlling the energy of the laser. In order to capture a clear image of the bubble, this
experiment used a non-strobe adjustable brightness light source to illuminate the bubble area, and
the sampling frequency of the high-speed camera was 100,000 frames per second. The time interval
between every two adjacent photos was 10 ps, and the resolution of the image was 256 x 464 pixels.
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Figure 1. Experimental setup: (a) The whole experimental system; (b) the schematic diagram of
detail information.

2.2. Solution Preparation

The liquid-liquid interface was composed of water and fluorinated liquid. The density of the
3M-7500 fluorinated oil was 1.63 g/mL greater than that of water. Below the water, the viscosity was
1.304 mPa-s. The solution was dried in a vacuum drying oven and the experiment was carried out
after standing for 24 h. The solution was used within seven days after preparation.

3. Results and Discussion

3.1. Bubble Collapse Far from the Liquid-Liquid Interface (y = 1.36, C = 0.02519)

In this section, we studied the dynamics of bubble collapse in the water near the liquid-liquid
interface. The output energy of the laser was constant, while the coefficients y were different. The bubble
was generated at a certain distance above the liquid-liquid interface. As shown in Figure 2, two
adjacent pictures of the image sequence were separated by 10 microseconds, and the first frame is a
picture that was captured when the bubble first appeared. In this sequence, the bubbles underwent a
total of three collapse processes. The bubble was initiated at y = 1.36 above the liquid-liquid interface.
In the collapse process, the bubble elongated in the vertical direction, the bottom of the bubble was
attracted by the interface, and the top of the bubble shrank faster to form a jet toward the interface.

After the bubble collapsed, droplets appeared below the interface and moved downward due
to the Rayleigh Taylor instability. As shown in Figure 3, the long black shadow is the area of the
liquid-liquid interface due to the difference in contact angles of the two fluids on the wall and the
refraction of light.

3.2. Bubble Collapse Medium From the Liquid-Liquid Interface (y = 1.1, C = 0.0388)

With a medium bubble-interface distance, the expansion and collapse stages of the bubble can be
clearly observed in Figure 4. The bubble collapsed in time to form a high-speed jet toward the interface
(t = 0-140 us). The bubble contacted the interface after the rebound (¢ = 150-190 us), and crossed the
interface when it collapsed for a second time (¢ = 200-250 ps).
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270 ps

Figure 2. Bubble collapsing above the water-fluorinated oil interface with y = 1.36 and C = 0.02519.

0.72 ms 0.82 ms 0.92 ms

1.12 ms 1.32 ms

Figure 3. Interface behavior after the bubble collapse at y = 1.36 and C = 0.02519.

The collapse of the bubbles eventually formed a group of small bubbles moving downward, and
the interface rose at an average speed of 0.534 m/s to form a spike, as shown in Figure 5. Compared to
the bubble not passing through the interface (Figure 2), the bubble passed through the interface and
then collapsed, causing the interface to arch and form a spike. The height (Lsp) and width (Wsp) of the
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spike are shown in Figure 6. The Lgp rose from 0.155 to 1.15 mm at t = 0-3 ms, and the Lsp decreased
from 0.15 to 0.896 mm at t = 3-5.1 ms. The Wy, rose from 0.755 to 1.918 mm at ¢ = 0-5.1 ms.

Figure 4. Bubble collapsing above the water-fluorinated oil interface with y = 1.1 and C = 0.0388.

Figure 5. Interface behavior after the bubble collapse at y = 1.1 and C = 0.0388.
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Figure 6. Time evolution of the distance from the interface to the top point and width of the spike.

3.3. Bubble Collapse Close to the Liquid-Liquid Interface (y = 0.951, C = 0.052)
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In this section, the bubble occurred close to the liquid-liquid interface, and the bubble made
contact with the interface before the bubble collapse. Figure 7 shows the experimental sequence at
¥ = 0.951 and C = 0.052. It can be clearly seen that the bubble expanded above the interface and
contacted the interface during the collapse stage from 0 to 110 ps. The bubble expanded to its maximum
volume at 40 ps, and the bubble was elongated in the vertical direction during the collapse. Since the
liquid between the bubble and the interface was squeezed out before the bubble expanded to the
maximum size, it passed through the interface directly after one collapse, as shown in Figure 7 from
100 to 140 us. The jet direction generated by the second collapse of the bubble faced away from the
interface (see Figure 7 from 130 to 230 pus). Combined with Section 3.1, it can be concluded that the jet
direction of the bubble faced the liquid with higher density.

