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Abstract: The spatial and temporal performance of an ensemble of five gridded climate datasets
(precipitation) (North American Regional Reanalysis, European Centre for Medium-Range Weather
Forecasts interim reanalysis, European Union Water and Global Change (WATCH) Watch Forcing
data ERA-Interim, Global Forcing Data-Hydro, and The Australian National University spline
interpolation) was evaluated towards quantifying gridded precipitation data ensemble uncertainty
for hydrologic model input. Performance was evaluated over the Nelson–Churchill Watershed via
comparison to two ground-based climate station datasets for year-to-year and season-to-season periods
(1981–2010) at three spatial discretizations: distributed, sub-basin aggregation, and full watershed
aggregation. All gridded datasets showed spatial performance variations, most notably in year-to-year
total precipitation bias. Absolute minimum and maximum realizations were generated and assumed
to represent total possible uncertainty bounds of the ensemble. Analyses showed that high magnitude
precipitation events were often outside the uncertainty envelope; some increase in spatial aggregation,
however, enveloped more observations. Results suggest that hydrologic models can reduce input
uncertainty with some spatial aggregation, but begin to lose information as aggregation increases.
Uncertainty bounds also revealed periods of elevated uncertainty. Assessing input ensemble
bounds can be used to include high and low uncertainty periods in hydrologic model calibration
and validation.
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1. Introduction

High-quality precipitation data are essential for an accurate representation of physical
environments by hydrological models. In Canada, mountainous and northern regions suffer from
data sparsity and paucity issues, with significant gaps in existing long-term records (e.g., [1–4]).
This makes observed ground-based climate station data inadequate for data-intensive applications
(e.g., forcing hydrologic models), establishing a need for reliable alternatives (e.g., gridded datasets)
and estimates of the uncertainty associated with those alternatives. Uncertainty is defined here
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as the realistic range of a value or variable [5]. In hydrologic modeling, while uncertainty can be
introduced through input data, model structure, parameters, and observed calibration data [6], input
precipitation data uncertainty are less often studied; instead, input data sources are selected based on
“data quality” criteria (e.g., [3]). To estimate the total uncertainty bounds for hydrologic model output,
estimation of input data uncertainty subject to propagation within a hydrologic model is required [7].
Propagation is defined as the transfer of uncertainty from one modeling step to the next, thus allowing
an assessment of how cumulative sources of uncertainty impact model output. While some studies have
found input uncertainty to be the largest component of total uncertainty (e.g., [8]), there is variation
among the approaches presented in the literature when it comes to quantifying that uncertainty.
This study addresses several challenges that have been identified in the literature regarding input
data uncertainty arising from gridded precipitation products; most notably, challenges related to
performance metrics, data product selection, spatial aggregation, temporal period selection, and the
definition of ensemble limits.

Gridded precipitation data are used for various applications, and with the numerous products
available, assessing performance relative to observed benchmarks becomes a significant issue
(e.g., [3,4,9–18]). Performance metrics are used to compare a data product to an observed
reference; the most common types of performance metrics are continuous statistics (e.g., percentage
bias (PBIAS); [4]), categorical statistics (e.g., equitable threat score (ETS); [19]), extreme indices
(e.g., comparison of consecutive wet-days (CWD) between observed and simulated datasets; [20]),
and proxy validation by hydrologic models (e.g., [16]), among others. Continuous statistics measure the
agreement between simulated and observed timeseries. Categorical statistics measure the agreement
between simulated and observed (precipitation) events binned by magnitude. Extreme analysis
compares the occurrence and magnitude of extreme events between simulated and observed timeseries,
while proxy validation applies input forcing to hydrologic models. In proxy validation, simulated and
observed output timeseries for relevant variables are compared using statistics such as the Nash–Sutcliffe
efficiency score (NSE score; [21]) or ensemble-based metrics such as reliability, which assess the overlap
of modeled uncertainty relative to observed data [22], and inferences are then made about the quality
of the input data. The observed data used for comparison are often ground-based climate station data,
as they are typically considered the highest-quality observations [2,22]. A comprehensive assessment
should consider at least three broad aspects of performance: timing, magnitude, and occurrence of
extremes. Performance metrics are often used in the literature to suggest an optimal dataset; yet,
performance metric selection is often limited to only two of the three desired performance aspects,
therefore limiting the interpretation of results.

Regarding data product selection, it is common in climate change studies to select multiple global
climate models (GCMs) to represent uncertainty (e.g., [8,23–26]); where the selected datasets form an
ensemble. Studies using only historical data products, however, infrequently use multiple input data
products, and thereby misrepresent historical input data uncertainty. The discrepancy in the treatment
of precipitation data between climate change and historical studies comes from the widely agreed upon
assumption that future climate projections have higher uncertainty than historic climate conditions,
which are considered to be known. This, however, does not mean that historical precipitation data are
free of uncertainty (e.g., [27]). Furthermore, the inherent future variability of climate change suggests
that historical uncertainty envelopes cannot be projected into future periods by assuming stationarity
(e.g., [8,28]).

Studies performed within the past decade afford the opportunity to examine historical uncertainty,
given the increasing number of gridded climate datasets that have been developed for spatial
extents, ranging from Canada-wide (e.g., [18,29]), to North America (e.g., [30]), and global (e.g., [31]).
Gridded climate data comparisons generally focus on precipitation (rather than temperature), due to
the tendency toward higher uncertainty in the estimation of occurrence, magnitude, and position of
storm events (e.g., [4]). Comparisons vary depending on the spatial and temporal extent in each study,
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and the performance metrics selected. Uncertainty in both station and gridded data products is often
discussed, owing to the paucity and sparsity of ground-based observations.

As uncertainty remains difficult to quantify, many studies do not offer a clear choice of a single
best product; instead, concluding to proceed with caution (e.g., [16]). Bukovsky and Karoly [10]
compared a suite of gridded precipitation datasets and found that the North American Regional
Reanalysis (NARR) performed better over the continental United States of America (USA) compared
to outside the USA. Becker et al. [11] further examined NARR and found a systematic bias towards
overestimation of light precipitation and an underestimation of extremes. Essou et al. [15] compared the
hydrologic performance of NARR with other commonly used gridded products, including ERA-Interim,
European Union Water and Global Change (WATCH) Forcing Data Era-Interim (WFDEI), and others:
NARR generally produced higher NSE scores through proxy validation, while WFDEI performed best
among the global products. Eum et al. [3] compared NARR, Natural Resources Canada’s (NRCAN)
Australian National University Spline interpolation (ANUSPLIN), and the Canadian Precipitation
Analysis (CaPA) at three climate stations in the Athabasca River Basin in western Canada. NARR was
found to have a statistical break that occurred in January 2004, coinciding with the discontinuation of
Canadian climate station data assimilation [3]. Wong et al. [4] compared a suite of gridded datasets
in ecodistricts and found that WFDEI and CaPA performed well, but both varied spatially in their
performance. Rapaić et al. [13] compared a large suite of observation-based and reanalysis datasets for
the Canadian Arctic and found no dataset was “best”; instead, concluding multiple datasets should be
considered [16].

Studies often focus on gridded data performance at a single spatial aggregation (i.e., the spatial
averaging of multiple grid points) for varied temporal periods, typically spanning many years.
Gridded data are generally aggregated spatially to simplify the comparison with climate station data
(e.g., [4]). Aggregation in other studies has generally been dictated by the spatial discretization scheme
used by a single hydrological model structure (i.e., distributed, semi-distributed, or lumped [32]).
Aggregation is often done by areal averages used to upscale grids [4], inverse distance weighting
within a specified region [4], or by bilinear interpolation [20]. Performance assessment is, therefore,
limited, because a fixed spatial aggregation leaves a gap in our knowledge, specifically how input
uncertainty propagates into hydrologic models of varied spatial structures.

The spatial variability of dataset performance is a common factor complicating dataset
intercomparison studies (e.g., [3,4,11,13,15,16,18]). A recent study by Lilhare et al. [33] further
highlighted the spatial and temporal variability of gridded datasets in the Lower Nelson River
Basin (LNRB) in central Canada. Results presented by Lilhare et al. [33] showed that performance
and trends were affected by the amount of spatial aggregation considered. Mekis and Vincent [2]
and Wong et al. [4] summarized the limitations associated with meteorological station records,
and Choi et al. [12] stated that, due to data sparsity, spatially aggregated comparisons may generate
misleading results, due to the varied resolutions of the gridded datasets. Understanding the uncertainty
introduced into hydrologic modeling by gridded precipitation data and assessing how best to account
for this uncertainty remain major gaps in the literature. The present study addresses the aforementioned
gaps, in that, prior to configuring and executing the hydrologic models, we aimed to: (1) characterize
model input data uncertainty arising from precipitation dataset selection, temporal period of analysis,
and spatial aggregation of a model, and (2) quantify the reliability and limitations of ensemble methods
for gridded precipitation data ensembles at spatial aggregations that are representative of common
hydrologic model structures.

