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Abstract: Evapotranspiration plays an inevitable role in various fields of hydrology and agriculture.
Reference evapotranspiration (ET0) is mostly applied in irrigation planning and monitoring.
An accurate estimation of ET0 contributes to decision and policymaking processes governing water
resource management, efficiency, and productivity. Direct measurements of ET0, however, are difficult
to achieve, often requiring empirical methods. The Penman–Monteith FAO56 (PM-FAO56) method,
for example, is still considered to be the best way of estimating ET0 in most regions of the globe.
However, it requires a large number of meteorological variables, often restricting its applicability
in regions with poor or missing meteorological observations. Furthermore, the objectivity of some
elements of the empirical equations often used can be highly variable from region to region. The result
is a need to find an alternative, objective method that can more accurately estimate ET0 in regions of
interest. This study was conducted in the Hexi corridor, Northwest China. In it we aimed to evaluate
the applicability of 32 simple empirical ET0 models designed under different climatic conditions
with different data inputs requirements. The models evaluated in this study are classified into
three types of methods based on temperature, solar radiation, and mass transfer. The performance
of 32 simple equations compared to the PM-FAO56 model is evaluated based on model evaluation
techniques including root mean square error (RMSE), mean absolute error (MAE), percentage bias
(PBIAS), and Nash–Sutcliffe efficiency (NSE). The results show that the World Meteorological
Organization (WMO) and the Mahringer (MAHR) models perform well and are ranked as the best
alternative methods to estimate daily and monthly ET0 in the Hexi corridor. The WMO and MAHR
performed well with monthly mean RMSE = 0.46 mm and 0.56 mm, PBIAS = 12.1% and −11.0%,
and NSE = 0.93 and 0.93, before calibration, respectively. After calibration, both models showed
significant improvements with approximately equal PBIAS of −2.5%, NSE = 0.99, and RMSE of 0.24 m.
Calibration also significantly reduced the PBIAS of the Romanenko (ROM) method by 82.12% and
increased the NSE by 16.7%.

Keywords: evapotranspiration; Hexi corridor; model; temperature; radiation; mass transfer

1. Introduction

Reference evapotranspiration (ET0) is an essential element of the hydrological cycle, energy,
and water balance [1,2]. It plays a crucial role in the fields of agricultural and hydrological projects [3,4].
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An accurate estimation of ET0 is a hydrological requirement for accurate estimates of water resource
management, efficiency, and productivity, particularly in semi-arid regions [5,6].

The lysimetric method is one of the micrometeorological techniques used to measure in situ ET0

values, and it is often considered the sole method of achieving accurate ET0 estimates. This method,
however, has great shortcomings associated with high costs and complex instrumentation [7,8].
A variety of empirical methods have thus been developed for the task according to different climate
conditions [9–12].

The Food and Agriculture Organization (FAO) has recommended the Penman–Monteith
(PM-FAO56) equation as the standard model to estimate the ET0 under various climate conditions and
different time scales [13,14]. Research has shown the PM-FAO56 method to be suitable for a variety of
climates with differing local factors. The se include solar radiation, sunshine duration, wind speed,
air humidity, air temperature, and location of observing station properties [15–17]. The model,
however, requires a very large number of inputs, many of which are difficult to accurately estimate or
observe in regions with few observations, such as those of wind speed, relative humidity, and solar
radiation. A requirement to develop possible alternatives to escape some of these requirements could
thus yield benefits in the development of the method [5,7,18–20].

The FAO also recommends an application of the Hargreaves and Samani (H-S) method of estimating
ET0 values in regions where only observations of minimum and maximum air temperature [12] are
available. However, many studies have found that the H-S method encounters uncertainties associated
with regional climate conditions and small timescales [6,18]. Calibration of its inputs is therefore
required before the method can be used reliably [6,18]. In light of these drawbacks, extensive research
has been carried out to develop alternative, more simple equivalent methods [6–8,19–21].

Simple empirical ET0 models that use fewer climatic variables than those required by PM-FAO56
have been developed and showed relatively good performance [22]. Although not all models are
synchronously applicable in all different regions, local calibration is indeed applied to reparametrize
and adjust the model to local climate conditions [18,23,24].

Berti et al. (2014) [6] evaluated the performance of the H-S method in Italy and concluded that the
H-S model overestimates ET0 values. Similar conclusions were obtained in Eastern North Carolina,
America [25], Southeast Europe [21], and in Southwest China [26]. Significant improvements in H-S
model performance in different regions have been gained through local calibration [6,18,23,26–30].