180 ps

220 s

Figure 7. Bubble collapsing above the water-fluorinated oil interface with y = 0.951 and C = 0.052.
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Compared with the second collapse of the bubble passing through the interface (Figure 4), the first
collapse of the bubble passing through the interface caused the interface to arch upward to form a
mushroom-shaped liquid column, which was composed of a coronal droplet and a liquid column. As a
complement, Figure 8 reveals the time evolution of the L4, Lsp, and W,. When the liquid column was
just formed, it rose at an average speed of 0.98 mm/s (Figure 9 from 0 to 1.35 ms). As time progressed,
the top coronal droplets moved upward at an average speed of 0.5 mm/s. The area at the junction of the
coronal droplets and the liquid column gradually decreased. The liquid column evolved into a spike
and then separated from the coronal droplets (Figure 9 from 2.85 to 3.45 ms). During this progress, the
speed of the coronal droplets gradually decreased, according to Figure 8. In addition, under the action
of gravity and surface tension, the height of the spike began to decrease after the spike separated from
the coronal droplets.
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Figure 8. Time evolution of the distance from the interface to the coronal droplets (Lg;), the spike top
point (Lsp), and width of the necking (Whr).

0.41 ms 0.86 ms 1.16 ms

1.61 ms

Figure 9. Interface behavior after the bubble collapse at y = 0.951 and C = 0.052.
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According to the different dimensionless distances y from the bubble to the interface, the bubble
collapse state can be divided into five parts, as shown in Figure 10. From small to large y, the bubble
collapse process can be divided into a bubble that traverses the interface during the first collapse
(BTIFC) at y < 0.951, a bubble that traverses the interface during the second collapse (BTISC) at
1.1 <y <1.26, a bubble that collapses on one side of the interface (BCOSI) at 1.36 <y < 2.23, a bubble
jet that has no effect on the interface at 2.33 < y < 2.85, and a bubble collapse without a jet at y > 2.99.
When the dimensionless distance y is larger, the bubble collapse has basically no effect on the interface
and the collapsed shape is similar to that of a free collapse in water. The impact on the interface
after the bubble collapse can also be divided into three parts: The interface arching upward to form a
mushroom-shaped liquid column and then the coronal droplets separating from the liquid column
(Figure 7), the interface arching upward to form a spike (Figure 5), and the interface sagging downward
to form droplets (Figure 3).

Srm
- o BTIFC
i ® BTISC
4 | v BCOSI
B * Stable Interface
| X No Jet
| |
3
\o 2 |-
- i
1F
OoF X
= ! L . L
0 1 2 3 4

Figure 10. Bubble behavior with different dimensionless parameters y. BTIFC, bubble that traverses
the interface during the first collapse; BTISC, bubble that traverses the interface during the second
collapse; BCOSI, bubble that collapses on one side of the interface.

4. Conclusions

In order to study the bubble collapse mechanism, a laser-induced bubble was generated near
the liquid-liquid interface, and the bubble collapse and interface change processes were observed.
When the bubble collapsed in a less-dense liquid, the jet directed toward the interface. On the contrary,
when the bubble collapsed in a denser liquid, the corresponding jet directed toward the other side
(i.e., moved away from the interface).

