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Abstract: While various measures of mitigation and adaptation to climate change have been taken
in recent years, many have gradually reached a consensus that building community resilience is of
great significance when responding to climate change, especially urban flooding. There has been a
dearth of research on community resilience to urban floods, especially among transient communities,
and therefore there is a need to conduct further empirical studies to improve our understanding,
and to identify appropriate interventions. Thus, this work combines two existing resilience assessment
frameworks to address these issues in three different types of transient community, namely an urban
village, commercial housing, and apartments, all located in Wuhan, China. An analytic hierarchy
process–back propagation neural network (AHP-BP) model was developed to estimate the community
resilience within these three transient communities. The effects of changes in the prioritization of
key resilience indicators under different environmental, economic, and social factors was analyzed
across the three communities. The results demonstrate that the ranking of the indicators reflects the
connection between disaster resilience and the evaluation units of diverse transient communities.
These aspects show the differences in the disaster resilience of different types of transient communities.
The proposed method can help decision makers in identifying the areas that are lagging behind,
and those that need to be prioritized when allocating limited and/or stretched resources.
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1. Introduction

In recent years, the frequency and magnitude of climate damage related events, such as rainstorms,
floods, and typhoons have increased in China, threatening the sustainable development of cities,
and hindering economic and social development [1–3]. As the present trends of population growth and
urbanization continue, it can be expected that more people will be exposed and that assets will be more
concentrated in risk-prone areas. The collapse of transportation systems, and fatalities due to urban
floods have occurred in resource-poor communities, primarily due to their greater vulnerability and
poor disaster risk management systems. Transient population is a specific demographic phenomenon
in China, and its definition is often based on household registration, and interpreted with time and
space as elements. Therefore, in this study, we define the transient population as those who have left
their registered district and county to live and work for more than one month in other districts and
counties. The transient population community is socially and politically complex and characterized
as being vulnerable to sudden disturbances and community conflicts, as well as to extreme weather
events like rainstorms and floods [4]. The aftermath of recent urban floods has highlighted the need for
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a community to be prepared for, and be able to recover rapidly from, a sudden potentially disastrous
event. This means that there is an ever-increasing need for special attention to be paid to the adaptation
of this transient population to urban systems.

These adversities, caused by rapid urbanization and natural hazards, have promoted the need
for further research into sustainable development and resilience [5]. The concepts of adaptation
and resilience have become prominent in the urban risk reduction process [6,7]. The concept was
first applied to the study of natural ecosystems by Holling [8], as “the persistence of relationships
within a system and the ability of these systems to absorb, change and learn the variables, and still
persist”. Resilience is a supplement to and sublimation of the concept of sustainable development [9],
and concerns the welfare of human society in all spheres. In the field of social-ecological systems,
planning, adaptation, and transformation actions are considered critical factors in the formation of
resilient systems. Thus, the key to improving the resilience of social-ecological systems is to seek
various approaches to maintain resilience, adapt or transform systems to reduce disaster risk, adapt
to climate changes, and introduce new strategies to develop more sustainably and efficiently [10].
From this perspective resilience is generally considered the capacity to tolerate, absorb, cope with,
and adjust to changing social or environmental conditions, while retaining key elements of structure,
function, and identity [11,12].

Though there is no consensus today on a precise definition of resilience [13,14], and divergent views
on its scope [15–17] and measurement, the scientific community agrees that resilience includes four
aspects: prevention, preparation, response, and recovery. Resilience has also been applied to various
fields, including physics, engineering, economics, psychology, sociology, anthropology, public health,
geography, and disaster management [18,19]; and at different units of analysis, namely, individual,
household, community, and regional levels [20]. The concept of resilience is useful in seeking to
understand communities and the risks to which they are exposed in a holistic manner. In response to
concerns about the consequences of the increased frequency and severity of disaster events, the notions
of community resilience and resilient planning have gained increasing attention and interest over recent
years in the fields of disaster and emergency management. International academic and policy circles
have also acknowledged the necessity of strengthening communities’ resilience [21–27]. The resilience
paradigm has been adopted by many major international development organizations since the Hyogo
Framework for Action (HFA) in 2005. Remarkable among these was the Rockefeller Foundation’s
Building Climate Change Resilience Initiative in 2007, which aimed to enhance vulnerable communities’
resilience to the effects of climate change. This paper discusses an initiative to assess community
resilience in the specific context of the urban transient population.

As the concept of resilience has continued to be applied in several research fields, there has
also been increased attention on the importance of developing methods and frameworks for its
measurement [28]. Measuring community resilience to external pressures is a complex systematic
problem that requires the examination of various components and their relationships within the
community. Several scholars have constructed frameworks and indicator systems to measure
community resilience from different perspectives, including the community disaster resilience
framework (CDRF), the benchmark measurement indicator of community resilience (BRIC), the climate
disaster resilience index (CDRI), and the community resilience framework to disaster (CRDSA), and so
on [29]. Bruneau et al. [19] stated that community resilience exhibited four characteristics: robustness,
redundancy, resourcefulness, and rapidity. Subsequently, they proposed the four dimensions of
community resilience: technology, organization, society, and economy. Cutter, et al. [30] provided a
place-based disaster resilience of place model (DROP), within coupled human-environment systems,
that assessed disaster resilience at the local or community level, and which has been applied in many
community resilience studies [31]. Furthermore, In 2010, Cutter et al. proposed the BRIC model based
on the DROP, which provided a series of secondary indicators to evaluate community resilience [32,33].
The BRIC model has more extensive coverage of community resilience dimensions than others [34],
and it is one of the most widely applied frameworks within the existing literature for quantifying
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community disaster resilience through index creation [35,36]. The operationalized version of the BRIC
model was the first attempt to pass from a theoretical framework to an operationalized practice [23].
When it comes to vulnerability or resilience assessment, geographic information systems (GIS) have
become powerful tools for identifying vulnerable communities and locations, at different scales [37–39].
There are also many studies that have conceived different GIS methods to predict, evaluate, and analyze
the vulnerability and resilience of social environmental systems [40–44]. GIS can help governments,
environmental agencies, and insurance companies to improve prevention, early warning mechanisms,
and mitigation efforts using predictive analytics.