Our study is organized into seven sections. Section 2 introduces the region of study. Section 3
introduces the observed datasets (Section 3.1) and the gridded datasets (Section 3.2) used in this
study. Section 4 presents the study methodology for performance metric selection (Section 4.1),
ensemble creation (Section 4.2), and how spatial aggregation was defined (Section 4.3). Section 5
presents our results for gridded dataset (Section 5.1) and ensemble performance (Section 5.2). Section 6
discusses inferences made from results regarding time period selection (Section 6.1), spatial aggregation
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(Section 6.2), and overall ensemble reliability (Section 6.3). Conclusions and recommendations are then
presented in Section 7.

2. Study Area

The aforementioned objectives were addressed across a mid-latitude watershed which presents
important challenges related to input data uncertainty propagation in hydrologic modeling, including
its size, paucity of ground-based climate station data, and sensitivity to climate and land-use change.
The Nelson–Churchill Watershed (NCW) covers approximately 1.4 million km2 of the North American
landmass, and can be sub-divided into several sub-drainage basins ([34]; Figure 1a).
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Figure 1. (a) Map of the Nelson–Churchill Watershed, including sub-basin delineations and 73 selected
ground-based station locations. All Environment and Climate Change Canada (ECCC) stations also
have a corresponding Adjusted and Homogenized Climate Change Data (AHCCD) station at the same
location. (b) Spatially averaged yearly total precipitation timeseries, including all stations shown in (a).
(c) Mean monthly precipitation including all stations shown in (a) for 1981–2010.

The NCW spans the USA–Canada border, multiple ecodistricts (see Wong et al. [4] for details),
and diverse climatic regions, which generally increase uncertainty among the gridded precipitation
data (e.g., [10]). The NCW includes the low-relief prairies across southern Manitoba, Saskatchewan,
and Alberta; a mountainous region on the western edge of the Saskatchewan River Basin (SRB);
data-sparse, cold climate northern regions (i.e., Sub-Arctic, and the Northwestern boreal forest);
extensive water bodies (e.g., Lake Winnipeg, and extensive wetlands); and administrative and
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inter-jurisdictional boundaries; each of which introduces unique data and modeling challenges
(Figure 1a). Data assimilation challenges are specifically known to occur along the USA–Canada border
region, resulting from changes in observation station density [10]. For an in-depth description of the
NCW, see Benke and Cushing [35].

3. Precipitation Data

3.1. Observed Ground-Based Climate Station Data

Two sets of ground-based climate (precipitation) station data (referred to hereafter as observed
data) were selected for comparison to the gridded precipitation data. The first are near-real-time,
daily Environment and Climate Change Canada (ECCC) observations. The second are the daily
Adjusted and Homogenized Climate Change Data (AHCCD) [2]. AHCCD use data retrieved from
the National Climate Data, consisting of 464 ground-based precipitation timeseries adjusted for
common precipitation measurement issues, such as wind undercatch, evaporation, wetting losses,
and trace precipitation [36]. The 464 stations were extracted from ECCC data having long, continuous
records; multiple stations were combined to extend record lengths when and where possible [2].
Inconsistent methods for the handling of trace precipitation through time and between stations created
inhomogeneities in the ECCC data. Therefore, AHCCD utilized varied trace precipitation adjustments
based on available metadata to better ‘homogenize’ these data; however, Mekis and Vincent [2] state
that it is possible that inhomogeneities still exist. Mekis and Vincent [2] also state that significant
uncertainty remains in these data for extremes, and high spatial and temporal variability in the
snow water equivalent adjustment are present; therefore, AHCCD data are not recommended for
short-term applications or extreme events, such as blizzards. AHCCD are used by most comparison
studies focused on Canada, as they are considered to be the best representation of true observations
(e.g., [4]). Hence, in the present study, all comparisons were made to AHCCD unless stated otherwise
(i.e., AHCCD were used as station observations in performance metrics).

Two additional stations were used in the USA portion of the Red River Basin (RRB), retrieved from
the Global Historical Climatology Network-Daily (GHCN-Daily) database. The GHCN-Daily data
quality assurance (QA) procedures include checks for location accuracy, incorrect station identifiers,
entries that violate the intended documentation, and other inconsistencies [37]. Data were subjected to
19 tests of data quality, outlined by Durre et al. [38], as well as a secondary tier of quality assurance
that evaluate climatic consistency.

For the present study, station selection was based on precipitation data availability, considering
both AHCCD and ECCC data. GHCN-Daily data are more similar to ECCC data than to AHCCD
data, but no equivalent product for AHCCD is available in the USA portion of the RRB. Therefore,
the GHCN-Daily data were included in both the ECCC and AHCCD data comparisons. Selected stations
had minimal missing data. A total of 73 stations are selected (Figure 1a): an average of all 73 stations
from 1981–2010 across the NCW domain produce the average yearly total precipitation timeseries
(Figure 1b) and monthly average annual precipitation (Figure 1c). AHCCD generally has higher
precipitation than ECCC, with the largest difference among products often associated with solid
precipitation events (Figure 1c) [2]. Lake Winnipeg buoy data were excluded because of different QA
processes. Unlike the USA stations, Lake Winnipeg buoy data would not have significantly improved
station density or area representation. The final list of selected precipitation gauges is presented in
Table S1.

3.2. Gridded Precipitation Datasets

This study is part of the Hudson Bay Systems (BaySys) project [39], a large multi-disciplinary
project to partition the environmental effects of river regulation from climate change. The models
used to accomplish the goals of the BaySys project require large-scale, gridded climate data for the
data-sparse regions of the northern hemisphere, including the Arctic Ocean. Therefore, the current
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study focuses on materials and methods relevant to the BaySys project. A total of five gridded datasets
were selected based on the following criteria: identification in the literature as high-performing, data
availability from 1981 to 2010, and daily temporal resolution or finer. Selected datasets are summarized
in Table 1.

Table 1. Main characteristics of the five gridded climate datasets selected for the current study.

Name Period (Temporal
Resolution)

Domain (Spatial
Resolution) Reference Product Description

The Australian
National University
spline interpolation

(ANUSPLIN)

1950–2013 (daily) Canada (~0.1◦) [29]

Interpolated ECCC dataset using
trivariate thin-plate smoothing spline
between latitude, longitude,
and elevation. The version updated to
cover 1950–2013 was used; a version
extending up to 2016 was released
after the completion of this study.

North American
Regional Reanalysis

(NARR)

1979–~present
(3 hourly)

North America
(~0.32◦) [30]

A reanalysis dataset with many
sources of assimilated data, such as
the global reanalysis product GR2,
gauge observations, and others.
NARR stopped assimilating Canadian
station data in 2004, which introduced
a detectable statistical break [3].
In 2015, the period of April
2009–January 2015 (and thereafter)
was updated to address some data
processing issues, which improved
border effects along the USA–Canada
border, particularly focused on
southern Ontario.

European Centre for
Medium-Range

Weather Forecasts
interim reanalysis

(ERA-Interim;
ERA-I)

1979–~present
(3-hourly) Global (0.75◦) [40]

A reanalysis dataset that assimilates a
large number of data sources, such as
the Integrated Forecast System (IFS)
cy31r2, satellite data, and others.
ERA-I is a replacement for the
previous ERA-40 dataset, featuring
4D-VAR data assimilation among
other improvements to the original
ERA-40, which stopped in 2002.

European Union
Water and Global
Change (WATCH)

Forcing data
ERA-Interim

(WFDEI)

1979–2013
(3-hourly) Global (0.5◦) [41]

An adjusted version of ERA-I using
the European Union Water and Global
Change (WATCH) Forcing Data
(WFD) methodology, which includes
various adjustments and bias
corrections. These data are a
replacement for the original
ERA-40-based WFD dataset.
The version updated to cover
1979–2013 was used; a version
extending up to 2016 was released
after the completion of this study.

