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Abstract: During the last few years, there is a growing concern about climate change and its negative
effects on water availability. This study aims to evaluate the performance of regional climate models
(RCMs) in simulating seasonal precipitation over the mountainous range of Central Pindus (Greece).
To this end, observed precipitation data from ground-based rain gauge stations were compared with
RCMs grid point’s simulations for the baseline period 1974–2000. Statistical indexes such as root
mean square error (RMSE), mean absolute error (MAE), Pearson correlation coefficient, and standard
deviation (SD) were used in order to evaluate the model’s performance. The results demonstrated
that RCMs fail to represent the temporal variability of precipitation time series with exception of
REMO. Although, concerning the model’s prediction accuracy, it was found that better performance
was achieved by the RegCM3 model in the study area. In addition, regarding a future projection
(2074–2100), it was highlighted that precipitation will significantly decrease by the end of the 21st
century, especially in spring (−30%). Therefore, adaption of mountainous catchment management to
climate change is crucial to avoid water scarcity.
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1. Introduction

During the last decades, increasing water demand (population growth, urbanization,
and industrialization) and recent global warming are making water a precious, but not always available,
asset [1,2]. Especially, the Mediterranean climate favors the development of water scarcity [3,4], as the
precipitation regime presents spatial and temporal variability [5–7]. Moreover, the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report [8] emphasizes that the Mediterranean
basin is expected to be drier by the end of the 21st century and much warmer than the global
mean [9]. The aforementioned changes will have environmental and economic impacts as they affect
flooding [10], soil erosion [11,12], drought phenomena [13,14], agriculture [15,16], wildfires [17,18],
and tourism [19,20].

Precipitation is a key factor for the assessment of climate change impacts, due to its direct
influence on water availability and natural hazards (floods, drought, landslides, etc.). Its spatial
and temporal distribution is important to various scientific fields such as geography, hydrology,
forest management, agriculture, ecology, and others [6,21,22]. Future projections are also essential
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for rational water resources management. Therefore, high spatial resolution spatial climate data are
necessary for climate change impact assessment studies. For the Greek territory, located in the eastern
Mediterranean, reducing monthly accumulated precipitations and more frequent extreme precipitation
events, combined with increasing temperatures, are expected under future climate conditions [23–25].

Currently, general circulation models (GCMs) are the most advanced tools for the estimation of
future climate changes in global scale. GCMs are numerical models representing physical processes
in the atmosphere, ocean, cryosphere, and land surface, based on the principals of energy and water
balance. They are tools for simulating climate responses in increasing concentrations of greenhouse
gases and are able to provide assessments of climate change.

The spatial analysis of GCMs (200 to 300 km) gives satisfactory results for the global circulation
across the planet. However, they have been proved to be ineffective in simulating hydrological variables
at the catchment-scale due to their coarse spatial resolution. In addition, they cannot accurately simulate
regional scale phenomena due to local conditions and particularities, such as the complex topography,
lakes, and small islands [26].

In order to meet the demands of hydrological impact assessment studies for regional precipitation,
several downscaling techniques have been developed to bridge the gap between the large-scale
GCM estimation and local needs. The downscaling techniques are divided into statistical [27,28]
and dynamic [29,30]. The statistical methods use the observed relationships between large-scale
circulation and the local climate, whereas dynamic methods use physically based regional climate
models (RCMs). The main advantages of a statistical downscaling approach are low computational
requirements, whereas dynamic downscaling is appreciated by researchers for its superiority of
embracing more systematic characteristics in relation to topography and climatic dynamical processes.
In recent years, several studies used RCMs in order to assess climate change effect on hydrology [31–35].
The effectiveness of these models is mostly dependent on their inputs, especially the past climate
data [36]. The comprehension of the hydrological cycle components response to the climate variability
has become more and more fundamental. Understandings of the uncertainties in future climate
projections are of major interest. Therefore, the ability of RCMs to represent climate conditions should
be examined prior to their use in impact assessment studies [37–39].

In the frame of the European Union (EU) funding project ENSEMBLE, a set of multi-model
RCM simulations to characterize climate change in Europe with high spatial resolution (25 × 25 km),
were produced. There are many studies in Europe evaluating the ability of RCMs to represent
precipitation [40–44]. It is noteworthy that most of these studies referred to plain areas and lowlands.
Nevertheless, limited studies evaluate the performance of RCMs simulations in mountainous areas of
the Mediterranean basin [45], while there is no such research for the mountainous ranges of Greece.
Mountainous areas are of great interest for water resources management, since runoff generates and
supplies (through catchments) lowlands with water.