The resilience, adaptation, and transformation assessment and learning framework (RATALF)
was developed in 2015 by the Commonwealth Scientific and Industrial Research Organization (CSIRO)
in partnership with the Scientific and Technical Advisory Panel of the Global Environmental Facility
(STAP/GEF) [45]. The framework leads users through a process of system description, assessing the
system, and adaptive governance and management. The RATALF offered a structured approach to
understanding and assessing resilience, and adaptive learning, so as to inform initiatives to build
resilience of those social-ecological systems that contribute to agreed sustainability goals. The evaluation
process of the RATALF evaluation system is resilient and repeatable [46], that is, the RATALF is not
a conclusive resilience evaluation system, but a process to discuss resilience evaluation. Moreover,
in the practical application of theory, some countries and research institutions have issued a series of
complete evaluation systems and work manuals [45,47,48].

Although the term resilience has become a new paradigm of disaster management in places
including Europe, Australia, and the US, the approach in China is still in the preliminary stage [49],
and mainly focuses on the analysis of the concept of community resilience, the development of theoretical
frameworks, and evaluation of index systems of resilience [50]. Despite the great achievements that have
been attained in urban disaster reduction, the current models do not incorporate the concept of resilient
communities into practical actions. As such, progress towards the measurement and implementation
of strategies to achieve community resilience has been slow, and the absence of a systematic framework
or understanding of the concept, even at the most basic level [20] has hampered progress.

The continuous growth of the transient population in China will accelerate the process of
urbanization, and at the same time, increase the vulnerability of the population and assets exposed
to disasters. The assessment of community resilience of the transient population, and identification
of priorities for resilience indicators, would provide a useful scientific basis for urban disaster risk
mitigation. The weight distribution of indicators is a critical segment in the process of decision-making
and evaluation [51]. In this paper, the analytic hierarchy process (AHP) [52,53] method and the
artificial neural network (ANN) [54–57] are combined to enhance the accuracy of assessing community
resilience, whilst also giving consideration to the characteristics of different properties and reducing
subjectivity. Therefore, this study represents one of the first attempts to develop an index-based
measurement, based on the resilience adaptation transformation assessment (RATA) theory, and use
of a hybrid AHP-BP method for the comparative assessment of flood resilience for the transient
population in Wuhan. Operationalizing the community resilience of this transient population is
particularly important for Chinese cities in light of the fact that these community groups are vulnerable
to floods because of the community’s antecedent conditions (inherent vulnerability), and defects of the
community management system.

2. Description of the Study Area

This study focuses on communities within the transient population distribution area in Wuhan,
Hubei Province, China, which lies at the junction of the Yangtze River and the Han River (Figure 1).
The features of its geographical location and climate makes Wuhan a serious flood hazard area.
According to historical records, severe floods occurred in 1931, 1954, 1998, and 1999. In addition,
from 30 June 2016 to 6 July 2016, the accumulative rainfall in Wuhan reached 582.3 mm. Up to
30 July 2016, flooding affected 13,274,200 people in the surrounding cities and counties. The flooding
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also caused about 30,000 houses to collapse, 1,317,300 hectares of crop damage, and the direct
economic losses reached 3.168 billion Yuan. As a large and vulnerable group, the transient population
community has become a frequent area of urban disasters, because of its disordered living space,
high population density, and the lack of unified and effective management [4]. Three communities,
namely, Hongxia community, Wannian community, and Hugong community, were selected as study
areas in this work, in terms of the transient population community category (Figure 1).
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(C): Hugong community.

Hongxia community is a new type of community established after the comprehensive
transformation of the “village in the city” in Wuhan, and the renovation and improvement of
housing and related supporting facilities. However, due to its remote location, economic development
and infrastructure facilities still lag behind in this urban district.

The Wannian community is a commercial and residential community that is located in the old
town of Jianghan District, where the infrastructure is relatively sound but buildings are poor quality,
with a disorderly architectural layout and poor sanitation conditions. Due to the superior geographical
location and the surrounding commercial development, most migrants in Wannian choose to rent in
the old community in the city center, for the convenience of work and education.

Hugong community residents almost completely rely on employers to allocate housing.
Although the building layout in this community is orderly, the road system is poor, with deficient
infrastructure facilities, and the number of surrounding businesses is relatively small. Owing to work
needs and low rents, many transient population choose to live in apartments.
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According to relevant statistics from the Wuhan Municipal Bureau of Statistics and the Information
Center of the Planning Institute [58], from the perspective of socio-demographic attributes, 78% of the
transient population have a per capita monthly income of less than 3500 yuan, which is lower than the
average monthly salary of the national population. From the perspective of social spatial distribution,
the density of the transient population in Wuhan is distributed in a circle pattern, of high outside and
low inside. The communities with higher density are mostly distributed in the old city, and the per
capita living area is mostly 20–35 square meters. Generally speaking, due to the impact of low incomes,
housing prices, and other factors, the transient population usually rents in areas with convenient
transportation, convenient living, and low rents, which are mostly villages and old towns [59].
Therefore, these communities live in mostly poor environmental conditions, with restricted internal
space, inadequate public services, and facilities. Living in such a harsh environment, with insufficient
public services and facilities, the transient population are more vulnerable than other community
groups in terms of economic, social, and physical wellbeing.