Global Forcing
Data—Hydro

(GFD-HYDRO)

1979–~present
(3-hourly) Global (0.5◦) [31]

GFD-Hydro closely mimics the
methodology of WFDEI, with updates
to current versions of observed data
networks. GFD-HYDRO is meant to
be a global product similar to WFDEI,
but produced at near real-time.
Notable differences between WFDEI
and GFD-HYDRO exist for
precipitation, due to a reduction in
undercatch adjustments.

Gridded datasets span a variety of temporal resolutions; therefore, data were aggregated to
the largest time step feasible for hydrologic modeling (i.e., daily). For comparison, Wong et al. [4]
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chose to upscale and limit data selection to datasets with spatial resolutions of 0.5◦ and finer, while
Rapaić et al. [13] chose to interpolate to the resolution of ECCC’s Canadian Gridded temperature
and precipitation data series (CANGRD) at 50 km. There is no commonly accepted best practice,
as all methods will introduce some degree of uncertainty. Aggregation and interpolation are further
discussed in Section 4.3.

4. Methodology

4.1. Performance Assessment

Analyses of individual datasets were conducted to ensure each product is a reasonable
representation of observed data. Months with missing data were excluded from the performance
assessment following the World Meteorological Organization standards, in which months are excluded
if more than five days total, or three consecutive days, are missing [42].

4.1.1. Continuous Statistics

Three continuous statistics were selected for the evaluation of gridded dataset performance:
standard deviation ratio (SDR), percent bias (PBIAS), and Spearman’s rank correlation coefficient (Cor)
(Equations (1)–(3)):

SDR =

√∑N
i=1

(
Gi −G

)2

N√∑N
i=1

(
Ri −R

)2

N

− 1 (1)

PBIAS =

∑N
i=1(Gi −Ri)∑N

i=1(Ri)
× 100 (2)

Cor = 1−
6
∑N

i=1(Gi −Ri)
2

N(N2 − 1)
(3)

in which N is the number of time steps of observed data and corresponding gridded dataset data,
and G and R are gridded and reference timeseries, respectively. SDR measures the ratio of the standard
deviations of a gridded and station timeseries (one is subtracted from the SDR so that positive values
are associated with higher standard deviations; values near zero are desired). PBIAS measures the
tendency of a gridded dataset to over- or under-predict a reference timeseries (smaller values are
desired), and Cor represents a gridded dataset’s ability to correctly reproduce the timing of observed
precipitation data (values near one are desired). Spearman’s rank correlation coefficient is selected,
as it is non-parametric and weights large differences higher than small ones, which was desirable in
the current study, as small differences may lie within the uncertainty of the observations.

4.1.2. Categorical Statistics

Categorical statistics measure precipitation events captured within binned ranges, which are used
to evaluate event occurrence partitioned by magnitude. This provides more information on uncertainty
contributions associated with event magnitude [19,20]. Categorical statistics were a standard metric
used in the development and assessment of CaPA [18]. The events captured are measured by a
contingency table (Table 2).
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Table 2. Contingency table to assess when an event is correctly represented by bin for categorical statistics.

Observed

Simulated Obs = 1 Obs = 0

Sim = 1 Hit (H) False Positive (F)

Sim = 0 Miss (M) Correct Negative (C)

A value of 1 represents an event occurring within a bin, and a value of 0 represents an event not
occurring within that bin. Bin size selection is adopted from the World Meteorological Organization
(WMO) standards: [0, 0.2); [0.2, 1); [1, 2); [2, 5); [5, 10); [10, 25); [25, 50); and [50, inf); all in mm,
where square brackets are inclusive and curved brackets are exclusive. Similar to Asong et al. [20]
and Lespinas et al. [19], two categorical statistics are used that are also ECCC standard evaluation
metrics [18]: the equitable threat score (ETS, Equations (4) and (5)), and the frequency bias (FBIAS,
Equation (6)):

ETS =
H −HR

H + F + M−HR
(4)

HR =
(H + F)(H + M)

N
(5)

FBIAS =
H + F
H + M

− 1 (6)

in which N represents the total number of hits (H), false positives (F), misses (M), and correct negatives
(C); and HR is the number of correct forecasts assuming completely random forecasts [19]. One is
subtracted from FBIAS values to make positive values associated with positive bias. The FBIAS does
not measure agreement with the observations; FBIAS only measures relative frequency [19]. The ETS
does, however, measure skill, adjusted by the number of correct forecasts if forecasts were random.
The assumption of random forecasts may overestimate correct random forecasts, which lowers the ETS
score [43].

4.1.3. Extreme Indices

Extreme indices measure the occurrence and magnitude of extreme events [28]. Each extreme
index was evaluated for seasonal, annual, and full temporal periods. Two precipitation extreme indices
were selected: dry spell length (CDD) measuring consecutive days < 1 mm, and wet spell length
(CWD) measuring consecutive days ≥ 1 mm. The goal of including extreme indices was to measure
precipitation persistence [20]. In addition to extreme indices, one categorical extreme metric was
included: the Symmetric Extreme Dependency Index (SEDI) (Equations (7)–(9)):

SEDI =
lnFs − lnHs + ln(1−Hs) − ln(1− Fs)

lnFs + lnHs + ln(1−Hs) + ln(1− Fs)
(7)

Hs =
H

H + M
(8)

Fs =
F

C + F
(9)

in which H is the number of hits, F is the number of false positives, C is the number of correct negatives,
Hs is the hit rate, and Fs is the false alarm rate. The SEDI metric measures the agreement of the
occurrence of extreme precipitation between a gridded dataset and a reference dataset. Following from
Asong et al. [20], daily precipitation events above the 75th percentile within each sub-basin were
considered extreme events. Station data are reflective of the local precipitation at the location of the
climate station, while a grid cell represents a spatial average. The SEDI measures the agreement of
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extreme occurrence within a bin, where using a binned metric reduces the reliance on the replication of
local precipitation, but the scale difference still impacts extreme value performance.

4.2. Ensemble Creation

The five gridded datasets are treated as an ensemble, which avoids the assumption of a single
dataset being “best”. To quantify performance limits for the ensemble, upper and lower bounds were
generated by selecting the minimum and maximum value of the gridded products in a time step for
each grid point. Since each member is considered to be an acceptable representation of the observed
environment, the minimum and maximum ensemble members represent the total possible bounds
of uncertainty for the selected gridded dataset ensemble at any timestep, location, or aggregation.
Maximum and minimum bounds are useful for estimating total possible reliability for the ensemble,
as defined by Montanari [44], but likely represent an overestimation of uncertainty beyond what would
be considered useful in an operational setting, or for design purposes.

For this study, an ensemble mean is computed using an equal weighting of the five datasets,
representing a high likelihood realization. Ideally, all observed values occur within the ensemble upper
and lower bounds, therefore, the uncertainty representation (referred to as reliability) is estimated by
the number of values within the ensemble range. Precipitation events < 0.2 mm/day were considered as
trace precipitation [2]. We note the difference in scale between the point gauges and the areal average
grid cells, where a grid cell may capture a small amount of precipitation that is not represented at a
point gauge because precipitation did not occur at that exact location (i.e., gauge). Therefore, a gridded
dataset and point gauge value for any timestep were assumed to overlap below the trace threshold.
Finally, we generate a high and low realization from the second wettest and second driest value for
each grid cell for each day. This narrower uncertainty range is included to compare the relative increase
in reliability that occurs when the wider minimum and maximum bounds are used.

4.3. Spatial Aggregation

Seasonal, annual, and study period performance analyses were conducted using three spatial
aggregations: fully aggregated over the NCW (lumped), aggregated by sub-basin (semi-lumped),
and station-based comparison (distributed). Spatial aggregation uses a simple arithmetic mean of
points falling inside and along a delineation. Grid cells partially inside a delineation were weighted by
their percent overlap. Gridded datasets were aggregated to lumped and semi-lumped aggregations
using their original grid resolution. While the difference in grid size will introduce uncertainty into the
comparison of gridded datasets, interpolation would have likewise done the same. Gridded datasets
were aggregated before upper and lower bounds were generated.

Observed aggregated data were only assumed missing if all stations in a basin were missing
data for a particular day. When some, but not all, stations were missing data for a timestep,
the spatially aggregated timeseries had lower spatial coverage for that timestep, potentially lowering
performance metrics. Spatial aggregation reduces the reliance on storm positioning, hence minimizing
the contribution of spatial positioning to uncertainty.