Gao et al. (2017) [31] evaluated different ET0 methods in arid, semiarid, and humid regions. The y
recommended the Priestly–Taylor, H-S, and Makkink models as the best substitutes for the PM-FAO56
model in arid, semi-arid, and humid regions of China, respectively [31–33]. The comparative
studies of the performance of different simple ET0 models have been conducted in different regions
of China [32–41]. Song et al. (2019) assessed the performance of twelve simple ET0 models in
Northeast China during growing seasons and recommended the Valiantzas [42], Romanenko [43],
and Makkink [44] models as substitutes for the PM-FAO56 [40]. An assessment of ten simple ET0

models based on local climates in China found the Berit et al. (2014) [6] method to be the best PM-FAO56
alternative for China [39]. Two other models (Turk [45] and Valiantzas [46]) were also found to give
robust results in subtropical humid, monsoonal regions of China, although caveats persisted [31,37],
particularly regarding evaluation and calibration. The current study aimed to evaluate the performance
of 32 simple ET0 models in the arid region of the Hexi Corridor, Northwest China. This work is
an additional key to further understanding the modeling of reference evapotranspiration and water
resource management in inland river basins.

2. Study Area, Materials and Methods

2.1. Geography and Climate of the Hexi Corridor

The elongated Hexi corridor is geographically situated between the latitudes 37◦17′ N and 42◦48′

N and longitudes 92◦12′ E and 104◦20′ E with an elevation of 800–5800 m (Figure 1). The corridor
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in Gansu province, China, is bounded by the Qilian Mountains to the south, and Mazong, Heli,
and Longshou to the north extending from the Wushaoling mountain in the East to the Yumenguan
in the west, and connects Northwest China to Xinjiang province. The area covered is 2.7 × 105 km2,
and is approximately 11.5% of the northwest region [47–49]. The corridor is primarily known as
the source of dust in the Chinese loess [50]. It is also a major source of China’s wheat supply [51],
as well as millet and corn [51,52]. Irrigation is essential due to low annual average precipitation in the
region, as the result of a dominant westerly wind. The annual mean rainfall fluctuates between 50 and
550 mm [49]. Regional agriculture is found in oases distributed in three inland river basins, namely the
Shiyang river basin (SYRB), Heihe river basin (HRB), and Shule river basin (SLRB), named after the
three inland rivers located in the region, whose sources are in Qilian mountains. Moreover, the Hexi
corridor has a high annual atmospheric water demand averaging from 1500 to 2500 mm [53].
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Figure 1. Digital elevation model (DEM) of Hexi Corridor, and distribution of meteorological stations
in three inland river basins namely Shule river basin (SLRB), Heihe river basin (HRB), and Shiyang
river basin (SYRB).

2.2. Data and Source of Materials

Data used in this study were collected from thirteen meteorological stations distributed across the
Hexi corridor (Figure 1). Daily observations were provided by the China Meteorological Administration
(CMA) and include minimum, mean, and maximum air temperature (Tmin, Tmean, and Tmax),
minimum and mean relative humidity (Rhmin and Rhmean), wind speed measured at 10 m height
(U10m), and sunshine duration (SSD) for the period 1960–2017. Wind speeds, measured at 10 m height
(also from CMA) and an assumed wind profile relationship were used to estimate mean values of
wind speeds at 2 m height [12]. Maximum relative humidity (Rhmax) was estimated from mean and
minimum relative humidity. Solar radiation (Rs) was estimated from sunshine duration (SSD) using
Equation (37). Table 1 shows the properties of thirteen meteorological stations used in this study and
summarizes the monthly means of the main climatic variables of each station in the Hexi corridor,
observed during 1960–2017.
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Table 1. Properties of thirteen meteorological stations with long-term average climatic conditions.
minimum, mean, and maximum air temperature (Tmin, Tmean, and Tmax), mean, maximum, and minimum
relative humidity (Rhmean, Rhmax and RHmin), wind speed measured at 10 m height (U10m),
sunshine duration (SSD), and solar radiation (Rs).

Basin Station Latitude
◦N

Longitude
◦E

Elevation
M

Tmean
◦C

Tmax
◦C

Tmin
◦C

Rhmean
%

RHmax
%

RHmin
%

U10m
m/s

SSD
h

Rs
MJ/m2

SLRB

Mazongshan 41.8 97.03 1770 4.53 12.3 −2.4 39.4 59.67 19.1 4.47 9.17 17.36
Dunhuang 40.2 94.68 1139 9.79 18.18 2.16 42.2 63.53 20.4 2.02 8.94 17.51
Guazhou 40.5 95.78 1171 9.09 17.62 1.82 40.3 59.52 21.5 3.03 8.71 17.13

Yumenzhen 40.3 97.03 1526 7.28 14.79 0.47 42.2 61.73 22.4 3.59 8.83 17.3

HRB

Dingxin 40.3 99.52 1177 8.53 16.65 1.36 43 67.01 21.4 3.07 9.12 17.62
Jinta 40 98.88 1271 8.56 16.46 1.34 44 65.69 22.4 2.52 8.96 17.49

Jiuquan 39.8 98.48 1477 7.61 15.02 1.19 47 68.32 25.3 2.23 8.42 16.89
Gaotai 39.4 99.08 1332 7.99 16.14 1.15 52.8 79.85 25.4 2.05 8.49 17.06

Zhangye 39.1 100.3 1461 7.57 15.95 0.6 51.2 77.02 24.7 2.13 8.45 17.08
Shangdan 38.8 101.1 1766 6.71 14.83 0.04 46.9 68.43 23.9 2.37 7.98 16.53