3. Methodology

Figure 2 shows the approach used for establishing the AHP–BP model framework.
The methodology consists of four components: (1) selecting relevant indicators; (2) establishing
indicator hierarchy model, and applying AHP method to determine the initial weights of each indicator;
(3) calculating the linear weight values between the actual data collected in the questionnaire survey and
the initial weight value, which were taken as the expected output of the BP neural network to establish
the AHP–BP combination model, in order to estimate the three transient population communities’
resilience; and finally (4) distinguishing the difference of the three communities’ resilience reasonably
and effectively, according to the optimized indicator weights of the AHP–BP model.
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3.1. Data Collection

Based on the research theme of the disaster resilience of the transient population and urban
communities, a questionnaire survey was designed to cover four aspects: community space
construction, economic development, community management system, and community social
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capital. Questionnaires were used to collect data from the transient population in the three types
of community: urban village (Hongxia), commercial housing (Hugong), and apartment (Wannian).
The questionnaire adopted a five-point variable Likert scale to gauge the respondents views. Ultimately,
265 valid questionnaires, which included 85, 92, and 88 valid questionnaires in the Hongxia, Hugong,
and Wannian communities were effectively recovered, respectively. A reliability test was carried out
on the basis of the questionnaire results. Cronbach’s alpha was 0.88, indicating that the survey results
have scientific credibility.

3.2. Indicator Selection

The indicators were selected on the basis of the RATA framework [45], and the concrete indicators
were filtered based on the BRIC framework [32]. The RATA procedure, which is a step-by-step iterative
method for assessment, refers to the core of the RATA framework (Figure 3). It is conducted at focal
(sub-national) scale, ideally with multi-stakeholder engagement [20]. The application of RATA was in
order to fully consider the disaster resilience of the community, including material and spatial factors,
social composition, social management, and community capital, so as to pay more attention to the
disaster prevention ability of the community. Cutter et al. proposed constructing a resilience evaluation
index system from six aspects including economic resilience, social resilience, environmental resilience,
community resilience, infrastructure resilience, and organizational resilience. This model focuses
on the ability of the social system, ecological environment, and buildings to cope with disaster
impacts. In general, the BRIC framework considers the concept of community resilience as pre-event
inherent resilience (robustness) and post-event adaptive (transformation) resilience [33], and includes
the extensive coverage of community resilience dimensions compared with the other dimensions.
The application of RATA was to ensure full consideration of the disaster resilience of the community,
including material and spatial factors, social composition, and social management; and includes the
extensive coverage of community resilience dimensions compared with the other dimensions.

Although standards for assuring the variables are widespread within the existing indicator
literature, no unified indicators or frameworks for quantifying community resilience are available
to date. The framework proposed in this study is based on the theory of RATA, and the selected
supplementary indicators that are contained in BRIC. Guided by the theory of RATA, the first step
was to describe the system and identify exogenous disturbances and endogenous variations that
may cause changes in the urban community system. Exogenous interference mainly refers to the
identification of various disasters that communities are prone to, and endogenous variation comes
from the factors influencing the vulnerability and resilience of communities. According to the degree
to which the transient population community can meet the actual living needs of urban residents
in terms of population characteristics and residential forms, it can be divided into urban villages,
commercial housing, and apartments. Furthermore, the inherent differences between China and the
west, as well as the relevant characteristics of the transient population community, were considered.
A total of 16 indicators were selected after integrating the characteristics of the transient community
and indicators mentioned in the existing literature. Table 1 presents the selected indicators and their
corresponding dimensions.

3.3. Indicators’ Hierarchy Model and Initial Weight Determination

3.3.1. Establishing the Hierarchy Model

Figure 4 shows the indicator hierarchy model. The first layer corresponds to the target layer (A),
which represents the community resilience of the transient population. The second layer refers to the
criterion layer (Bi), which represents the selected dimensions, namely, community space construction,
economic development, communities’ management system, and community capital. The third layer
represents the scheme layer (Cij), which consists of 16 indicators (Table 1).
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Table 1. List of hierarchical structure, and indicator descriptions.

The Target Layer The Criterion Layer (Bi) Symbols
(Cij) The Indicator Layer Description

The transient population
community resilience

to disaster
(A)

Community space
construction

(B1)

C11 Construction quality Disaster prevention level, quality of
building facilities

C12 Disaster evacuation
capability

The width of the evacuation road meets
the demand

C13 Emergency shelters Whether there is a temporary shelter, and its
space reasonably

C14 Disaster prevention
marking system

The completeness of the disaster prevention
identification system

C15 Lifeline system Whether the infrastructure is comprehensive

Economic development
(B2)

C21 Disaster insurance

Household property comprehensive
insurance, personal accident insurance, etc.

bought by residents to prevent losses caused
by natural disasters

C22 Employment
situation

Employment status of transient population,
economic income

C23 Commercial scale The number and scale of businesses in the
community reflect the community economy

C24 Material reserve system
The provision of materials prepared by the

community committee in response to
the disaster

Community management
system

(B3)

C31 Community committee
management

Number, quality, and standard of
responsibility of community managers

C32 Community
communication network

Construction of community communication
network (Interchange and share information

within community)

C33 Emergency management Relevant emergency management
regulations, publicity and related drills

C34 Disaster prevention
publicity and education

The community’s propaganda of disasters,
including mobile phone text messages,

community banners, bulletin boards, leaflets
and other disaster-related reminders,

drills, etc.