Some hydrologic models ingest meteorological data at the grid point scale; therefore, grid point
comparisons were also generated for comparison to spatially aggregated results. Gridded datasets
were aggregated to the largest grid (i.e., ERA-Interim at 75 km) by areal average within larger grid
cells [4]. For each point gauge, the four nearest grid cells were bilinearly interpolated to the exact
location of the gauge [20]. Using the four nearest grid cells reduces representativeness uncertainty [45].

All gridded datasets except ANUSPLIN have data for the full RRB extent; therefore, spatial
aggregation in the RRB utilized all data available. This meant that NARR, ERA-I, WFDEI,
and GFD-Hydro’s RRB spatial averages consider grid points in the USA, while ANUSPLIN’s RRB
spatial average only considers Canadian grid points. The distributed comparison, however, offers
information within the RRB domain that is not dependent on data outside of Canada.
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5. Results

5.1. Gridded Dataset Analysis

Period mean monthly plots provided a generalized dataset intercomparison (Figure 2).
ERA-Interim was generally the wettest gridded dataset, often wetter than AHCCD, while NARR and
ANUSPLIN were often the driest, usually drier than ECCC. The largest mean monthly precipitation
differences were in basins with more sparse and non-uniform climate station coverage (Lake Winnipeg
Basin (LWB) and LNRB), and basins near the USA-Canada border (Winnipeg River Basin (WRB) and
RRB). NARR performed worse in the WRB than in other basins; the 2015 update cited the performance
in southern Ontario as a focus for improvement.
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Figure 2. Mean monthly precipitation for 1981–2010, spatially averaged over each of the sub-basins.
Aggregations include (a) the lumped Nelson–Churchill Watershed (NCW), and the semi-lumped
sub-basin aggregations that include: (b) the Saskatchewan River Basin (SRB), (c) the Churchill River
Basin (CRB), (d) the Lake Winnipeg Basin (LWB), (e) the Assiniboine River Basin (ARB), (f) the Winnipeg
River Basin (WRB), (g) the Red River Basin (RRB), and (h) the Lower Nelson River Basin (LNRB).

The performance of each dataset, temporally partitioned into annual periods (Figure 3) is less
consistent, indicating variable performance between years. Hydrologic models generally assess
performance on a continuous daily or monthly time scale; therefore, Figure 3 reflects general calibration
methodologies for hydrologic modeling. Correlations (Figure 3a) were generally higher in larger basins
with better climate station coverage, such as the NCW or the SRB; and lower when climate station
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coverage was low (e.g., RRB and LWB). Years that showed lower correlations across all precipitation
datasets were generally the result of missing data among some of the AHCCD stations included
in the aggregations (Table S2). Basin averages were only considered “missing” if all stations were
missing for a given timestep, thereby reducing data coverage when some stations had missing data
and lowering resulting correlations. The highest correlations were often from ANUSPLIN, which is
expected, because ANSUPLIN is an interpolated product, or the ensemble mean. The year that NARR
stopped ingesting Canadian climate station data (2004) showed notably worse performance than other
years, caused by the structural changes imposed by the data ingestion step. All reported correlation
coefficient values are statistically significant at the 99% confidence level (Figure 3a).

Water 2020, 12, x FOR PEER REVIEW 11 of 22 

 

 
Figure 3. Daily precipitation spatially aggregated annual continuous statistics with reference to the 
AHCCD observed data set in each sub-basin (1981–2010). (a) Daily Spearman correlation, (b) daily 
ratio of standard deviations, and (c) daily PBIAS. 

Standard deviation ratios were generally negative for ANUSPLIN, NARR, and the ensemble 
mean; suggesting under dispersion of the precipitation datasets. PBIAS (Figure 3c) highlighted 
temporal inconsistencies obscured by the longer-term averaging period used in Figure 2. While 
Figure 2 suggested the existence of a strong wet bias for ERA-Interim in the LWB, Figure 3 revealed 
that this wet bias was mainly influenced by the 1997–2004 period. Similar temporal inconsistencies 
existed for each dataset as performance varied from year to year. The ensemble mean often resulted 
in the smallest PBIAS. ANUSPLIN showed high correlations, negative PBIAS, and lower variability 
than observed data. Together, this suggests that ANUSPLIN matches the observed reference timing 
well, but consistently underestimates precipitation. NARR showed similar PBIAS and ratio of 
standard deviations to ANUSPLIN in the LNRB, but with lower correlation, suggesting a timing issue 
as well as underestimation. Positive PBIAS was generally present when positive ratios of standard 
deviation were present. ANUSPLIN was expected to show negative PBIAS since it was generated 
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AHCCD observed data set in each sub-basin (1981–2010). (a) Daily Spearman correlation, (b) daily
ratio of standard deviations, and (c) daily PBIAS.

Standard deviation ratios were generally negative for ANUSPLIN, NARR, and the ensemble mean;
suggesting under dispersion of the precipitation datasets. PBIAS (Figure 3c) highlighted temporal
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inconsistencies obscured by the longer-term averaging period used in Figure 2. While Figure 2
suggested the existence of a strong wet bias for ERA-Interim in the LWB, Figure 3 revealed that this
wet bias was mainly influenced by the 1997–2004 period. Similar temporal inconsistencies existed
for each dataset as performance varied from year to year. The ensemble mean often resulted in the
smallest PBIAS. ANUSPLIN showed high correlations, negative PBIAS, and lower variability than
observed data. Together, this suggests that ANUSPLIN matches the observed reference timing well,
but consistently underestimates precipitation. NARR showed similar PBIAS and ratio of standard
deviations to ANUSPLIN in the LNRB, but with lower correlation, suggesting a timing issue as well as
underestimation. Positive PBIAS was generally present when positive ratios of standard deviation
were present. ANUSPLIN was expected to show negative PBIAS since it was generated from ECCC
station data, and AHCCD generally added water to the ECCC data (i.e., was wetter). Similarly,
reanalysis datasets that ingest Canadian climate station data use ECCC data (not AHCCD); therefore,
under-estimation and negative PBIAS were anticipated.

Performance was generally worse for the distributed comparisons (Supplementary materials:
Figure S1), in which yearly correlations ranged, on average, from 0.31 to 0.67 for all climate datasets
except ANUSPLIN, whose correlations were generally above 0.7. Since ANUSPLIN was interpolated
from ECCC stations, the distributed comparison was expected to perform well, since the two datasets
are not independent. It is important to note that observed data were also ingested by the reanalysis
products, meaning they, too, are not fully independent. PBIAS and the ratio of standard deviations
showed similar amounts of disagreement and temporal variability to those in Figure 3c for each dataset
(Figure S2), respectively, but were more often negative. Negative values were expected considering
point gauges were compared to grid cells at notably different scales (Figure S3). The performance was
generally worst in summer or winter and best in spring or autumn for all three spatial aggregations.
Comparisons with ECCC data were similar, except for PBIAS more often suggesting a gridded dataset
wet bias. This result was expected, as AHCCD adjustments generally added precipitation.

Categorical statistics, similar to continuous statistics, reflected better performance for lumped or
semi-lumped aggregations (Figures S4–S7). ETS scores were generally highest for the 0–0.2 mm bin,
the 5–10 mm bin, and the 10–25 mm bin; performance was generally worst for the 0.2–1 mm bin and the
1–2 mm bin. FBIAS scores were more often negative for events below 0.2 mm and those above 2 mm;
events between 1 and 10 mm generally had the smallest FBIAS scores, suggesting that the gridded
datasets did not have a tendency to consistently over- or underestimate events of those magnitudes.
There were fewer high-magnitude events in larger sub-basins; the NCW, SRB, and Churchill River Basin
(CRB) often had no events larger than 25 mm. This was expected since (larger) areal averages tend to
dampen high precipitation events, decreasing their frequency with respect to station-based records.
The distributed comparison ETS scores suggested events above 5 mm to be well represented (Figure S8)
and FBIAS values generally decreased, suggesting more often underestimation as precipitation volume
increased (Figure S9).