This study aims to evaluate the performance of RCMs from the ENSEMBLE project in simulating
the seasonal and annual precipitation over the mountainous range of Central Pindus (Greece) and
quantify the effect of climate change on future precipitation.

2. Materials and Methods

Observations of monthly accumulations of precipitation data from 13 ground-based rain gauge
stations over the mountainous range of Central Pindus (Greece) were used for the period 1974–2000.
It is noteworthy that the study area has a dense network of rain gauge stations located in high
elevation, in comparison with other areas within Greece. The data series are complete without missing
values. The station data were checked for homogeneity using the Alexandersson [46] homogeneity test,
on a monthly basis and for each station separately. The results verified that the data from all the stations
are homogeneous. These stations are operated by the Ministry of Environment & Energy (Agiofylo,
Agnanta, Chrysomilia, Elati, Katafyto and Malakasi, Megali Kerasia, Platanousa, and Theodoriana),
the Public Power Corporation (Mesochora, Polyneri, and Stournareika) and the University Forest
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Administration and Management Fund (Pertouli). The characteristics of the above-mentioned stations
are given in the next table (Table 1).

Table 1. Characteristics of the rain gauge stations.

A/A Meteorological Station
Coordinates

Elevation (m)
Longitude (◦) Latitude (◦)

1 Agiofylo 21.34 39.52 580
2 Agnanta 21.08 39.47 660
3 Chrysomilia 21.3 39.36 910
4 Elati 21.32 39.51 909
5 Katafyto 21.28 39.38 1018
6 Malakasi 21.17 39.47 850
7 Megali Kerasia 21.49 39.75 509
8 Mesochora 21.20 39.26 849
9 Pertouli 21.28 39.33 1180
10 Polyneri 21.22 39.34 802
11 Platanousa 21.01 39.41 454
12 Stournareika 21.29 39.28 761
13 Theodoriana 21.2 39.43 941

Additionally, precipitation data were derived from five (5) RCMs. Simulations were developed
for the European ENSEMBLE project (http://ensembles-eu.metoffice.com/), with high spatial resolution
(25 × 25 km) under the A1B future emission scenario of the Special Report on Emissions Scenarios
(SRES). The selected models were also driven by fifth-generation GCM ECHAM5-r3. The details of the
RCMs used in this study are given in the following table (Table 2).

Table 2. The regional climate models (RCMs) used in this study.

Acronym Institute Main Reference

HIRHAM DMI (Danish Meteorological Institute, Denmark) [47]
RegCM3 ICTP (The Abdus Salam International Center for Theoretical Physics, Italy) [48]

RACMO2 KNMI (Royal Netherlands Meteorological Institute, Netherlands) [49]
REMO MPI (Max-Planck—Institute for Meteorology, Germany) [50]
RCA SMHI (Swedish Meteorological and Hydrological Institute, Sweden) [51]

In order to evaluate the RCMs performance, simulated annual and seasonal precipitation values
from the RMCs were compared with the observed records of precipitation from the nearest ground-based
rain gauge stations over the baseline period 1974–2000 (Figure 1). The rain gauge within a 25 km
radius and with an elevation difference of less than 200 m from a model grid point was considered as
the nearest neighbor. With such an approach, the rain gauges used in this study lie on the same side of
the Pindus’ slopes and within comparable elevation as the RCMs grid points.

Initially, the statistical evaluation was presented with Taylor diagrams. These diagrams provide
a way of graphically summarizing how closely a pattern (or a set of patterns) matches observations [52].
The similarity between two patterns was quantified in terms of their correlation and the normalized
standard deviation. Furthermore, the root mean square error (RMSE) and mean absolute error (MAE)
were used as evaluation indexes and presented in separate diagrams. The mathematical formulas of
these indexes are given below:

RMSE =

√√√
1
n

n∑
i=1

(yi − xi)

2

(1)