Community capital
(B4)

C41 Disaster awareness Level of knowledge and concern about flood

C42 Social network
relationship

The form and frequency of getting along
between neighbors

C43 Community
attachment

Transient population group’s sense of
belonging to a community or place
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3.3.2. Applying AHP Method to Calculate the Initial Weights

A questionnaire on the importance of urban community disaster resilience, and the evaluation
index of the transient population was developed and distributed to experts. A pairwise comparison of
the factors at each layer was performed by using a one to nine scale method. Then, the findings were
recorded in Yaahp, which could directly verify the consistency of the results. Lastly, the eigenvalue,
the weights (wj) of the indicators’ scheme layer, and the weights (w0) of the criterion layer of dimensions
could be outputted.

3.4. Construction of the AHP–BP Combination Model and Resilience Estimation

The AHP method is widely used in evaluating and determining weights, but subjective factors
affect the accuracy of evaluation. Nevertheless, the ANN method can effectively weaken artificial
factors and systematically identify the unknown relationship among various indicators, using a trained
neural network for positive knowledge reasoning to determine the weight of the indicators [55].
Superior to traditional logical reasoning calculation, ANN has a simple structure, a steady operation
state, a strong nonlinear mapping ability, and a high computational accuracy [54,56,60]. A AHP–BP
combination model was constructed to realize the initial determination and optimization of indicator
weights, and to reduce the influence of subjective randomness and uncertainty of the AHP method
(Figure 2). The specific steps of establishing the AHP-BP model in this study are presented as follows:

3.4.1. Sample Collection and Processing

n training samples were determined by collecting the actual data of the three types of transient
community resilience indicators as the input vector, and each training sample has m indicators:

X =
(
xij

)
n×m

i = 1 . . .n; j = 1 . . .m, (1)

Furthermore, combined with the expert weights obtained by the AHP method, the linear weight
value was calculated as the output vector: Y. The calculation method is presented as follows:

Yj = uijwj, (2)

where uij is the score of the ith sample and the jth indicator, wj is the weight of each indicator,
and Y = (Y1, Y2, . . . , Ym).

After normalization, X and Y are denoted by X’ and Y’, respectively; and the network training
samples were obtained.
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3.4.2. Determining the Network Parameters

A BP neural network realizes a mapping function from input to output, and mathematical theory
has proved that this network can realize any complex nonlinear mapping function, thereby making it
particularly suitable for solving complex problems with internal mechanisms. In this study, a three-layer
BP network, with one hidden layer, was selected to evaluate the resilience of the transient population
community. The BP network contained 16 nodes in the input layer and 1 node in the output layer.
The number of nodes in the hidden layer was determined on the basis of the hidden layer design
empirical formula.

p =
√

m + l + c, (3)

where m is the number of input layer nodes, l is the number of output layer nodes, p is the number of
hidden layer nodes, and c is a constant between 1 and 10.

In this study, the transfer function of hidden layer neurons adopted the Sigmoid function.
The learning and training functions adopted “trainbfg,” which refers to a variable gradient algorithm
that is suitable for small networks. For the BP neural network (Figure 5), let d be the number of
iterations, and in the Newton algorithm, the weights and thresholds of each layer were modified
according to the following formula:

xd+1 = xd −A−1
d gd, (4)

where xd is the connection weight vector or threshold vector between layers in the dth iteration;
gd = ∂Ed

∂xd
is the gradient vector of each weight or threshold of the output error of the neural network

in the dth iteration; and the negative sign represents the opposite direction of the gradient, that is,
the fastest descending direction of the gradient. Ed is the total error performance function of the neural
network output in the dth iteration, which is designed as mean square error (MSE). Ad is the Hessian
matrix (second derivative) of the error performance function under the current weight and threshold.Water 2020, 12, 2784 10 of 22 
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The other training parameters selected included: the learning rate “lr” was selected as 0.01,
the “mo + mentum” was selected as 0.90, the “max_epoch” was set as 1000, and the “err_goal” was set
as ε = 10−5.
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3.4.3. Network Training and Estimation of the Three Communities’ Resilience

The sample data of the three selected communities were trained by using the toolbox of the
MATLAB software (version 2017b, MathWorks, Beijing, China). The MSE E between the actual
evaluation value Y * and the ideal evaluation value Y of each sample tends to minimum, which is
regarded as the optimal algorithm criterion of a neural network. When the training results reached the
requirements of network accuracy (E), the comparison line graph of the expected value and the actual
value, and their relative error variation graph was outputted. Then, the connection weight matrix (wki)
was outputted from the input layer to the hidden layer, and the connection weight matrix (wjk) from the
hidden layer to the output layer. Next, the correlation significance coefficient (rij), relevant index (Rij),
and absolute influence coefficient (Sij) were calculated. The specific formula is expressed as follows:

E =
1

2n

∑n

i=1
(Y−Y∗)2, (5)

x = wjk, (6)

rij =

p∑
k=1

wki(1− e−x)/(1 + e−x) (7)

y = rij (8)

Rij =
∣∣∣(1− e−y)/(1 + e−y)

∣∣∣ (9)

Sij= Rij/
m∑

i=1

Rij (10)

where i is the input unit of the neural network, i = 1, 2, 3 . . . m; j is the output unit of the neural
network, j = 1; k is the hidden unit of the neural network, k = 1, 2, 3 . . . p; wki is the weight coefficient
between neuron i in the input layer and neuron k in the hidden layer; wjk is the weight coefficient
between neuron j in the output layer and neuron k in the hidden layer; and Sij is the target weight.