Results from the analysis of the yearly extremes are presented in Figure 4. Consecutive dry and wet
days were generally well represented by all gridded products, with some notable temporal variations
in performance, suggesting that persistence patterns were often captured by the gridded datasets.
SEDI values (Figure 4c) were highest for ANUSPLIN, followed by ERA-Interim. Since ANUSPLIN
was interpolated from ECCC station data, its high performance was expected. Many of the events
evaluated by SEDI occurred in summer, where the higher resolution of NARR would be expected
to resolve convective storms better than ERA-Interim. Spatial aggregation of NARR also averaged
more grid points, which would reduce the aggregated performance for higher precipitation events.
Excluding ANUSPLIN, the effects of aggregation are notable as a gradient from higher ERA-Interim
performance to lower NARR performance. The ensemble average generally outperformed the gridded
datasets, with the exception of ANUSPLIN. Distributed comparisons (Figures S10–S12) showed that
CDD values were generally lower than AHCCD, and CWD values were generally higher than AHCCD.
Grids at 75 km resolution would be expected to average precipitation that was not observed at a
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point gauge. Similarly, a grid cell would be expected to often dampen the magnitude of convective
precipitation events by averaging with areas in a grid cell where no precipitation occurred. Therefore,
persistence patterns would be more difficult to capture at point locations than when aggregated to
basins. The same reasoning applies to SEDI values for point locations, which were generally lower
than the aggregated comparisons. The SEDI values were generally above 0.6 for NARR, GFD-HYDRO,
WFDEI, and ERA-I, and generally near 0.7 and 0.8 for the ensemble mean and ANUSPLIN, respectively.
Comparison with ECCC showed fewer wet days than AHCCD, suggesting better extreme value
representation by the gridded datasets.
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5.2. Ensemble Analysis

By assuming that the minimum to maximum ensemble range is a total possible uncertainty
envelope for the ensemble (Figure 5), we find that wet conditions, low spatial coverage of climate
stations, and the presence of large water bodies [46] increased uncertainty (Figure 5d,f,h). The upper
and lower bounds represented a performance limit for the ensemble and can be used to identify periods
of elevated uncertainty. Upper and lower bounds correlated well with the ensemble mean: when the
bounds diverge, the underlying datasets disagree on the occurrence of precipitation, and when bounds
converge, the underlying datasets agree on the occurrence of precipitation. Convergence suggests
lower uncertainty in precipitation estimation. The ensemble mean was often similar to AHCCD, but
approached ECCC for smaller aggregations. This relationship varied seasonally, with the ensemble
mean generally approaching AHCCD in winter, spring, and autumn for large basin aggregations, but
was similarly closer to ECCC during summer. The envelope created by the ensemble minimum and
maximum realizations was widest in summer and narrowest in winter. When considered at annual
timesteps, the high and low ensemble realizations appeared sufficient to envelope most of the observed
precipitation events.
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Figure 5. Basin-averaged annual total precipitation timeseries showing the ensemble minimum, mean,
and maximum; the high and low ensemble realizations generated from taking the second wettest and
second driest value for each timestep and grid; as well as ECCC and AHCCD for each sub-basin in the
NCW (1981–2010): (a) NCW, (b) SRB, (c) CRB, (d) LWB, (e) ARB, (f) WRB, (g) RRB, (h) LNRB.

Spatial aggregation was influential when assessing events captured by the ensemble (Figure 6).
Figure 6a indicates the lumped annual average ensemble mean precipitation for the NCW to be
512 mm year−1. Figure 6b indicates that 31% of events fell outside the ensemble envelope (Figure 6b),
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with 26% of those being below the ensemble minimum. The volume difference of events falling below
(above) the ensemble minimum (maximum) increased as precipitation event magnitude increased.Water 2020, 12, x FOR PEER REVIEW 15 of 22 

 

 
Figure 6. Period mean annual sum precipitation (1981–2010) according to different spatial 
aggregations: fully lumped (a), semi-lumped (c), and distributed (e). The % of non-zero AHCCD 
events outside the ensemble range when using different spatial aggregation schemes: fully lumped 
(b), semi-lumped (d), and distributed (f). 

The semi-lumped aggregation varied more in annual average precipitation and the number of 
events falling outside the ensemble bounds (Figure 6c,d). The worst performing basin was the LWB, 
missing 30% of precipitation events. This was an expectedly poor performance given the low spatial 
density of climate stations within this basin. The best performing basin was the RRB; however, 
datasets diverged due to border effects and discontinuous ANUSPLIN data. The wider ensemble 
bounds suggested higher ensemble uncertainty for the RRB, but subsequently led to a low percentage 
(19%) of events beyond the ensemble envelope. The high/low ensemble realizations enveloped 
approximately half as many observations as the min/max ensemble (e.g., 64% for the NCW), which 
supports our finding that anomalies such as border effects that increase uncertainty are likely 
responsible for the higher reliability observed within the RRB. Border effects were also present in the 
WRB and the SRB, but were also anticipated to be less impactful than in the RRB, owing to their 
smaller percent land area in the USA. The percentage of events falling below the ensemble’s lower 
bound ranged from 16% to 40% (Figure 6d). The volume difference of events below or above the 
ensemble minimum or maximum increased as precipitation event magnitude increased. 

Distributed comparisons were found to be the worst, ranging from 16% to 52% of events falling 
beyond the ensemble bounds (Figure 6f), although they provided the highest resolution of spatial 
variation in precipitation (Figure 6e). Events were below the ensemble minimum; an average of 25% 
across all stations. Similar to the aggregated comparison, the volume difference of events below or 
above the ensemble minimum or maximum increased as precipitation event magnitude increased. 
Reliability with respect to ECCC data was better, showing that 28% of precipitation events missed in 
the lumped aggregation, with a range of 15% to 26% among the semi-lumped basins, and 12% to 50% 
among the distributed comparison, and an average of 36% of events being below the ensemble 
minimum. Since the AHCCD process added water, the ECCC improvement was sourced from fewer 

Figure 6. Period mean annual sum precipitation (1981–2010) according to different spatial aggregations:
fully lumped (a), semi-lumped (c), and distributed (e). The % of non-zero AHCCD events outside the
ensemble range when using different spatial aggregation schemes: fully lumped (b), semi-lumped (d),
and distributed (f).

The semi-lumped aggregation varied more in annual average precipitation and the number of
events falling outside the ensemble bounds (Figure 6c,d). The worst performing basin was the LWB,
missing 30% of precipitation events. This was an expectedly poor performance given the low spatial
density of climate stations within this basin. The best performing basin was the RRB; however, datasets
diverged due to border effects and discontinuous ANUSPLIN data. The wider ensemble bounds
suggested higher ensemble uncertainty for the RRB, but subsequently led to a low percentage (19%) of
events beyond the ensemble envelope. The high/low ensemble realizations enveloped approximately
half as many observations as the min/max ensemble (e.g., 64% for the NCW), which supports our
finding that anomalies such as border effects that increase uncertainty are likely responsible for the
higher reliability observed within the RRB. Border effects were also present in the WRB and the SRB,
but were also anticipated to be less impactful than in the RRB, owing to their smaller percent land area
in the USA. The percentage of events falling below the ensemble’s lower bound ranged from 16% to
40% (Figure 6d). The volume difference of events below or above the ensemble minimum or maximum
increased as precipitation event magnitude increased.

Distributed comparisons were found to be the worst, ranging from 16% to 52% of events falling
beyond the ensemble bounds (Figure 6f), although they provided the highest resolution of spatial
variation in precipitation (Figure 6e). Events were below the ensemble minimum; an average of 25%
across all stations. Similar to the aggregated comparison, the volume difference of events below or



Water 2020, 12, 2751 16 of 22

above the ensemble minimum or maximum increased as precipitation event magnitude increased.
Reliability with respect to ECCC data was better, showing that 28% of precipitation events missed
in the lumped aggregation, with a range of 15% to 26% among the semi-lumped basins, and 12% to
50% among the distributed comparison, and an average of 36% of events being below the ensemble
minimum. Since the AHCCD process added water, the ECCC improvement was sourced from fewer
events above the ensemble bounds. Finally, the low/high uncertainty realizations resulted in reliabilities
ranging from 31% to 63%, which was consistently worse among all stations with respect to AHCCD.

6. Discussion

6.1. Uncertainty from Temporal Period of Analysis

Performance metrics calculated for the full 1981–2010 period agree with results from Eum et al. [3]
and Wong et al. [4], as high- and low-performance years average out but obscure temporally dependent
information [13]. The comparison of individual gridded datasets (Figure 2) does not indicate temporally
dependent performance evolution [3]. Events that affect wet/dry years, such as El Niño-Southern
Oscillation (ENSO) years, are smoothed out over multi-year temporal periods of evaluation [47,48].
Therefore, yearly and seasonal periods better represent the temporal variation of input data uncertainty
for hydrologic modeling purposes (Figure 3).