MAE =
1
n

n∑
i=1

∣∣∣yi − xi
∣∣∣ (2)

http://ensembles-eu.metoffice.com/
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where n is the number of observations, xi and yi are the observed and simulated values, respectively,
for i = 1,2 . . . n. The RMSE gives the weighted variations (residuals) in errors between the simulated
and observed values, while MAE measures the weighted average magnitude of the errors. Since the
errors in RMSE are squared before they are averaged, the RMSE gives a relatively high weight to large
errors. This means that the RMSE should be more useful when large errors are particularly undesirable.
MAE is the most natural and unambiguous measure of average error magnitude [53–55]. RMSE,
on the other hand, is one of the most widely used error measures. Both RMSE and MAE values were
converted to percent RMSE (%RMSE) and percent MAE (%MAE) by dividing the RMSE or MAE by
the means of observed values, in order to compare the model’s performance between seasons [56]. It is
noteworthy that the lower the value of %RMSE and %MAE, the more reliable the forecast is considered
to be.Water 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/water 
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Figure 1. Location map of the rain gauge stations and RCMs grid points in the study area.

3. Results

Historical RCMs precipitation datasets were evaluated against the ground-based rain gauge
stations for the period 1974–2000. An overview of the results for annual and seasonal precipitation is
presented by Taylor diagrams (Figure 2).

The results showed low correlation for the majority of the RCMs for both annual and seasonal
precipitation. It became clear that the better correlation coefficient was achieved by the REMO model
followed by the RegCM3. Regarding the annual and autumn precipitation, the results better correlated
with observations for the majority of the models, whereas the lowest coefficient correlation was found
in summer precipitation. Concerning the variability of precipitation, the differences of the standard
deviation values showed that the models did not manage to generate a low standard deviation
sufficiently during the selected period. However, it should be mentioned that the REMO model
presented better results, especially in summer, while the worst results were presented in autumn.
To this end, it is obvious that RCMs lack the ability to realistically represent the temporal variability of
precipitation time series.
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Figure 3. (a) Percent root mean square error (%RMSE) and (b) percent mean absolute error (%MAE)
values between simulated and observed annual and seasonal precipitation data in the study area.

Regarding the results of Figure 3, it is obvious that the best simulation was achieved from the
RegCM3 model. In the case of winter, the RegCM3 model’s effectiveness was found to be poor and the
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results were moderate and less accurate, especially in comparison with autumn and spring. On the
other hand, the highest values of RMSE and MAE were found for the HIRHAM model. In addition,
relatively high values of errors were also estimated for annual and autumn precipitation by the REMO
model, for winter by the RCA model, and for spring and summer by the RACMO2 model.

To this end, the effect of future climate change on annual and seasonal precipitation was studied
comparing the baseline period (1974–2000) with the future (2074–2100) precipitation simulation of the
most accurate model (RegCM3).

The analysis of the future changes in the precipitation regime showed significant decrease of the
amount of precipitation. The graphical representation of the results can be seen in the following figure
(Figure 4).
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Figure 4. Future changes of annual and seasonal precipitation using the RegCM3 model.

The highest percentage change, taking into account all grid points, was found in spring (30%),
while annual winter and summer precipitation had almost the same percentage of decrease, around 15%.
On the other hand, autumn precipitation seems to be stable until the end of the 21st century.

4. Discussion and Conclusions

Precipitation is one of the most important meteorological parameters with significant spatial
and temporal variation. Nowadays, there is an urgent need for reliable future climate projections for
rational catchment management and infrastructure projects scheduling. The most modern tool for
simulating future climate conditions is the regional climate models (RCMs). However, before using
climate simulation from dynamic downscaling, it is appropriate to evaluate their performance at
different past spatial scales.

In the present study, the performance of five RCMs from the European project ENSEMBLE were
evaluated in simulating annual and seasonal precipitation over the mountainous range of Pindus
(Central Greece).

The results highlighted that RCMs lack the ability to represent temporal variability of
precipitation time series, with the exception of the REMO model. In addition, concerning the
model’s prediction accuracy, it was found that better simulation was achieved for spring and
autumn precipitation. The results were in agreement with similar studies in the Mediterranean
basin [57,58]. Comparison between models showed that the RegCM3 model had the smaller errors. It was
also suggested that finer spatial resolution RCMs of the EURO-CORDEX project better simulated
precipitation over complex terrain areas [59].
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Regarding the future precipitation regime, based on the RegCM3 model, a decrease of precipitation
is expected both annually and seasonally until the end of the 21st century. Similar results were also
reported in other studies in the Mediterranean basin [14,16,23,26]; however, these studies referred to
lowland areas. On the contrary, in Central Europe, even though annual precipitation is projected to
increase up to +10%, RCMs project a significant decrease of precipitation in summer [60].