SYRB
Yongchang 38.2 101.9 2094 5.27 12.75 −1.0 51.6 75.01 27.5 2.93 8.13 16.76

Wuwei 37.9 102.1 1532 8.37 15.65 1.96 51.1 73.95 26.3 1.76 7.95 16.64
Minqin 38.6 103.1 1368 8.56 16.26 1.66 44.3 65.53 22.1 2.64 8.49 17.19

3. Methods and Methodology

3.1. Penman–Monteith Method

The FAO recommends the Penman–Monteith (FAO-PM56) method to estimate the daily ET0 from
climatic variables [12], as shown in Equation (1):

ET0 =
0.408∆(Rn−G) + γ 900

Tmean+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the reference evapotranspiration (mm day−1), Rn is net surface radiation, Tmean is the
average air temperature at 2 m height (◦C), u2 is the wind speed at 2 m height (m s−1), and (es − ea) is
the saturation vapor pressure (kPa). The slope of the saturated vapor–vapor pressure curve (kPa ◦C)
is ∆γ is the psychrometric constant, G is soil heat flux (MJ m−2 day−1), and es and ea represent actual
and saturation vapor pressure (kPa), respectively.

3.2. Simple ET0 Equations

To evaluate suitable, alternative methods to PM-FAO56, requiring fewer inputs while retaining
results suitable for the Hexi corridor, this study selected 32 simple ET0 equations, classified into three
categories: (1) temperature-based [6–8,19,43,54,55], (2) solar radiation-based [18,55–59], and (3) mass
transfer-based [60–62]. The temperature-based methods are the most widely used to estimate the ET0

due to their relative simplicity and requirements of fewer inputs [63]. The radiation-based methods
are also mostly used to estimate the ET0 at the global and regional scales. This study has also evaluated
the performance of mass transfer methods compared to the PM-FAO56 method. The mass transfer
(aerodynamic)-based methods are pioneers of empirical models to estimate evapotranspiration and
originate from the method proposed by Dalton (1802) [62]. Previous studies showed that the mass
transfer methods are built on the concept of eddy motion transfer of water vapor from the evaporating
surface to the atmosphere [63,64]. Table 2 lists the ET0 models used in this study and their respective
data requirements.
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Table 2. Formulation and data requirement of the ET0 models used in this study.

No Authors/Models Abbreviation Methods/Formulation Latitude Elevation Tmean Tmax Tmin RHmean RHmax RHmin U2m Rs

Combination-based methods

(1) Penman–Monteith [12] FAO56 ET0 =
0.408∆(Rn−G)+γ[900/(Tmean+273)]u2(es−ea)

∆+γ(1+0.34u2)
3 3 3 3 3 3 3 3 3 3

Temperature-based methods

(2) Hargreaves and
Samani (1985) [54] H-S ET0 =

[
0.0023×Ra(Tmean + 17.8)(Tmax − Tmin)

0.5
]

/λ 3 3 3 3

(3) Trajkovic (2007) [21] TRAJ ET0 =
[
0.0023×Ra(Tmean + 17.8)(Tmax − Tmin)

0.424
]
/λ 3 3 3 3

(4) Tabari and
Talaee-1 (2011) [18] TAB1 ET0 =

[
0.0031×Ra(Tmean + 17.8)(Tmax − Tmin)

0.5
]
/λ 3 3 3 3

(5) Tabari and
Talaee-2 (2011) [18] TAB2 ET0 =

[
0.0028×Ra(Tmean + 17.8)(Tmax − Tmin)

0.5/λ
]

3 3 3 3

(6) Droogers and
Allen-1 (2002) [20] DAL1 ET0 =

[
0.003×Ra(Tmean + 20)(Tmax − Tmin)

0.4
]
/λ 3 3 3 3

(7) Droogers and
Allen-2 (2002) [20] DAL2 ET0 =

[
0.0025×Ra(Tmean + 16.8)(Tmax − Tmin)

0.5
]
/λ 3 3 3 3

(8) Berti et al. (2014) [6] BERT ET0 =
[
0.00193×Ra(Tmean + 17.8)(Tmax − Tmin)

0.517
]
/λ 3 3 3 3

(9) Dorji et al. (2016) [19] DORJ ET0 =
[
0.002×Ra(Tmean + 33.9)(Tmax − Tmin)

0.296
]
/λ 3 3 3 3

(10) Baier and
Robertson (1965) [65] BRO ET0 = 0.109× (Ra/λ) + 0.157Tmax+

0.158(Tmax − Tmin) − 5.39 3 3 3

(11) Ahooghalandari-1 (2016) [7] AHO1 ET0 = 0.252(Ra/λ) + 0.221Tmean(1−RHmean/100) 3 3 3

(12) Ahooghalaandari-2 (2016) [7] AHO2 ET0 = 0.29(Ra/λ) + 0.15Tmax(1−RHmean/100) 3 3 3