The mean of linear values between the actual data collected in the questionnaire survey and the
optimized weight by the network is the resilience value of the community. Ultimately, the actual
situation of the different communities can be reflected by analyzing and comparing the output weights
and the resilience values of the three communities.

4. Results and Analysis

4.1. Calculation of Initial Weights of Indicators at All Layers

The initial indicator weights were calculated by Yaahp, based on the AHP method (Figure 6).
Yaahp is an analytic hierarchy process auxiliary software that provides assistance in model construction,
calculation, and analysis in the decision-making process, using an analytic hierarchy process. The weight
of community space construction dimension was 0.4586, which is nearly half of the sum of all dimensions.
The calculation results show that the weight deviation of the calculated indicators was large, which lacks
objectivity and reliability. Therefore, the weight value obtained by the experts must be optimized
to improve the poor effectiveness and practicability of the index weight value caused by the strong
subjective arbitrariness of expert weight scoring.

4.2. Calculation of Initial Weights of Indicators at All Layers

4.2.1. Expected Output Vector of the AHP–BP Neural Network

According to the questionnaire survey results and the confirmed initial weight value, the output
vector that corresponds to each input was calculated by using Equations (2) and (3). The partial
expected output vector results of the urban village community are shown in Table 2.
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Table 2. Partial samples and results of the urban village community.
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4.2.2. Expected Output Vector of the AHP–BP Neural Network

The network was trained using the constructed training samples. The BP learning algorithm uses
the least square method and gradient search techniques to minimize the MSE between the actual and
the expected output values of the network [55]. This study conducted network training according to
samples from the three communities.

Through continuous training analysis, the number of hidden layer nodes in the network structure
of the Hongxia community was determined as seven. After 87 iterations of adjustment, the accuracy
reached 9.41 × 10−6, which was less than the target accuracy of 10−5. The network output results
and error calculation are shown in Table A1, which shows that the actual network output of the
training samples has a certain deviation from the expert evaluation values. In addition, the maximum
relative error of the test was 0.0509, which was within the acceptable range in the resilience evaluation.
Therefore, the network output weight value was effective and reliable. Similarly, the number of hidden
layer nodes in the two other community network structures was eight and seven, the training errors
reached 9.99 × 10−6 and 9.68 × 10−6, and the maximum relative errors of the test were 0.0186 and
0.0233. The Appendix A Tables A1–A3 present the specific data, and Figures A1–A6 show that the
neural network training results were rational. Therefore, the BP neural network could approximate
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the complex nonlinear resilience evaluation process by simply compounding the neuron functions.
Combined with the BP neural network model of the AHP, the community resilience evaluation method
was improved, and its analysis and results have broad application prospects.

4.2.3. Weight Analysis of the Three Communities’ Indicators

After training the network, the weights (wki) were outputted between the input and hidden layers
and the weights (wjk). Finally, the optimized weights (Sij) of the three communities’ indicators were
obtained by using Equations (6)–(10). Table 3 shows that the weights of some indicators changed greatly
after BP network optimization. Actually, the weight value aims to make a reasonable and effective
distinction of the difference in disaster resilience among various transient population communities,
rather than the standard of importance and effect [47]. A factor may play an important role in
evaluating the disaster resilience of a certain community, but it may not play an equally important
role in distinguishing the quality distinction of different communities’ disaster resilience. Therefore,
the three communities had diverse rankings of weights, and the value assigned to each of the indicators
was also diverse.

Table 3. Comparison of weights of each model indicator.

Index Expert
Weights Rank Hongxia

Community Rank Wannian
Community Rank Hugong

Community Rank

C11 0.1831 1 0.1103 1 0.1556 1 0.1496 1
C12 0.0971 3 0.1081 2 0.0979 4 0.1187 2
C13 0.0783 5 0.0931 4 0.0751 7 0.0766 6
C14 0.0314 11 0.0407 12 0.0102 16 0.0297 13
C15 0.0688 6 0.0898 5 0.0869 5 0.0595 8
C21 0.0271 15 0.0205 16 0.0332 11 0.0381 11
C22 0.0211 16 0.0277 14 0.0229 14 0.0224 14
C23 0.0659 7 0.0485 10 0.0756 6 0.0835 5
C24 0.0295 12 0.0574 9 0.0377 10 0.0472 9
C31 0.0272 14 0.0583 8 0.0305 13 0.0211 15
C32 0.0588 8 0.0709 7 0.0588 8 0.0731 7
C33 0.1017 2 0.0941 3 0.1291 2 0.1057 3
C34 0.0386 10 0.0412 11 0.0402 9 0.0357 12
C41 0.0924 4 0.0764 6 0.1028 3 0.0840 4
C42 0.0509 9 0.0373 13 0.0317 12 0.0461 10
C43 0.0281 13 0.0255 15 0.0118 15 0.0080 16

Specifically, the weight of building quality (C11) ranked first among the three community resilience
indicators, but the proportion of building quality resilience of the Wannian community was higher than
those of the two other communities, indicating that the quality of building facilities in old communities
was worse than those in the other communities. Therefore, old urban communities must strengthen
building quality (i.e., “hard” power) to improve their disaster resilience. The communities of Hongxia
and Hugong are more geographically remote and economically backward than Wannian. Thus,
they have fewer resources to supply. Their weights were 0.0574 and 0.0472, that is, they should focus
on material reserves (C24) to enhance the resilience of their communities. The emergency management
(C43) weights of the three communities correspond to 0.0941, 0.1291, and 0.1057, which accounts
for a large proportion in the community management system. Therefore, strengthening emergency
management for these transient communities can effectively promote the improvement of their
resilience. Furthermore, the survey showed that residents within the transient population community
generally lack disaster awareness and have limited communication with one another. The Table 3 also
shows that emergency management (C43) ranks relatively high.