Results presented in Figure 5 were aggregated to annual precipitation totals for the ease of
presentation. A similar plot at the daily, weekly, or monthly timescale can be used to identify periods of
dataset convergence (low uncertainty) and divergence (elevated uncertainty). Since each dataset was
evaluated, they are assumed to be reasonable approximations of the observed environment. Therefore,
when they diverge, it is reasonable to assume that they diverge because climatic conditions were
uncertain, not because the products perform poorly. This concept is consistent with recommendations
for the ERA5 uncertainty envelope [49]. Applying this concept to an ensemble of products overcomes
some of the limitations with the ERA5 uncertainty product, which only accounts for some uncertainty
in the observational data ingested into the reanalysis model. The present ensemble includes some
representation of structural uncertainty, parameter uncertainty, and input uncertainty for climate
models, suggesting that it is a more robust measure of periods of high or low data uncertainty.

A simple arithmetic mean is used to generate a high likelihood ensemble realization, however,
other methods such as linear weighting and Bayesian model averaging have produced promising
results in the literature (e.g., [50–52]). Ensemble methods assign weights to the ensemble members.
This suggests that events beyond the bounds of an ensemble will not be well represented by ensemble
methods. The high and low ensemble realizations further show that methods seeking to constrain
uncertainty may misrepresent a higher proportion of observed events. Therefore, the maximum
and minimum bounds of an ensemble, as presented in this work, can be used to identify the upper
(lower) limit of ensemble performance, or performance at the extremes, or tails, of the distribution.
Examining ensemble bounds offers an assessment of the quality of the ensemble for a target application
at a target temporal resolution (e.g., drought or flood studies). It is, however, important to reinforce
that the uncertainty bounds are not of equal likelihood. Rather, the ensemble range should be
considered only from a likelihood perspective. Ingesting the minimum or maximum realization is
equivalent to ingesting the lowest likelihood realizations from the ensemble. The communication of
wide uncertainty bounds without inferring a lack of confidence in the results is a common topic in
the literature (e.g., [53–55]). The selection of wider uncertainty bounds preserves the ability to sample
low likelihood events [56], which tend to be of particular interest for climate change studies where
non-stationarity can increase (decrease) the likelihood of event occurrence. Ideally, we would ingest a
near-infinite number of samples from the uncertainty range, weighted by their likelihood, which would
include low likelihood realizations. We caution, however, that if wider uncertainty bounds are rejected,
the sampling of such events is no longer possible, even as computational power makes such sampling
rigor plausible.
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It is common to select hydrologic model calibration and validation periods to include both wet
and dry periods [57]. Hydrologic models are likely not capable of performing well too far beyond the
climatic conditions they are originally calibrated to reflect. It is, therefore, reasonable to assume that a
hydrologic model calibrated using only periods of low uncertainty may be less robust in periods of
high uncertainty. Ensemble convergence appears to be a viable way to integrate input uncertainty
conditions into the selection of calibration and validation periods.

6.2. Uncertainty from Spatial Aggregation

Gridded datasets were weakest in their representation of extreme events (Figure 4), which generally
agrees with the literature [4,11–13,16]. It was expected that a spatial average would not capture (well)
the extremes recorded at a point gauge, which are only representative of local precipitation [28,58–60].
There were more grid points than observed stations, which led to differing degrees of spatial averaging
between the gridded and observed datasets, suggesting added value in considering multiple spatial
aggregations (e.g., [59,60]). The most extreme events within any given year generally always occurred
in summer, due to convective storms and frontal systems [61]. A gridded dataset may reasonably
estimate storm event magnitude, but not the storm’s spatial positioning. This made the distributed
comparison dependent on both magnitude and positioning, while a spatially aggregated basin was
mainly dependent on magnitude resulting in lower uncertainty [62]. Since both the station data and the
gridded products were aggregated when compared at lumped or semi-lumped aggregations, the scale
differences were less noticeable. This also suggests that spatially aggregated hydrologic models may
ingest less input data uncertainty during summer, when the spatial positioning of convective storms is
most relevant. It should be noted, however, that this may lead to high magnitude, local precipitation
events being damped due to areal averaging, which can introduce higher output uncertainty in some
modeling applications, such as flood forecasting.

6.3. Ensemble Reliability

The minimum and maximum ensemble realizations were clearly beyond the uncertain range of
observed precipitation data in this study, but highlight the possible range of the ensemble, and therefore
its limitations. The choice to generate the ensemble minimum and maximum realizations was equivalent,
by design, to maximizing reliability without regard for sharpness (e.g., [63,64]). The high/low ensemble
realizations represent a simple attempt to reduce the uncertainty range, but generate notably lower
reliability. Sharpness is a measure of ensemble spread: an ensemble with narrow bounds results in
a high performing sharpness value. The high/low ensemble realizations outperform the ensemble
minimum and maximum realizations in terms of their sharpness. With no temporal aggregation
(i.e., by considering individual days), the reliability of the high/low ensemble bounds was lower than
expected (Figure 6). This suggests that any attempt to generate a single best ensemble realization would
misrepresent precipitation events beyond the ensemble range, and similarly, under-represent input
data uncertainty ingested by the hydrologic models. Generating a narrower envelope that preserves
reliability could be seen as constraining uncertainty in a valuable way for operations, in that the
representation of observed uncertainty is preserved without producing unrealistically wide ensemble
bounds for well-simulated events. However, it is important to consider that observed data are also
not free of uncertainty [36]. In addition, generating an ensemble range that is too narrow risks losing
information about low likelihood events that may increase in likelihood with climate change.

Spatially aggregated reliabilities were often better than the reliabilities at stations within those
aggregations; however, the NCW had the lowest reliability of the spatially aggregated comparisons.
This suggests that hydrologic model spatial structures could potentially be optimized to balance the
loss of information, through both choice of spatial aggregation (Figure 6a,c,e) and the reductions
in input uncertainty. If increasing spatial aggregation narrows the ensemble bounds, which can
be interpreted as reducing uncertainty, too much narrowing may actually reduce the reliability
(Figure 6b,d). Some aggregation and reduction of uncertainty are beneficial, but also reduce the
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information on the spatial positioning of precipitation. Optimizing the degree of spatial aggregation is
out of scope for this study, but would be interesting future work.

It should be noted that there exist more formal methods for estimating precipitation data
uncertainty in the literature. As an example, Newman et al. [64] present a framework for estimating
climate data uncertainty from station data. Their methodology was applied to precipitation and
temperature data. Data density was generally high in their study, and therefore may not perform
well in regions like northern Manitoba, or the Arctic regions of relevance to the BaySys project.
As shown in the present study, reliability and dataset convergence can be tested with any climate
variable, with any data density. In this way, reliability and convergence do not replace formal estimates
of uncertainty. An estimate of dataset convergence could be applied to the dataset produced by
Newman et al. [65] to determine periods of elevated uncertainty. Additionally, the concepts of reliability
and convergence can be applied across scales to aid in the evaluation of spatial aggregation decisions
for hydrologic modeling.

7. Conclusions

Many gridded precipitation datasets have been developed and included in comparison studies.
These studies often struggled to suggest a generalized best product, instead suggesting the use of
ensembles or an ensemble method-derived realization. There is a need for a better understanding of
the uncertainty associated with gridded precipitation data ensembles, particularly for applications
with varied spatial and temporal resolutions. This is an important subject, given the rising popularity
of new reanalysis forcing products and hydrologic ensembles, which include diverse methods and
spatial scales for data ingestion. This study compared dataset performance at multiple spatial and
temporal aggregations to explore the effect of the various spatial aggregation choices made in recent
literature studies. Based on the analysis conducted, the major conclusions can be summarized as
follows (Table 3):

Table 3. Summary of findings and suggestions.