Solar radiation- based methods

(13) Makkink (1957) [44] MAK ET0 = 0.7× (Rs/λ) × [∆/∆ + γ] − 0.12 3 3 3

(14) Priestley and Tayler (1972) [10] P-T ET0 = 1.26(Rn−G)[∆/∆ + γ]/λ 3 3 3

(15) Jensen and Haise(1963) [55] JENH ET0 = (0.025Tmean + 0.08)Rs/λ 3 3

(16) Hargreaves (1975) [57] HARG ET0 = [0.0135(Tmean + 17.8)Rs]/λ 3 3

(17) Abtew-1(1996) [58] ABT1 ET0 = 0.52TmaxRs/λ 3 3

(18) Abtew-2(1996) [58] ABT2 ET0 = (Tmax/56) × (Rs/λ) 3 3

(19) Irmak et al. (2003)-1 [59] IRM1 ET0 = −0.611 + 0.149Rs + 0.079Tmean 3 3

(20) Irmak et al. (2003)-2 [59] IRM2 ET0 = 0.469 + 0.289Rn + 0.023Tmean 3 3

(21) Tabari and Talaee (2011) [18] TAB3 ET0 = −0.642 + 0.174Rs + 0.0353Tmean 3 3

(22) Tabari and Talaee (2011) [18] TAB4 ET0 = −0.478 + 0.156Rs− 0.0112Tmax + 0.0733Tmin 3 3 3

(23) Oudin (2004) [65] OUD ET0 = (Rs/λ) × [Tmean + 5]/100 3 3
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Table 2. Cont.

No Authors/Models Abbreviation Methods/Formulation Latitude Elevation Tmean Tmax Tmin RHmean RHmax RHmin U2m Rs

Mass transfer-based methods

(24) Dalton (1802) [63] DALT ET0 = (3.648 + 0.7223u2)(es − ea) 3 3 3 3 3

(25) Meyer (1926) [66] MEY ET0 = (3.75 + 0.503u2)(es − ea) 3 3 3 3 3

(26) Rohwer (1931) [60] ROH ET0 = (3.3 + 0.891u2)(es − ea) 3 3 3 3 3

(27) Albrecht (1950) [67] ALB ET0 = (1.005 + 2.97u2)(es − ea) 3 3 3 3 3

(28) WMO (1966) [68] WMO ET0 = (1.298 + 0.934u2)(es − ea) 3 3 3 3 3

(29) Trabert (1896) [69] TRAB ET0 = 0.3075× u2
0.5(es − ea) 3 3 3 3 3

(30) Brockamp and Wenner (1963)
[70] BRWE ET0 = 0.543× u2

0.456(es − ea) 3 3 3 3 3

(31) Mahringer (1970) [61] MAHR ET0 = 0.286× u2
0.5(es − ea) 3 3 3 3 3

(32) Penman (1948) [71] PENM ET0 = (2.625 + 0.000479u2)(es − ea) 3 3 3 3 3

(33) Romanenko (1961) [43] ROM ET0 = 0.00006(100−RHmean)(25 + Tmean)
2 3 3

ET0: reference crop evapotranspiration (mm day−1); ea: actual vapor pressure (kPa); es: saturation vapor pressure (kPa); (es − ea): saturation vapor pressure deficit (kPa); G: soil heat flux
density (mm day−1); n: actual duration of sunshine in a day (h); Ra: extraterrestrial radiation (mm day−1); RHmean: mean relative humidity (%); RHmax: maximum relative humidity (%);
RHmin: minimum relative humidity (%); Rn: net solar radiation (MJ/m2 day); Rs: solar radiation (MJ m−2 day−1); Tmean: mean daily temperature (◦C); u2: wind speed measured at 2 m
height (m s−1); ∆: slope of saturation vapor pressure curve (mb ◦C−1); γ: psychrometric constant, (kPa ◦C−1); λ: latent heat of vaporization (MJ kg−1).
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The ground heat flux at a daily time scale is ignored (G = 0.0), whereas at a monthly time scale,
G is delivered from monthly mean temperature [54].

Gm = 0.14(Tm − Tm−1) (34)

where m and m− 1 are the month order.
The net surface radiation (Rn) is obtained from the difference between the net short radiation (Rns)

and the net long radiation (Rnl) and expressed in Equation (35) below:

Rn = Rns −Rnl (35)

The net short radiation (Rns) is deduced from the surface albedo (α ≈ 0.23) and solar radiation (Rs)
shown in Equation (36):

Rns = (1− α)Rs (36)

As a direct measurement is missing, the solar radiation is derived from sunshine duration using
the Hargreaves method shown in Equation (37) [12,22]. This method has been widely used in numerous
studies conducted in Northwest China and showed a good agreement with available observations [39].

Rs = Ra×
(
as + bs

n
N

)
(37)

where n is sunshine duration and N is maximum daylight hours; both variables are expressed in hours.
as and bs are Angstrom parameters, the PM-FAO56 assumes as = 0.25 and bs = 0.50, Rs and Ra are
solar (shortwave) and extraterrestrial radiation, respectively, expressed in [MJm−2 day−1].

3.3. Model Evaluation, Selection, and Calibration

The performance of simple ET0 equations to estimate the daily and monthly ET0 values in
the Hexi region was assessed through model evaluation techniques based on evaluating errors and
regression metrics.