In general, the proportion of community space construction was more than 40%, indicating that the
spatial construction of the transient population communities is insufficient. Most transient communities
are located in older parts of the city with poor building quality, narrow roads, and inferior system
connectivity, thereby causing great difficulties in emergency management. Moreover, the transient
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community has a large population density, which is not conducive to the timely evacuation of
residents. The economic development percentage was approximately 15%. Although its proportion
is not high, it is an important basis for coping with disasters. In addition, most of the transient
population have a low income, and reside in old urban areas, which have a relatively weak economy.
The community management system, which accounts for approximately 24.5%, is also an important
dimension in evaluating community resilience. Compared with the communities where permanent
residents live, the community management system of the transient population is relatively loose and
informal; hence, more efforts are needed to be taken to improve their community management systems.
In addition to strengthening the “hard” power of communities, “soft” power should also be given
greater attention. “Soft” power refers to community or social capital that accounts for approximately
20%, thereby implying an emotional connection to one’s neighborhood or city, somewhat apart from
connections to the specific people who live there. However, the residents of the transient population
community have less dealings, and their sense of community belonging is weak due to the frequent
change in living place. The government should give more care and power to the transient population,
and communities must develop economic resources, reduce risk and resource inequities, and attend to
their areas with the greatest social vulnerability [61,62].

4.2.4. Analysis of the Resilience of the Three Communities

After the above optimization weights were calculated, the resilience indexes of the three
communities could be obtained by linear weighting of the values and the collected data. Finally, the total
averaged score was calculated, with 2.91 in the urban village, 2.83 in the commercial housing in the old
city, and 2.77 in the apartments, respectively. Figure 7 shows that Hongxia community had the best
resilience in the community space construction (B1) dimension, since it is a new community, where the
community space construction is relatively comprehensive. However, this area was not resilient to the
economic development (B2) dimension due to its remote location. Wannian community is located in
the center of the city, so it has quite comprehensive community management systems, and abundant
resources, which allow a quick response in the event of disasters. These three communities, in which
the sense of belonging of the transient population is still weak, suffer poor resilience in terms of the
community capital (B4). The priority of community resilience is shown: Hongxia community has the
highest level, followed by Wannian community, and the Hugong community is relatively weak at
coping with serious disasters.
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5. Conclusions

A new framework for comprehensively quantifying different types of transient community
resilience to urban flooding has been established. This adopts the use of the RATA and BRIC
frameworks by considering the characteristics of the transient population community; differences in the
resilience indicators across three communities were distinguished by comparing the weighted values
of the three transient population communities [32,45,63]. The resilience of the three communities in
different dimensions were also compared and analyzed.

In this work, a weight determination model, combining AHP and a BP neural network,
was established, aiming at the limitation of existing weight determination methods by investigating
ANN. The analysis shows that the artificial factors of the AHP method are effectively reduced by
combining subjective and objective weight determination methods. Moreover, the weight calculated
by the AHP–BP neural network and its ranking reflects the connection between disaster resilience and
evaluation units of different transient population communities, and its value lays the foundation for
the re-calculation of community resilience values. Some major conclusions can be drawn as follows:

• A new framework based on the RATA framework has been developed. Indicators for the
characteristics of the transient population were selected according to the BRIC model and used to
quantify the community resilience of the transient population. On the strength of a large amount
of literature and relevant theories, 16 indicators were confirmed and divided into four dimensions:
community space construction (B1), economic development (B2), community management system
(B3), and community capital (B4).

• A three-level evaluation network was constructed by using AHP. After the judgment matrix was
assigned by experts, Yaahp software was used to calculate the weight directly. Thus, the initial
weight was obtained as the basis for calculating the output samples of the BP neural network.

Each indicator is quantified, and the weights of each community were calculated by using the
neural network training results. The weights obtained by the AHP–BP neural network model were
more effective and practical than those obtained by the expert method. Moreover, the resilience of
three transient population communities, namely, urban village, commercial housing, and apartment,
were evaluated. On the basis of the results of the three communities, the weights and ranking of
various indicators in different transient population communities were also diverse. This demonstrates
the need to consider the needs of different communities when developing appropriate interventions to
effectively improve community resilience. According to domestic research on the transient population,
most cities have similar settlement features and management systems. Thus, these procedures can be
incorporated into a new thinking that can promote the evaluation of transient community resilience
through the use of multiple indicators, and can generally be applied to other cities with similar
economic development and urban management systems. However, the main factors influencing
resilience of transient population will change according to the economic development, risk exposure,
and vulnerability, as well as other objective factors in the management of the population. Therefore,
for future works, we will focus on the application of this assessment approach. It is necessary to apply
GIS to help dynamically grasp the changes in the transient population communities in various regions,
so as to help governments, environmental agencies, and insurance companies to improve prevention,
early warning mechanisms, and mitigation efforts using predictive analytics.
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Appendix A

Table A1. Network output results of Hongxia community.