Over the mountainous range of Central Pindus, the higher decrease of precipitation is expected
in spring (30%), while in autumn, the accumulated precipitation will stay close to the current values.
As for the annual precipitation in the summer and the winter, a future decrease of precipitation around
15% was found. These will favor the development of aridity phenomena in crucial mountainous
ecosystems and probably effect biodiversity and water production. The findings of the current study
contributed to the rational water resources management and infrastructure work scheduling based not
only in current, but also future conditions. The decrease of future precipitation has to be considered
by decision makers, and water reservoirs must be planed, especially in mountainous regions where
there is excess water, especially in the winter and autumn months. It is suggested that similar research
should be done in other mountainous Greek regions; the analysis should also include more factors of
the hydrological cycle, such as temperature, humidity, wind, and snowfall, as well as a study of the
associated changes in future atmospheric circulation [61]. Moreover, the examination of simulating
finer timescale (e.g., daily, hourly) could raise significant conclusions on the effect of climate change on
hydrometeorological hazards.

Author Contributions: S.S. collected the rain gauge and RCMs data and wrote the paper; S.D. performed the
statistical analysis, while D.S. supervised the research. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Data have been provided through the ENSEMBLES data archive (http://ensembles-eu.
metoffice.com/), funded by the European Commission (Contact Number GOCE-CT-2003-505539). The authors
would like to express their gratitude to the Assistant Konstantia Tolika and Associate Theodoros Mavromatis for
their constructive comments and guidance during the data processing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beran, A.; Hanel, M.; Nesládková, M.; Vizina, A. Increasing water resources availability under climate
change. Procedia Eng. 2016, 162, 448–454. [CrossRef]

2. Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang.
2016, 134, 371–385. [CrossRef]

3. Tsiros, I.X.; Nastos, P.; Proutsos, N.D.; Tsaousidis, A. Variability of the aridity index and related drought
parameters in Greece using climatological data over the last century (1900–1997). Atmos. Res. 2020,
240, 104914. [CrossRef]

4. Alamanos, A.; Latinopoulos, D.; Papaioannou, G.; Mylopoulos, N. Integrated hydro-economic modeling for
sustainable water resources management in data-scarce areas: The case of lake Karla watershed in Greece.
Water Resour. Manag. 2019, 33, 2775–2790. [CrossRef]

5. Longobardi, A.; Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Spatial and temporal distribution of precipitation
in a Mediterranean area (southern Italy). Environ. Earth Sci. 2016, 75, 189. [CrossRef]

6. Stefanidis, S.; Stathis, D. Spatial and temporal rainfall variability over the Mountainous Central Pindus
(Greece). Climate 2018, 6, 75. [CrossRef]

7. Tolika, K. On the analysis of the temporal precipitation distribution over Greece using the Precipitation
Concentration Index (PCI): Annual, seasonal, monthly analysis and association with the atmospheric
circulation. Theor. Appl. Climatol. 2019, 137, 2303–2319. [CrossRef]

8. IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge,
UK, 2013.

http://ensembles-eu.metoffice.com/
http://ensembles-eu.metoffice.com/
http://dx.doi.org/10.1016/j.proeng.2016.11.087
http://dx.doi.org/10.1007/s10584-013-0853-x
http://dx.doi.org/10.1016/j.atmosres.2020.104914
http://dx.doi.org/10.1007/s11269-019-02241-8
http://dx.doi.org/10.1007/s12665-015-5045-8
http://dx.doi.org/10.3390/cli6030075
http://dx.doi.org/10.1007/s00704-018-2736-6


Water 2020, 12, 2750 8 of 10

9. Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008,
63, 90–104. [CrossRef]

10. Arnell, N.W.; Goslin, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang.
2016, 134, 387–401. [CrossRef]

11. Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117.
[CrossRef]

12. Stefanidis, S.; Stathis, D. Effect of climate change on soil erosion in a mountainous Mediterranean catchment
(Central Pindus, Greece). Water 2018, 10, 1469. [CrossRef]

13. Tzabiras, J.; Loukas, A.; Vasiliades, L. A hybrid downscaling approach for the estimation of climate change
effects on droughts using a geo-information tool. Case study: Thessaly, Central Greece. Open Geosci. 2016,
8, 728–746. [CrossRef]