The observed bubble behavior can generally be divided into five categories (three special
phenomenon). The first type refers to the entire process of bubble collapse being on the side of the
interface, the second to the bubble passing through the interface during the first collapse, and the third
type to the bubble passing through the interface during the second collapse. The interface change
process observed in the experiment can be divided into three categories, which correspond to the
bubble’s behavior. The first type is that the interface arched upward to form a mushroom-shaped liquid
column. As time progressed, the area at the junction of the top coronal droplets and the liquid column
decreased, the liquid column transformed into a spike, and the coronal droplets separated from the
spike and moved vertically upward. The spike height decreased under the action of gravity, and this
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interface change occurred when the bubble collapsed across the interface for the first time. The second
type is the formation of a spike from the interface upward, which occurred when the bubble collapsed
through the interface for the second time. The third type is the downward depression of the interface
to form droplets. This interface change only occurred on one side of the interface during the entire
process of bubble collapse. For future research directions, more experimental methods are needed
to further deepen the understanding of the bubble collapse mechanism, especially the interaction
between shock waves and the liquid-liquid interface during bubble collapse.

Author Contributions: Conceptualization, Z.H. and Z.Y.; methodology, X.G.; software, C.T.; validation, E.B., Z.H.,
and C.T.; formal analysis, Z.H.; investigation, E.B.; resources, F.B.; data curation, X.G.; writing—original draft
preparation, Z.H.; writing—review and editing, X.G.; visualization, Z.Y.; supervision, F.B.; project administration,
C.T,; funding acquisition, F.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This study was supported by the National Key R&D Program of China (Grant No.
2017YFB0603701) and the National Natural Science Foundation of China (Grant No. 11672284, No. 11972335, and
No. 11972334).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Koda, R;; Origasa, T.; Nakajima, T.; Yamakoshi, Y. Observing Bubble Cavitation by Back-Propagation of
Acoustic Emission Signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 66, 823-833. [CrossRef]
[PubMed]

2. Iben, U.; Makhnov, A.; Schmidt, A. In Numerical study of a vapor bubble collapse near a solid wall. |. Phys.
Conf. Ser. 2018, 1135, 012096. [CrossRef]

3. Luo,J; Xu, W-L,; Deng, J.; Zhai, Y.; Zhang, Q. Experimental Study on the Impact Characteristics of Cavitation
Bubble Collapse on a Wall. Water 2018, 10, 1262. [CrossRef]

4. Luo, X.-W.; Ji, B.; Tsujimoto, Y. A review of cavitation in hydraulic machinery. J. Hydrodyn. 2016, 28, 335-358.
[CrossRef]

5. Jeong, J.; Jang, D.; Kim, D.; Lee, D.; Chung, S.K. Acoustic bubble-based drug manipulation: Carrying,
releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot.
Sens. Actuators A Phys. 2020, 306, 111973. [CrossRef]

6. Zabbey, N.; Olsson, G. Conflicts—Oil Exploration and Water. Glob. Chall. 2017, 1, 1600015. [CrossRef]

7. Kaci, M.; Arab-Tehrany, E.; Desjardins, 1.; Banon-Desobry, S.; Desobry, S. Emulsifier free emulsion:
Comparative study between a new high frequency ultrasound process and standard emulsification processes.
J. Food Eng. 2017, 194, 109-118. [CrossRef]

8.  Liu, Y.-L.; Tian, Z.-L.; Wang, S.-P. Dynamical behavior of an oscillating bubble initially between two liquids.
Phys. Fluids 2019, 31, 092111. [CrossRef]

9.  Johansen, K; Song, ].H.; Johnston, K.; Prentice, P. Deconvolution of acoustically detected bubble-collapse
shock waves. Ultrasonics 2017, 73, 144-153. [CrossRef]

10. Koukouvinis, P.; Gavaises, M.; Supponen, O.; Farhat, M. Simulation of bubble expansion and collapse in the
vicinity of a free surface. Phys. Fluids 2016, 28, 052103. [CrossRef]

11. Lauterborn, W. High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 1972,
21,27. [CrossRef]

12.  Lechner, C.; Koch, M.; Lauterborn, W.; Mettin, R. Pressure and tension waves from bubble collapse near a
solid boundary: A numerical approach. J. Acoust. Soc. Am. 2017, 142, 3649-3659. [CrossRef] [PubMed]

13.  Plesset, M.S. The Dynamics of Cavitation Bubbles. . Appl. Mech. 1949, 16, 277-282. [CrossRef]

14. Blake, J.R.; Gibson, D.C. Cavitation Bubbles Near Boundaries. Annu. Rev. Fluid Mech. 1987, 19, 99-123.
[CrossRef]

15. Lindau, O.; Lauterborn, W. Cinematographic observation of the collapse and rebound of a laser-produced
cavitation bubble near a wall. . Fluid Mech. 2003, 479, 327-348. [CrossRef]