Error indices are among the regression metrics commonly used to evaluate models. In this study
we selected mean absolute error (MAE) and root mean square error (RMSE) to compare errors between
ET0 estimated from the PM-FAO56 method and that computed from simple ET0 equations. For both
indices, values close to 0 were taken to be a measure of perfect model performance, similar to an
approach taken by Singh et al. (2004) [72,73]. The linear regression coefficient (slope) was also used to
indicate how well the ET0 values computed from simple models match the ET0 values estimated from
the PM-FAO56 method. The regression metrics were also extended to the coefficient of determination
(R2) to indicate the degree of agreement.

We also used the Nash–Sutcliffe efficient (NSE) method to evaluate the degree of fit between
the PM-FAO56 method and the simple ET0 models. The NSE coefficients range between -∞ and 1.0
with an optimum value of 1.0. Models with an NSE ranging between 0.0 and 1.0 can be considered
for further model performance analysis, while models with NSE values ≤ 0.0 are considered to have
unacceptable performance. Moriasi (2007) suggested a classification of model performance as follows:
poor performance for models with NSE ≤ 0.50, satisfactory for models with 0.50 < NSE ≤ 0.65, good for
models with 0.65 < NSE ≤ 0.75, and very good for models with NSE > 75 [73]. Percentage bias (PBIAS)
was adopted to explain the percentage of errors associated with model performance. PBIAS = 0% is an
optimal value for the best model. A negative or positive sign indicates that the model overestimates or
underestimates the ET0 values, respectively.

The formulation of the slope, MAE, RMSE, NSE, and PBIAS metrics are as follows:

MAE =
1
n

n−1∑
i=0

∣∣∣ETpm
i − ETeq

i

∣∣∣ (38)
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RMSE =

√√√
1
n

n−1∑
i=0

(
ETpm

i − ETeq
i

)2
(39)

NSE = 1−


n∑

i=1

(
ETpm

i − ETeq
i

)2

n∑
i=1

(
ETpm

i − ETpm
mean

)2

 (40)

PBIAS =


n∑

i=1

(
ETpm

i − ETeq
i

)
n∑

i=1
ETpm

i

× 100

 (41)

where ETpm
mean is the mean calculated as follows: ETpm

mean = 1
n

n∑
i=1

ETpm
i . ETpm

i and ETeq
i both represent ET0

estimated at the ith day from the PM-FAO56 (pm) equation and simple ET0 equation (eq), respectively.
Based on evaluation metrics, the selected models were further calibrated. Similarly to the previous

studies, this study used the regression-based with an omitted intercept method [74–76] to calibrate
each selected model. The calibration process follows the following expression:

ET0
pm = ψET0

eq (42)

The coefficient ψ stands for the linear regression coefficient estimated from the ratio ET0
pm/ET0

eq

according to Xu and Sigh (1998) [65]. The time series of 1960–2017 was divided into two parts:
80% of the time series (1960–1999) was used to compute the ψ coefficient, and 20% of the time series
(2000–2017) was used to validate the ET0 models. The calibration process relies on turning the constant
values of the models in order to enhance their performances [76,77]. For each model, a constant value
is changed to maximize the NSE and minimize the MAE, RMSE, and PBIAS. The results from the
calibration procedure were assessed by the evaluation metrics (MAE, RMSE, PBIAS, and NSE) used
in this study. The values of the ψ coefficient were calculated from the calibration data, and then the
obtained ψ values were adopted for the testing and validation time series [75].

4. Results and Discussions

4.1. Performance of the Simple ET0 Models

Statistical metrics for the Hexi corridor obtained from comparisons between ET0 calculated
from PM-FAO56 and 32 alternatives are shown in Figures 2 and 3 for daily and monthly timescales,
respectively. The MAHR and WMO models appear to show very good performance at all stations
in the region. Figure 2 shows that both models estimated the daily ET0 values with relatively low
MAE, RMSE, PBIAS, and significant NSE coefficients (Figure 2). On a daily basis, the WMO showed a
relatively low range of MAE and RMSE bounded between 0.31–0.43 and 0.39–0.53 mm/day, respectively,
and the MAHR showed low MAE, and RMSE in the ranges of 0.22–0.64 and 0.37–0.93 mm/day,
respectively. Both models presented high NSE, and R2 values varied in the range of 0.88–0.98 and
98.0–1.0, respectively (Figure 2). On a monthly basis, the MAHR model gave small MAE values
ranging between 0.15 and 0.63 mm and RMSE values ranging from 0.23 to 0.86 mm. It also resulted in
PBIAS and NSE values averaged between −11% and 0.93%, respectively. The WMO also presented
small MAE and RMSE values ranging from 0.38 to 0.53 mm and 0.35 to 0.45 mm, respectively, with an
average PBIAS of 12% and an NSE of 0.95.
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Figure 2. Daily performance of the simple ET0 methods according to the selected evaluation metrics
herein mean absolute errors (MAE), root mean square errors (RMSE), percentage bias (PBIAS),
regression slope (Slope), coefficient of determination (R2), and Nash–Sutcliffe efficient (NSE). The red
and black dash lines depict the optimum and threshold values of an evaluated metric, respectively.
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Figure 3. Performance of 32 ET0 methods according to the selected evaluation metrics on monthly data
in the Hexi Corridor, (a) mean absolute errors (MAE), (b) root mean square errors (RMSE), (c) percentage
bias (PBIAS), (d) regression slope(Slope), (e) coefficient of determination (R2), and (f) Nash–Sutcliffe
efficient (NSE).