14. Paparrizos, S.; Maris, F.; Weiler, M.; Matzarakis, A. Analysis and mapping of present and future drought
conditions over Greek areas with different climate conditions. Theor. Appl. Climatol. 2018, 131, 259–270.
[CrossRef]

15. Blanc, E.; Reilly, J. Approaches to assessing climate change impacts on agriculture: An overview of the
debate. Rev. Environ. Econ. Policy 2017, 11, 247–257. [CrossRef]

16. Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of viticulture-related climatic indices and
zoning to historical and future climate conditions in Greece. Int. J. Climatol. 2018, 38, 2097–2111. [CrossRef]

17. Kalabokidis, K.; Palaiologou, P.; Gerasopoulos, E.; Giannakopoulos, C.; Kostopoulou, E.; Zerefos, C. Effect of
climate change projections on forest fire behavior and values-at-risk in southwestern Greece. Forests 2015,
6, 2214–2240. [CrossRef]

18. Kotroni, V.; Cartalis, C.; Michaelides, S.; Stoyanova, J.; Tymvios, F.; Bezes, A.; Georgiev, C. DISARM Early
Warning System for Wildfires in the Eastern Mediterranean. Sustainability 2020, 12, 6670. [CrossRef]

19. Michailidou, A.V.; Vlachokostas, C.; Moussiopoulos, N. Interactions between climate change and the tourism
sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas.
Tour. Manag. 2016, 55, 1–12. [CrossRef]

20. Dogru, T.; Marchio, E.A.; Bulut, U.; Suess, C. Climate change: Vulnerability and resilience of tourism and the
entire economy. Tour. Manag. 2019, 72, 292–305. [CrossRef]

21. Stathis, D.; Myronidis, D. Principal component analysis of precipitation in Thessaly region (Central Greece).
Glob. Nest J. 2009, 11, 467–476.

22. Su, Y.; Zhao, C.; Wang, Y.; Ma, Z. Spatiotemporal Variations of Precipitation in China Using Surface Gauge
Observations from 1961 to 2016. Atmosphere 2020, 11, 303. [CrossRef]

23. Tolika, K.; Maheras, P.; Vafiadis, M.; Flocas, H.A.; Arseni-Papadimitriou, A. Simulation of seasonal
precipitation and raindays over Greece: A statistical downscaling technique based on artificial neural
networks (ANNs). Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 861–881. [CrossRef]

24. Tolika, K.; Anagnostopoulou, C.; Maheras, P.; Vafiadis, M. Simulation of future changes in extreme rainfall
and temperature conditions over the Greek area: A comparison of two statistical downscaling approaches.
Glob. Planet. Chang. 2008, 63, 132–151. [CrossRef]

25. Petrucci, O.; Papagiannaki, K.; Aceto, L.; Boissier, L.; Kotroni, V.; Grimalt, M.; Llasat, M.C.; Llasat-Botija, M.;
Rosselló, J.; Pasqua, A.A.; et al. MEFF: The database of Mediterranean flood fatalities (1980 to 2015). J. Flood
Risk Manag. 2019, 12, e12461. [CrossRef]

26. Zanis, P.; Katragkou, E.; Ntogras, C.; Marougianni, G.; Tsikerdekis, A.; Feidas, H.; Anadranistakis, E.; Melas, D.
Transient high-resolution regional climate simulation for Greece over the period 1960–2100: Evaluation and
future projections. Clim. Res. 2015, 64, 123–140. [CrossRef]

27. Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and
statistical downscaling methods. Int. J. Climatol. A J. R. Meteorol. Soc. 2006, 26, 679–689. [CrossRef]

28. Sachindra, D.A.; Ahmed, K.; Rashid, M.M.; Shahid, S.; Perera, B.J.C. Statistical downscaling of precipitation
using machine learning techniques. Atmos. Res. 2018, 212, 240–258. [CrossRef]

29. Rummukainen, M. State-of-the-art with Regional Climate Models. Wiley Interdiscip. Rev. Clim. Chang. 2010,
1, 82–96. [CrossRef]