16. Garen, W.; Hegedus, F,; Kai, Y.; Koch, S.; Meyerer, B.; Neu, W.; Teubner, U. Shock wave emission during the
collapse of cavitation bubbles. Shock. Waves 2016, 26, 385-394. [CrossRef]


http://dx.doi.org/10.1109/TUFFC.2019.2897983
http://www.ncbi.nlm.nih.gov/pubmed/30735990
http://dx.doi.org/10.1088/1742-6596/1135/1/012096
http://dx.doi.org/10.3390/w10091262
http://dx.doi.org/10.1016/S1001-6058(16)60638-8
http://dx.doi.org/10.1016/j.sna.2020.111973
http://dx.doi.org/10.1002/gch2.201600015
http://dx.doi.org/10.1016/j.jfoodeng.2016.09.006
http://dx.doi.org/10.1063/1.5113801
http://dx.doi.org/10.1016/j.ultras.2016.09.007
http://dx.doi.org/10.1063/1.4949354
http://dx.doi.org/10.1063/1.1654204
http://dx.doi.org/10.1121/1.5017619
http://www.ncbi.nlm.nih.gov/pubmed/29289063
http://dx.doi.org/10.1146/annurev.fl.09.010177.001045
http://dx.doi.org/10.1146/annurev.fl.19.010187.000531
http://dx.doi.org/10.1017/S0022112002003695
http://dx.doi.org/10.1007/s00193-015-0614-z

Water 2020, 12, 2794 10 of 10

17.

18.

19.

20.

21.

22.

23.

Lauterborn, W.; Vogel, A. Shock wave emission by laser generated bubbles. In Bubble Dynamics and Shock
Waves; Springer: Berlin/Heidelberg, Germany, 2013; pp. 67-103.

Shima, A.; Takayama, K.; Tomita, Y.; Miura, N. An experimental study on effects of a solid wall on the motion
of bubbles and shock waves in bubble collapse. Acta Acust. United Acust. 1981, 48, 293-301.

Stride, E.; Saffari, N. Microbubble ultrasound contrast agents: A review. Proc. Inst. Mech. Eng. Part H |.
Eng. Med. 2003, 217, 429-447. [CrossRef]

Supponen, O.; Obreschkow, D.; Tinguely, M.; Kobel, P.; Dorsaz, N.; Farhat, M. Scaling laws for jets of single
cavitation bubbles. J. Fluid Mech. 2016, 802, 263-293. [CrossRef]

Blake, ].R. The Kelvin impulse: Application to cavitation bubble dynamics. J. Aust. Math. Soc. Ser. B.
Appl. Math. 1988, 30, 127-146. [CrossRef]

Chahine, G.L. Oscillation and Collapse of a Cavitation Bubble in the Vicinity of a Two-Liquid Interface; Springer:
Berlin/Heidelberg, Gremany, 1980.

Orthaber, U.; Zevnik, J.; Petkovsek, R.; Dular, M. Cavitation bubble collapse in a vicinity of a liquid-liquid
interface—Basic research into emulsification process. Ultrason. Sonochem. 2020, 68, 105224. [CrossRef]
[PubMed]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1243/09544110360729072
http://dx.doi.org/10.1017/jfm.2016.463
http://dx.doi.org/10.1017/S0334270000006111
http://dx.doi.org/10.1016/j.ultsonch.2020.105224
http://www.ncbi.nlm.nih.gov/pubmed/32554294
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Approach 
	Experiment Setup 
	Solution Preparation 

	Results and Discussion 
	Bubble Collapse Far from the Liquid-Liquid Interface ( = 1.36,  = 0.02519) 
	Bubble Collapse Medium From the Liquid-Liquid Interface ( = 1.1,  = 0.0388) 
	Bubble Collapse Close to the Liquid-Liquid Interface ( = 0.951,  = 0.052) 

	Conclusions 
	References