The mass transfer-based methods showed relatively higher slope- and R-squared (R2) with large
and negative PBIAS values compared to other methods. The greater slope values and negative PBIAS
values reveal the significant overestimations of the ET0 values estimated from the mass transfer methods
on daily and monthly timescales, respectively. The ALB method showed an extreme overestimation of
the ET0 values with a daily mean PBIAS of −86.7% and a monthly mean PBIAS of −88.4%. The DALT,
ROH, MEY, and ROM methods overestimated the daily and monthly ET0 values by daily mean PBIAS
values averaged to −49.1%, −48.2%, −39.5% and −22.1%, respectively, and monthly mean PBIAS values
of −42.7%, −42.1%, −33.6%, −13.6%, respectively. However, some mass transfer methods, such as
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TRAB, BRWE, and PENM, underestimated the ET0 values, with mean PBIAS values of 87.7%, 78.8%,
and 19% for the daily timescale and 88.1%, 79.53%, and 25.8% for monthly the timescale, respectively.

The comparison between the PM-FAO56 and radiation-based methods showed that the selected
models generally underestimated the daily ET0, except for the ABT1 model. An underestimation of
ET0 estimates from radiation-based models is shown by the large and positive daily and monthly
mean values of PBSIAS ranging from 5.0% to 78.6% and 13.5% to 80.4%, respectively. Moreover, the
solar radiation-based methods encountered higher mean values of MSE and RMSE (Figures 2 and 3,
respectively). The OUD, P-T, and MAK models strongly underestimated the daily ET0 by the mean
PBIAS of 38.4%, 59.6%, and 77.1%, respectively (Figure 2). Those models also underestimated the
monthly ET0 values by 64.6%, 80.4%, 81.3%, respectively. The P-T and MAK methods used in this
study were originally developed for a humid climate. The y are significant for a 10 days or longer
timescale, which may be the reason of their poor performance in the arid region [78]. Moreover,
Tabari et al. (2011) showed that P-T underestimates the ET0 in cold and arid regions [18]. By contrast,
the ABT1 model overestimated the daily ET0 values with a mean PBIAS of −14.9% and monthly
ET0 values with a mean PBIAS of −6.5%.

The temperature-based methods showed relatively lower mean MAE and RMSE values than
those estimated from the solar radiation and mass transfer-based methods. The daily and monthly
mean MAE values estimated between the PM-FAO56 and temperature models are in the range of
0.48–6.6 mm/day and 0.41–4.5 mm, respectively. The daily and monthly mean RMSE values also
vary in the range of 0.65–6.9 mm/day and 0.5–4.6 mm, respectively. However, the BRO method
underestimated the ET0 values with the highest daily and monthly mean MAE and RMSE average to
2.7 and 3.2 mm/day and 2.6 and 2.8 mm, respectively, which led this model to perform with the lowest
R2 and NSE values (Figures 2 and 3). The poor performance is due to the extreme values observed
during the freezing period (December–April) [22]. It has been shown that the temperature-based
methods are more sensitive to weather conditions and the BRO method showed to perform well under
a temperature range of 11–22.5 ◦C [20]. Other temperature-based methods underestimated the daily
and monthly ET0 values, including BERT, DORJ, and TRAJ, with the mean PBIAS ranging between
19.8% and 47.9% (Figure 2). The method proposed by Berti et al. (2014) underestimated the ET0 values
with mean a PBIAS of 19.8% and 22.9% on a daily and monthly basis, respectively. Moreover, the strong
underestimation of the daily and monthly ET0 values was estimated at the Mazongshan station with a
PBIAS of 44.7% and 46.8%, respectively. The DAL1 and DAL2 methods showed good performance
with a relatively lower daily mean PBIAS of −0.34% and 1.9% at and monthly mean PBIAS of 6.1% and
7.9%, respectively. Moreover, the large number of temperature-based models presented the greater
slope and R2 values than that which resulted from the solar radiation methods (Figures 2 and 3).

Figures 4 and 5 show the spatial distribution of NSE values in the Hexi corridor. In both Figures,
the WMO and MAHR models are robust at all weather stations. The y present daily NSE values that
vary from 0.71 to 0.99 and monthly NSE values ranging from 0.87 to 0.98.