Actual
Value

Expected
Value

Relative
Error

Actual
Value

Expected
Value

Relative
Error

1 3.4214 3.4302 0.0026 45 2.2020 2.2057 0.0017
2 3.2429 3.2451 0.0007 46 2.9380 2.9391 0.0004
3 3.8847 3.9445 0.0154 47 3.6868 3.6840 0.0008
4 3.3722 3.3584 0.0041 48 3.8246 3.9868 0.0424
5 2.6801 2.6941 0.0052 49 2.5801 2.5581 0.0085
6 2.3887 2.3915 0.0012 50 2.6227 2.6250 0.0009
7 1.5867 1.5930 0.0040 51 3.6390 3.6459 0.0019
8 2.1869 2.2166 0.0136 52 1.9420 1.9861 0.0227
9 2.6636 2.6409 0.0085 53 2.8374 2.8362 0.0004

10 3.9586 3.9559 0.0007 54 1.7727 1.7447 0.0158
11 3.2918 3.2980 0.0019 55 3.5769 3.5824 0.0015
12 2.5148 2.5180 0.0013 56 2.9398 2.9606 0.0071
13 2.9569 2.9576 0.0002 57 3.8062 3.8020 0.0011
14 1.9309 1.9351 0.0022 58 2.2792 2.2385 0.0179
15 2.4716 2.4667 0.0020 59 2.9588 2.9662 0.0025
16 3.0864 3.0877 0.0004 60 3.5683 3.5658 0.0007
17 3.0345 3.0300 0.0015 61 2.2631 2.2530 0.0045
18 3.1826 3.1599 0.0071 62 2.9783 2.9732 0.0017
19 3.2114 3.2117 0.0001 63 2.1596 2.1571 0.0011
20 3.1929 3.1884 0.0014 64 2.6753 2.6615 0.0052
21 3.0095 3.0281 0.0062 65 2.3528 2.3571 0.0018
22 3.5865 3.5516 0.0097 66 3.4753 3.4687 0.0019
23 3.7269 3.7298 0.0008 67 2.7685 2.7808 0.0044
24 3.1534 3.1419 0.0036 68 3.0236 3.0170 0.0022
25 3.0238 3.0213 0.0008 69 3.4598 3.4522 0.0022
26 2.8717 2.8710 0.0003 70 3.2862 3.2884 0.0007
27 2.6781 2.6705 0.0029 71 3.7371 3.8158 0.0211
28 3.7230 3.7275 0.0012 72 3.1358 3.2437 0.0344
29 3.0345 3.0300 0.0015 73 2.2744 2.2689 0.0024
30 3.2635 3.2416 0.0067 74 1.8827 1.8833 0.0003
31 2.8606 2.8708 0.0036 75 2.7024 2.7044 0.0007
32 3.6866 3.6762 0.0028 76 3.3696 3.5116 0.0421
33 2.9404 2.9298 0.0036 77 3.6349 3.8198 0.0509
34 3.9055 3.9087 0.0008 78 2.1482 2.1448 0.0016
35 2.7209 2.7214 0.0002 79 3.2961 3.3057 0.0029
36 3.2986 3.3217 0.0070 80 3.5409 3.5282 0.0036
37 1.7651 1.7594 0.0032 81 2.5552 2.5562 0.0004
38 2.9404 2.9298 0.0036 82 2.7177 2.7102 0.0028
39 2.7193 2.7131 0.0023 83 3.2244 3.2149 0.0030
40 2.1626 2.1567 0.0027 84 2.5181 2.4695 0.0193
41 3.2136 3.2123 0.0004 85 1.4663 1.4598 0.0044
42 3.5499 3.5463 0.0010
43 2.1052 2.1146 0.0045
44 2.7420 2.7393 0.0010
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Table A2. Network output results of Wannina community.

Actual
Value

Expected
Value

Relative
Error

Actual
Value

Expected
Value

Relative
Error

1 3.4541 3.4758 0.0063 47 3.3854 3.3827 0.0008
2 3.3614 3.3682 0.0020 48 3.6857 3.7541 0.0186
3 3.4234 3.4238 0.0001 49 2.5147 2.5191 0.0017
4 2.8415 2.8391 0.0009 50 2.5333 2.5312 0.0008
5 2.1198 2.1180 0.0008 51 3.0234 3.0197 0.0012
6 2.8598 2.8352 0.0086 52 2.2789 2.2802 0.0006
7 1.9119 1.8989 0.0068 53 2.8149 2.8153 0.0002
8 2.1983 2.2063 0.0036 54 2.2938 2.2928 0.0004
9 2.9145 2.9118 0.0009 55 3.0886 3.0896 0.0003