General Findings
• Dataset performance is dependent on performance metric
• Dataset performance varies spatially and temporally

Specific Findings

• The amount of spatial and temporal aggregation impacts dataset performance,
uncertainty, and reliability

• Dataset convergence (divergence) can be used to assess periods of low (high)
uncertainty to include input uncertainty conditions into the selection of
calibration/validation periods

• Observations that fall outside the minimum/maximum range of the ensemble
will likely never be well represented by ensemble methods

Suggestions

• Multiple ensemble members should be used to account for gridded
dataset uncertainty

• Dataset assessment should be conducted across a range of spatial and temporal
scales relevant to those of a target hydrologic model(s)

• A reliability analysis should be conducted to ensure sufficient overlap of
gridded datasets with observations preceding hydrologic modeling

• An assessment of convergence/divergence should be done preceding hydrologic
modeling to include periods of low/high precipitation uncertainty into
calibration/validation periods

The findings of this study are not meant as an exhaustive search for viable gridded precipitation
datasets for inclusion in an ensemble, but rather to present a simple procedure to assess the limitations
associated with an ensemble. Therefore, the procedure presented in the present study identifies the
performance limit of a gridded precipitation data ensemble, and how spatial and temporal aggregation
methods affect that limit. The results reported in this study are likely not unique to the NCW; therefore,
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future research should include an examination of the effect that each gridded dataset in an ensemble
has on the ensemble reliability.
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yearly precipitation. Stations are ordered from highest to lowest latitude. Table S2: Station coverage for each year
in each basin as the percentage of stations with data available in a basin. Percentages below 100% represent the
presence of one or more days with some stations missing data (AHCCD).
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13. Rapaić, M.; Brown, R.; Markovic, M.; Chaumont, D. An evaluation of temperature and precipitation
surface-based and reanalysis datasets for the Canadian arctic, 1950–2010. Atmosphere-Ocean 2015, 53, 283–303.
[CrossRef]

14. Kluver, D.; Mote, T.L.; Leathers, D.; Henderson, G.R.; Chan, W.; Robinson, D.A. Creation and validation
of a comprehensive 1◦ by 1◦ daily gridded North American dataset for 1900–2009: Snowfall. J. Atmos.
Ocean. Technol. 2016, 33, 857–871. [CrossRef]

15. Essou, G.R.C.; Sabarly, F.; Lucas-Picher, P.; Brissette, F.; Poulin, A. Can precipitation and temperature
from meteorological reanalyses be used for hydrological modeling? J. Hydrometeorol. 2016, 17, 1929–1950.
[CrossRef]

16. Gbambie, A.S.B.; Poulin, A.; Boucher, M.-A.; Arsenault, R. Added value of alternative information in
interpolated precipitation datasets for hydrology. J. Hydrometeorol. 2017, 18, 247–264. [CrossRef]

17. Boluwade, A.; Zhao, K.-Y.; Stadnyk, T.; Rasmussen, P. Towards validation of the Canadian Precipitation
Analysis (CaPA) for hydrologic modeling applications in the Canadian prairies. J. Hydrol. 2018, 556,
1244–1255. [CrossRef]

18. Fortin, V.; Roy, G.; Stadnyk, T.; Koenig, K.; Gasset, N.; Mahidjiba, A. Ten years of science based on the
Canadian precipitation analysis: A CaPA system overview and literature review. Atmosphere-Ocean 2018, 56,
1–19. [CrossRef]

19. Lespinas, F.; Fortin, V.; Roy, G.; Rasmussen, P.F.; Stadnyk, T.A. Performance evaluation of the Canadian
Precipitation Analysis (CaPA). J. Hydrometeorol. 2015, 16, 2045–2064. [CrossRef]

20. Asong, Z.E.; Razavi, S.; Wheater, H.S.; Wong, J.S. Evaluation of Integrated Multisatellite Retrievals for
GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment.
J. Hydrometeorol. 2017, 18, 1033–1050. [CrossRef]

21. Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles.
J. Hydrol. 1970, 10, 282–290. [CrossRef]

22. Vincent, L.A.; Wang, X.L.; Milewska, E.J.; Wan, H.; Yang, F.; Swail, V. A second generation of homogenized
Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res. Space Phys. 2012, 117,
D18110. [CrossRef]

23. Masson, D.; Knutti, R. Climate model genealogy. Geophys. Res. Lett. 2011, 38, L08703. [CrossRef]
24. Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there.

Geophys. Res. Lett. 2013, 40, 1194–1199. [CrossRef]
25. Sanderson, B.; Knutti, R.; Caldwell, P. A representative democracy to reduce interdependency in a multimodel

ensemble. J. Clim. 2015, 28, 5171–5194. [CrossRef]
26. LeDuc, M.; Laprise, R.; De Elía, R.; Šeparović, L. Is institutional democracy a good proxy for model

independence? J. Clim. 2016, 29, 8301–8316. [CrossRef]
27. Steinschneider, S.; Wi, S.; Brown, C. The integrated effects of climate and hydrologic uncertainty on future

flood risk assessments. Hydrol. Process. 2014, 29, 2823–2839. [CrossRef]
28. Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.; Bronaugh, D. Climate extremes indices in the CMIP5

multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118,
1716–1733. [CrossRef]

http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1016/j.jhydrol.2015.08.023
http://dx.doi.org/10.1029/2006JD007230
http://dx.doi.org/10.1175/JHM595.1
http://dx.doi.org/10.1175/2009JCLI2838.1
http://dx.doi.org/10.4296/cwrj3401017
http://dx.doi.org/10.1080/07055900.2015.1045825
http://dx.doi.org/10.1175/JTECH-D-15-0027.1
http://dx.doi.org/10.1175/JHM-D-15-0138.1
http://dx.doi.org/10.1175/JHM-D-16-0032.1
http://dx.doi.org/10.1016/j.jhydrol.2017.05.059
http://dx.doi.org/10.1080/07055900.2018.1474728
http://dx.doi.org/10.1175/JHM-D-14-0191.1
http://dx.doi.org/10.1175/JHM-D-16-0187.1
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1029/2012JD017859
http://dx.doi.org/10.1029/2011GL046864
http://dx.doi.org/10.1002/grl.50256
http://dx.doi.org/10.1175/JCLI-D-14-00362.1
http://dx.doi.org/10.1175/JCLI-D-15-0761.1
http://dx.doi.org/10.1002/hyp.10409
http://dx.doi.org/10.1002/jgrd.50203


Water 2020, 12, 2751 21 of 22

29. Hutchinson, M.F.; McKenney, D.W.; Lawrence, K.; Pedlar, J.H.; Hopkinson, R.F.; Milewska, E.; Papadopol, P.
Development and testing of Canada-Wide interpolated spatial models of daily minimum–maximum
temperature and precipitation for 1961–2003. J. Appl. Meteorol. Clim. 2009, 48, 725–741. [CrossRef]

30. Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.;
Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360.
[CrossRef]

31. Berg, P.; Donnelly, C.; Gustafsson, D. Near-real-time adjusted reanalysis forcing data for hydrology.
Hydrol. Earth Syst. Sci. 2018, 22, 989–1000. [CrossRef]

32. Khakbaz, B.; Imam, B.; Hsu, K.; Sorooshian, S. From lumped to distributed via semi-distributed: Calibration
strategies for semi-distributed hydrologic models. J. Hydrol. 2012, 418, 61–77. [CrossRef]

33. Lilhare, R.; Déry, S.J.; Pokorny, S.; Stadnyk, T.A.; Koenig, K.A. Intercomparison of multiple hydroclimatic
datasets across the lower nelson river basin, Manitoba, Canada. Atmosphere-Ocean 2019, 57, 1–17. [CrossRef]

34. Government of Canada. Natural Resources Canada. Available online: https://www.nrcan.gc.ca/home
(accessed on 5 July 2018).

35. Benke, A.C.; Cushing, C.E. Rivers of North America; Elsevier: Burlington, MA, USA, 2005; pp. 853–888.
36. McMillan, H.; Krueger, T.; Freer, J. Benchmarking observational uncertainties for hydrology: Rainfall, river

discharge and water quality. Hydrol. Process. 2012, 26, 4078–4111. [CrossRef]
37. Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the global historical climatology

network-daily database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [CrossRef]
38. Durre, I.; Menne, M.J.; Gleason, B.E.; Houston, T.G.; Vose, R.S. Comprehensive automated quality assurance

of daily surface observations. J. Appl. Meteorol. Clim. 2010, 49, 1615–1633. [CrossRef]
39. Barber, D.G. BaySys—Contributions of Climate Change and Hydroelectric Regulation to the Variability and

Change of Freshwater-Marine Coupling in the Hudson Bay System. Available online: http://umanitoba.
ca/faculties/environment/departments/ceos/media/BaySys_PROJECT_DESCRIPTION.pdf (accessed on
15 January 2014).

40. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;
Balsamo, G.; Bauer, P.; et al. The ERA-interim reanalysis: Configuration and performance of the data
assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [CrossRef]

41. Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.; Viterbo, P. The WFDEI meteorological forcing
data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res.
2014, 50, 7505–7514. [CrossRef]

42. World Meteorological Organization. Calculation of Monthly and Annual 30-Year Standard Normals; WCDP-No.
10, WMO-TD/No. 341; World Meteorological Organization: Geneva, Switzerland, 1989.

43. Zhu, Y.; Luo, Y. Precipitation calibration based on the frequency-matching method. Weather Forecast. 2015,
30, 1109–1124. [CrossRef]

44. Montanari, A. Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in
assessing the uncertainty of rainfall-runoff simulations. Water Resour. Res. 2005, 41, W08406. [CrossRef]

45. Tustison, B.; Harris, D.; Foufoula-Georgiou, E. Scale issues in verification of precipitation forecasts. J. Geophys.
Res. Space Phys. 2001, 106, 11775–11784. [CrossRef]

46. Rouse, W.R. Impacts of hudson bay on the terrestrial climate of the Hudson bay lowlands. Arct. Alp. Res.
1991, 23, 24. [CrossRef]

47. Shabbar, A.; Khandekar, M. The impact of el Niño-Southern oscillation on the temperature field over Canada:
Research note. Atmosphere-Ocean 1996, 34, 401–416. [CrossRef]

48. Trenberth, K.E. The definition of El Niño. Bull. Amer. Meteor. Soc. 1997, 78, 2771–2778. [CrossRef]
49. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.;

Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049.
[CrossRef]

50. Wilks, D.S. Comparison of ensemble-MOS methods in the Lorenz ’96 setting. Meteorol. Appl. 2006, 13, 243.
[CrossRef]

51. Yang, C.; Yan, Z.; Shao, Y. Probabilistic precipitation forecasting based on ensemble output using generalized
additive models and Bayesian model averaging. Acta Meteorol. Sin. 2012, 26, 1–12. [CrossRef]

52. Yao, Y.; Liang, S.; Xie, X.; Cheng, J.; Jia, K.; Li, Y.; Liu, R. Estimation of the terrestrial water budget over
northern China by merging multiple datasets. J. Hydrol. 2014, 519, 50–68. [CrossRef]

http://dx.doi.org/10.1175/2008JAMC1979.1
http://dx.doi.org/10.1175/BAMS-87-3-343
http://dx.doi.org/10.5194/hess-22-989-2018
http://dx.doi.org/10.1016/j.jhydrol.2009.02.021
http://dx.doi.org/10.1080/07055900.2019.1638226
https://www.nrcan.gc.ca/home
http://dx.doi.org/10.1002/hyp.9384
http://dx.doi.org/10.1175/JTECH-D-11-00103.1
http://dx.doi.org/10.1175/2010JAMC2375.1
http://umanitoba.ca/faculties/environment/departments/ceos/media/BaySys_PROJECT_DESCRIPTION.pdf
http://umanitoba.ca/faculties/environment/departments/ceos/media/BaySys_PROJECT_DESCRIPTION.pdf
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.1175/WAF-D-13-00049.1
http://dx.doi.org/10.1029/2004WR003826
http://dx.doi.org/10.1029/2001JD900066
http://dx.doi.org/10.2307/1551433
http://dx.doi.org/10.1080/07055900.1996.9649570
http://dx.doi.org/10.1175/1520-0477(1997)078&lt;2771:TDOENO&gt;2.0.CO;2
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1017/S1350482706002192
http://dx.doi.org/10.1007/s13351-012-0101-8
http://dx.doi.org/10.1016/j.jhydrol.2014.06.046


Water 2020, 12, 2751 22 of 22

53. DeMeritt, D.; Cloke, H.; Pappenberger, F.; Pozo, J.T.-D.; Bartholmes, J.C.; Ramos, M. Ensemble predictions
and perceptions of risk, uncertainty, and error in flood forecasting. Environ. Hazards 2007, 7, 115–127.
[CrossRef]

54. Pappenberger, F.; Stephens, E.; Thielen, J.; Salamon, P.; DeMeritt, D.; Van Andel, S.J.; Wetterhall, F.; Alfieri, L.
Visualizing probabilistic flood forecast information: Expert preferences and perceptions of best practice in
uncertainty communication. Hydrol. Process. 2012, 27, 132–146. [CrossRef]

55. Pokorny, S.; Stadnyk, T.A.; Ali, G.; Lilhare, R.; Déry, S.J.; Koenig, K. Cumulative effects of uncertainty on
simulated streamflow in a hydrologic modeling environment. Elem. Sci. Anth. 2020. [CrossRef]

56. Westerberg, I.K.; Sikorska-Senoner, A.E.; Viviroli, D.; Vis, M.J.P.; Seibert, J. Hydrological model calibration
with uncertain discharge data. Hydrol. Sci. J. 2020, 1–16. [CrossRef]

57. Vaze, J.; Post, D.; Chiew, F.; Perraud, J.-M.; Viney, N.R.; Teng, J. Climate non-stationarity—Validity of
calibrated rainfall–runoff models for use in climate change studies. J. Hydrol. 2010, 394, 447–457. [CrossRef]

58. Sun, X.; Barros, A. An Evaluation of the statistics of rainfall extremes in rain gauge observations,
and satellite-based and reanalysis products using universal multifractals. J. Hydrometeorol. 2010, 11,
388–404. [CrossRef]

59. Fischer, E.M.; Beyerle, U.; Knutti, R. Robust spatially aggregated projections of climate extremes.
Nat. Clim. Chang. 2013, 3, 1033–1038. [CrossRef]

60. Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B. Precipitation variability increases in a
warmer climate. Sci. Rep. 2017, 7, 17966. [CrossRef] [PubMed]

61. Dingman, S.L. Physical Hydrology, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2015; pp. 47–203.
62. Carpenter, T.M.; Georgakakos, K.P. Intercomparison of lumped versus distributed hydrologic model ensemble

simulations on operational forecast scales. J. Hydrol. 2006, 329, 174–185. [CrossRef]
63. Shafii, M.; Tolson, B.A.; Matott, L.S. Addressing subjective decision-making inherent in GLUE-based

multi-criteria rainfall–runoff model calibration. J. Hydrol. 2015, 523, 693–705. [CrossRef]
64. Zhou, R.; Li, Y.; Lu, D.; Liu, H.; Zhou, H. An optimization based sampling approach for multiple metrics

uncertainty analysis using generalized likelihood uncertainty estimation. J. Hydrol. 2016, 540, 274–286.
[CrossRef]

65. Newman, A.J.; Clark, M.P.; Craig, J.; Nijssen, B.; Wood, A.W.; Gutmann, E.; Mizukami, N.; Brekke, L.;
Arnold, J.R. Gridded ensemble precipitation and temperature estimates for the contiguous United States.
J. Hydrometeorol. 2015, 16, 2481–2500. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.envhaz.2007.05.001
http://dx.doi.org/10.1002/hyp.9253
http://dx.doi.org/10.1525/elementa.431
http://dx.doi.org/10.1080/02626667.2020.1735638
http://dx.doi.org/10.1016/j.jhydrol.2010.09.018
http://dx.doi.org/10.1175/2009JHM1142.1
http://dx.doi.org/10.1038/nclimate2051
http://dx.doi.org/10.1038/s41598-017-17966-y
http://www.ncbi.nlm.nih.gov/pubmed/29269737
http://dx.doi.org/10.1016/j.jhydrol.2006.02.013
http://dx.doi.org/10.1016/j.jhydrol.2015.01.051
http://dx.doi.org/10.1016/j.jhydrol.2016.06.030
http://dx.doi.org/10.1175/JHM-D-15-0026.1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Precipitation Data 
	Observed Ground-Based Climate Station Data 
	Gridded Precipitation Datasets 

	Methodology 
	Performance Assessment 
	Continuous Statistics 
	Categorical Statistics 
	Extreme Indices 

	Ensemble Creation 
	Spatial Aggregation 

	Results 
	Gridded Dataset Analysis 
	Ensemble Analysis 

	Discussion 
	Uncertainty from Temporal Period of Analysis 
	Uncertainty from Spatial Aggregation 
	Ensemble Reliability 

	Conclusions 
	References