From Figure 4, the selected temperature-based models showed mixed results, dominated by good
and satisfactory performances. The AHO1, AHO2, and TAB1 models showed a very good performance
with NSE = 0.78, 0.78, and 0.76 at Mazongshan station, respectively. Moreover, the AHO1 model also
performed well at Yumenzhen station with NSE = 0.76 and showed a good performance at Dingxin,
Guazhou, and Minqin. The DAL1, DAL2, and H-S models showed satisfactory performance with
average NSE values of 0.65, 0.64, and 0.65, respectively, in the middle reach of the Heihe river basin.
Moreover, the H-S method showed poor performance at Mazongshan and Guazhou stations while
both DAL1 and DAL2 performed poorly at Wuwei station with NSE ≤ 0.50. The low performance in
these three models is associated with underestimating the daily ET0 at a large number of stations in
the Hexi corridor. The solar radiation-based methods showed a relatively low performance compared
to temperature-based and mass transfer-based methods. The HARG, IRM1, IRM2, and TAB3 models
showed satisfactory performance in the Heihe river basin (Figure 4).
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Figure 5 shows that most ET0 models are robust on the large timescale. The ROM model [43]
showed a robust performance at more than 80% of the stations in the Hexi corridor (Figure 5). Among the
temperature-based methods, the TAB2, AHO1, H-S, DAL2, and DAL1 models showed a significant
performance compared to their corresponding daily values. The DAL1 showed a good estimate of
the monthly ET0 with a RMSE averaged to 0.89 mm and a relatively high performance (NSE = 0.81),
while TAB2 and AHO1 performed well in the Shule river basin. In general, significant improvements
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were observed in a large number of temperature-based methods, concentrated in the middle reach
of the Heihe river basin and Shiyang river basin. The BRO method persisted in poor performance
with higher MAE (2.63 mm/day) and RMSE (2.77 mm/day) and underestimated the ET0 values by
more than 50% (Figure 3). The solar radiation-based methods showed improved model performance,
particularly the HARG, IRM1, IRM2, and TAB3, which were most robust in the middle reach of the
Heihe river basin (Figures 3 and 5). Moreover, a summary of statistical metrics averaged at each basin
is presented in Supplementary Table S1. It includes the average MAE, RMSE PBIAS, and NSE values
for each model compared to the PM-FAO56 method at both daily and monthly time steps.

4.2. Cross-Comparison of the ET0 Models

The cross-comparison of the 32 models aimed to distinguish the models with the best performance
at each river basin of the Hexi corridor. The mean NSE > 0.75 was taken to be the threshold condition
of model selection. From Table S1, the two models (MAHR and WMO) satisfied the conditions of
NSE coefficients >0.75 at the daily timescale in all basins (Figure not shown). The MAHR showed
better NSE values of 0.91, 0.93, and 0.94 for the Shiyang river basin (SYRB), Shule river basin (SLRB),
and Heihe river basin (HRB), respectively. The WMO was also found to estimate the ET0 values with
the significant NSE values of 0.97, 0.96, and 0.95 for SYRB, SLRB, and HRB, respectively (Table S1).

A similar condition was applied to the monthly timescale. The results show 13 models that
comply with the conditions of NSE coefficients and >0.75. Figure 6 depicts the 13 models selected
based on best performance (NSE > 0.75) in the three inland river basins of the Hexi corridor.
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The WMO, MAHR, ROM, and DAL1 models ranked as the best methods and showed a very
good performance in all three inland river basins. Moreover, DAL1 resulted in low mean PBIAS
values of 1.1% and −3.58% for the HRB and SYRB, respectively. The AHO1 model showed the best
performance in the SLRB, with the monthly mean NSE and PBIAS of 0.9% and 2.5%, respectively.
However, this model is attributed to an overestimation of ET0 with PBIAS averaged to −18.5% and
−25.4% in the HRB (Table S1). The H-S, DAL2, HARG, and BERT methods revealed good performance
in the SYRB (PBIAS = −0.68%, NSE = 0.77) and the middle reach of the HRB (PBIAS 2.87%, NSE = 0.85).
The TAB1, TAB2, and AHO2 are suitable for the SLRB, with monthly mean NSE values of 0.81, 0.83,
and 0.82, respectively. The IRM2 performed well in the Heihe river basin only, with NSE = 0.78 and
PBIAS = 9.3%. The results analyzed above (Figures 2–6) were obtained before the model calibration.
However, numerous studies have suggested model calibration to adjust ET0 results to local climate
conditions [78–81].

4.3. Calibration of the ET0 Models

In this study, we calibrated models that resulted from the cross-comparison process. The ET0 values
from 13 models resulting from cross-comparison were selected to be calibrated. Model results
were calibrated against the ET0 estimates from the PM-FAO56 method on a monthly timescale.
Figure 7 compares the monthly performances of selected models compared with PM-FAO56 before
and after calibration. The regression coefficients used to change the model parameters at each station
are shown in Supplementary Table S2.
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The calibration process significantly improved the 13 models mentioned above. In fact, it
significantly reduced the PBIAS of the ROM method by 82.12% and increased the NSE by 16.7%.
The NSE values of the AHO1, IRM2, HARG, and DAL1 methods improved by 33.6%, 19.8%, 13.4%,
and 9.3%, respectively, after calibration. The calibration also improved the PBIAS of the AHO2, DAL2,
BERT, and H-S methods by 82%, 78.2%, 62.9%, and 18.2%, respectively, after calibration.