10 3.3972 3.3993 0.0006 56 2.8706 2.8585 0.0042
11 2.8554 2.8446 0.0038 57 3.1983 3.1919 0.0020
12 2.1632 2.1705 0.0034 58 2.4848 2.4920 0.0029
13 2.8317 2.8262 0.0019 59 2.9653 2.9593 0.0020
14 2.3345 2.3382 0.0016 60 3.5601 3.5658 0.0016
15 2.5351 2.5399 0.0019 61 2.6126 2.6301 0.0067
16 3.2169 3.2130 0.0012 62 2.6958 2.6930 0.0010
17 3.0402 3.0393 0.0003 63 2.4165 2.4193 0.0011
18 2.9466 2.9385 0.0027 64 2.8039 2.8112 0.0026
19 2.5968 2.6090 0.0047 65 2.5088 2.5091 0.0001
20 2.8389 2.8345 0.0015 66 3.3308 3.3308 0.0000
21 2.7337 2.7322 0.0006 67 2.5944 2.5977 0.0013
22 3.2974 3.3000 0.0008 68 3.0211 3.0075 0.0045
23 3.4465 3.4516 0.0015 69 3.1082 3.1001 0.0026
24 3.1411 3.1429 0.0006 70 3.1932 3.1905 0.0009
25 2.5904 2.5893 0.0004 71 3.3821 3.3932 0.0033
26 2.5782 2.5846 0.0025 72 3.1263 3.0997 0.0085
27 2.4908 2.4923 0.0006 73 2.4448 2.4528 0.0033
28 3.1711 3.1645 0.0021 74 2.1216 2.1037 0.0084
29 3.0093 3.0079 0.0005 75 3.0233 3.0096 0.0045
30 3.0882 3.0862 0.0006 76 3.2820 3.2625 0.0059
31 2.4454 2.4687 0.0095 77 3.1666 3.1573 0.0029
32 3.2538 3.2475 0.0019 78 2.2502 2.2522 0.0009
33 2.4649 2.4647 0.0001 79 3.0056 2.9851 0.0068
34 3.4236 3.4187 0.0014 80 3.0832 3.0643 0.0061
35 2.5732 2.5681 0.0020 81 2.3240 2.3303 0.0027
36 2.8946 2.8858 0.0030 82 2.3130 2.3120 0.0004
37 2.3181 2.2870 0.0134 83 3.1464 3.1494 0.0010
38 2.4665 2.4733 0.0028 84 2.5440 2.5464 0.0009
39 2.6593 2.6569 0.0009 85 2.0437 2.0068 0.0181
40 2.3299 2.3329 0.0013 86 3.1631 3.1607 0.0008
41 2.5993 2.5968 0.0010 87 3.4990 3.4979 0.0003
42 3.4283 3.4338 0.0016 88 2.3916 2.3915 0.0000
43 2.6221 2.6313 0.0035 89 3.0015 3.0029 0.0005
44 2.4927 2.4979 0.0021 90 2.2114 2.2048 0.0030
45 2.2727 2.2745 0.0008 91 3.1162 3.0791 0.0119
46 2.7947 2.7879 0.0024 92 2.3766 2.3826 0.0025
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Table A3. Network output results of Hugong community.

ž Actual
Value

Expected
Value

Relative
Error

Actual
Value

Expected
Value

Relative
Error

1 3.2530 3.2516 0.0004 45 2.4351 2.4379 0.0012
2 3.2138 3.2173 0.0011 46 2.6833 2.6835 0.0001
3 3.2778 3.2656 0.0037 47 3.2936 3.2952 0.0005
4 2.9064 2.9271 0.0071 48 3.4071 3.4222 0.0044
5 2.4358 2.4364 0.0002 49 2.5726 2.5852 0.0049
6 2.6098 2.6155 0.0022 50 2.4793 2.4730 0.0025
7 2.1079 2.1053 0.0012 51 2.8488 2.8435 0.0019
8 2.0064 2.0029 0.0017 52 2.2839 2.2838 0.0001
9 2.8102 2.8043 0.0021 53 2.7573 2.7653 0.0029

10 3.3394 3.3471 0.0023 54 2.4094 2.4066 0.0012
11 2.6960 2.7070 0.0041 55 2.8411 2.8778 0.0129
12 2.1600 2.1619 0.0009 56 2.8392 2.8382 0.0003
13 2.9032 2.9019 0.0004 57 3.1739 3.1722 0.0005
14 2.3165 2.3579 0.0179 58 2.2950 2.2968 0.0008
15 2.5893 2.5827 0.0025 59 2.9769 2.9752 0.0006
16 2.7030 2.7061 0.0011 60 3.4849 3.4970 0.0035
17 3.0035 3.0007 0.0009 61 2.2205 2.2169 0.0016
18 2.6707 2.6740 0.0012 62 2.6272 2.6263 0.0004
19 2.5695 2.5639 0.0022 63 2.4595 2.4585 0.0004
20 2.5913 2.5940 0.0010 64 2.7986 2.8009 0.0008
21 2.7725 2.7734 0.0003 65 2.6279 2.6207 0.0028
22 3.3780 3.3736 0.0013 66 3.2708 3.2704 0.0001
23 3.1550 3.1486 0.0020 67 2.5379 2.5289 0.0035
24 3.0771 3.0741 0.0010 68 2.8748 2.8757 0.0003
25 2.7935 2.7904 0.0011 69 3.2447 3.2360 0.0027
26 2.5302 2.5158 0.0057 70 3.2571 3.2552 0.0006
27 2.5602 2.5595 0.0003 71 3.0283 3.0330 0.0015
28 3.0204 3.0269 0.0022 72 2.7204 2.7246 0.0016
29 2.8139 2.8097 0.0015 73 2.5634 2.5737 0.0040
30 2.9959 2.9845 0.0038 74 2.2561 2.2518 0.0019
31 2.3407 2.3405 0.0001 75 2.8765 2.8778 0.0004
32 3.4145 3.4345 0.0058 76 3.0691 3.0673 0.0006
33 2.8866 2.8842 0.0008 77 2.9009 2.9080 0.0025
34 3.4261 3.4311 0.0015 78 2.3074 2.3067 0.0003
35 2.5748 2.5681 0.0026 79 2.6606 2.6771 0.0062
36 2.7824 2.7841 0.0006 80 3.0008 3.0015 0.0002
37 2.3592 2.3570 0.0009 81 2.5779 2.5799 0.0008
38 2.3509 2.3542 0.0014 82 2.4635 2.4290 0.0140
39 2.7688 2.7718 0.0011 83 3.0933 3.0866 0.0022
40 2.3956 2.3973 0.0007 84 2.4614 2.4655 0.0017
41 2.6346 2.6367 0.0008 85 2.0013 2.0068 0.0027
42 3.4012 3.3922 0.0026 86 3.2451 3.2436 0.0005
43 2.3932 2.4489 0.0233 87 3.2476 3.2095 0.0117
44 2.7406 2.7354 0.0019 88 2.6318 2.6366 0.0018Water 2020, 12, 2784 18 of 22 
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Figure A1. Comparison of output value with expected value in Hongxia community.
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