An overall improvement in most models was noted in PBIAS values of less than 15% after
calibration. The calibration results show that the WMO and MAHR methods remain robust in the Hexi
region with the lower mean PBIAS values of −2.5% and −2.6% respectively. The robust performance
of the WMO, MAHR, and ROM methods can be explained by the sensitivity of ET0 to the variation of
relative humidity in the Hexi corridor [82].

A time series for 2000–2017 was used to validate the calibrated methods. Figure 8 compares
the results of the 13 validated methods and PM-FAO56. The results reveal that the WMO, MAHR,
and ROM methods remain the best substitute models to estimate the ET0 in the Hexi corridor. The y
showed robust NSE coefficients of 0.98, 0.98, and 0.95, respectively, and lower MAE and RMSE values
than the other validated models. The ir RMSE values ranged from 0.15 to 0.43 mm, from 0.20 to 0.50
mm, and from 0.29 to 0.96 mm after validation, respectively.
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The models are assessed through the MAE, RMSE, PBIAS and NSE metrics respectively.

Comparative studies of different ET0 models against the PM-FAO56 have been
documented [73,81,82]. A comparison between the PM-FAO56 method and the 34 ET0 methods
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showed that the WMO, Droogers, Allen, and Ahooghalandari models performed very well in the
semi-arid region of New Mexico [4]. Tabari et al. (2013) found that the Romanenko (ROM) model
performed well to estimate ET0 values in the humid climate of Iran [78]. A low performance of the IRM1
method was also reported in Eastern Africa [83]. Peng et al. (2017) evaluated 10 ET0 equations and
recommended the Berti method as the best alternative method to estimate monthly ET0 in mainland
China [39]. Gao et al. (2017) recommended the Priestley and Taylor model to be the best substitute of
the PM-FAO56 in the arid region of Northwest China [32]; however, in the current study, the Priestley
and Taylor model did not show a direct promising application in the Hexi corridor.

Previous studies have also shown the best performance of both the Mahringer (MAHR) and
WMO models in different regions [77,84,85]. An assessment of 16 ET0 models reported that the MAHR
model showed relatively good performance compared to the PM-FAO56 method in the Senegal river
basin [84,86]. An overestimation of ET0 values from the MAHR model was observed at some stations
of New Mexico, USA [4]. The WMO underestimated ET0 values, which is consistent with the previous
results obtained in Malaysia [87].

Shiri (2018) reported poor performance of mass transfer methods in southern Iran, and found that
the calibration process improved their performance [74]. The poor performance of the Trabert and
Jensen–Haise models in the Hexi corridor is consistent with that reported by Meng Li et al. (2018) in
Eastern China [88].

Numerous studies evaluated the Hargreaves and Samani equation and have suggested local
calibration to adjust the model to local climate conditions [26,89,90]. Tabari and Talee (2011) showed
that the original Hargreaves method underestimated ET0 values, and the calibration of its original
empirical coefficient from 0.0023 to 0.0031 improved the model performance in the cold and arid
regions of Iran [18].

5. Conclusions

The performance of 32 simple ET0 alternatives, developed based on three approaches (temperature,
radiation, and mass transfer-based) to the evapotranspiration produced by the PM-FAO56 method,
was assessed for the Hexi Corridor in Northwest China. From our assessment, the World Meteorological
Organization (WMO) and Mahringer (MAHR) methods are the most robust. However, the Romanenko
(ROM) model is also a good substitute for PM-FAO56, especially in the middle reach of the Heihe river
basin and Shiyang river basin. Among the temperature-based methods, the Ahooghalandari (AHO1),
Tabari (TAB2) models performed well in the Shule river basin, and the Hargreaves method and its
derived equations presented the best performance in the middle reach of the Heihe river basin. A large
number of the mass transfer-based methods performed poorly, overestimating ET0 values. The poor
performance of the solar radiation-based methods is subjected to an underestimation of ET0 values.
Many simple ET0 models tend to perform well on a large timescale basis. Calibration/validation
significantly improved all selected models. The results from the calibration procedure of 13 models on
a monthly time scale show that the WMO, MAHR, ROM, AHO1, AHO2, DAL1, HARG, IRM2, TRAB,
H-S, BERT, TAB1, and DAL2 methods are the best substitute to the PM-FAO56 method for estimating
the ET0 in the Hexi corridor.

Moreover, models that integrate temperature, relative humidity, and wind speed (WMO and
MAHR) were ranked the best, followed by models that integrate the temperature and relative humidity
(ROM, AHO1, and AHO2). The results of this study will be beneficial for selecting the simple ET0

method appropriate for the Hexi corridor and its inland river basins, as well as the local weather
stations. When temperature, relative humidity, and wind speed data are available, the WMO method
can be used to estimate ET0 values in the Hexi corridor. In the case of missing wind speed and solar
radiation, the ROM method can be adopted for estimating ET0 values. The adoption of the DAL1
method is recommended when only temperature data are available.
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