30. Xue, Y.; Janjic, Z.; Dudhia, J.; Vasic, R.; De Sales, F. A review on regional dynamical downscaling
in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos. Res.
2014, 147, 68–85. [CrossRef]

http://dx.doi.org/10.1016/j.gloplacha.2007.09.005
http://dx.doi.org/10.1007/s10584-014-1084-5
http://dx.doi.org/10.1016/j.earscirev.2016.10.004
http://dx.doi.org/10.3390/w10101469
http://dx.doi.org/10.1515/geo-2016-0069
http://dx.doi.org/10.1007/s00704-016-1964-x
http://dx.doi.org/10.1093/reep/rex011
http://dx.doi.org/10.1002/joc.5320
http://dx.doi.org/10.3390/f6062214
http://dx.doi.org/10.3390/su12166670
http://dx.doi.org/10.1016/j.tourman.2016.01.010
http://dx.doi.org/10.1016/j.tourman.2018.12.010
http://dx.doi.org/10.3390/atmos11030303
http://dx.doi.org/10.1002/joc.1442
http://dx.doi.org/10.1016/j.gloplacha.2008.03.005
http://dx.doi.org/10.1111/jfr3.12461
http://dx.doi.org/10.3354/cr01304
http://dx.doi.org/10.1002/joc.1287
http://dx.doi.org/10.1016/j.atmosres.2018.05.022
http://dx.doi.org/10.1002/wcc.8
http://dx.doi.org/10.1016/j.atmosres.2014.05.001


Water 2020, 12, 2750 9 of 10

31. Senent-Aparicio, J.; Pérez-Sánchez, J.; Carrillo-García, J.; Soto, J. Using SWAT and Fuzzy TOPSIS to assess
the impact of climate change in the headwaters of the Segura River Basin (SE Spain). Water 2017, 9, 149.
[CrossRef]

32. D’Oria, M.; Tanda, M.G.; Todaro, V. Assessment of Local Climate Change: Historical Trends and RCM
Multi-Model Projections Over the Salento Area (Italy). Water 2018, 10, 978. [CrossRef]

33. Giménez, P.O.; García-Galiano, S.G. Assessing regional climate models (RCMs) ensemble-driven reference
evapotranspiration over Spain. Water 2018, 10, 1181. [CrossRef]

34. Tien Thanh, N. A Proposal to Evaluate Drought Characteristics Using Multiple Climate Models for Multiple
Timescales. Climate 2018, 6, 79. [CrossRef]

35. Venetsanou, P.; Anagnostopoulou, C.; Loukas, A.; Voudouris, K. Hydrological impacts of climate change on
a data-scarce Greek catchment. Theor. Appl. Climatol. 2020. [CrossRef]

36. Venetsanou, P.; Anagnostopoulou, C.; Loukas, A.; Lazoglou, G.; Voudouris, K. Minimizing the uncertainties
of RCMs climate data by using spatio-temporal geostatistical modeling. Earth Sci. Inform. 2019, 12, 183–196.

37. Anagnostopoulos, G.G.; Koutsoyiannis, D.; Christofides, A.; Efstratiadis, A.; Mamassis, N. A comparison
of local and aggregated climate model outputs with observed data. Hydrol. Sci. J. 2010, 55, 1094–1110.
[CrossRef]

38. Koutsoyiannis, D.; Efstratiadis, A.; Georgakakos, K.P. Uncertainty assessment of future hydroclimatic
predictions: A comparison of probabilistic and scenario-based approaches. J. Hydrometeorol. 2007, 8, 261–281.
[CrossRef]

39. Koutsoyiannis, D.; Efstratiadis, A.; Mamassis, N.; Christofides, A. On the credibility of climate predictions.
Hydrol. Sci. J. 2008, 53, 671–684. [CrossRef]

40. Herrera, S.; Fita, L.; Fernández, J.; Gutiérrez, J.M. Evaluation of the mean and extreme precipitation regimes
from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res. Atmos. 2010,
115, D21. [CrossRef]

41. Soares, P.M.; Cardoso, R.M.; Miranda, P.M.; Viterbo, P.; Belo-Pereira, M. Assessment of the ENSEMBLES
regional climate models in the representation of precipitation variability and extremes over Portugal.
J. Geophys. Res. Atmos. 2012, 117, D7. [CrossRef]

42. Feldmann, H.; Schädler, G.; Panitz, H.J.; Kottmeier, C. Near future changes of extreme precipitation over
complex terrain in Central Europe derived from high resolution RCM ensemble simulations. Int. J. Climatol.
2013, 33, 1964–1977. [CrossRef]

43. Paparrizos, S. The effect of climate on the hydrological regime of selected Greek areas with different climate
conditions. Ph.D. Thesis, Faculty of Environment and Natural Resources, Albert-Ludwigs-University,
Freiburg im Breisgau, Germany, Breisgau, Germany, 2016.

44. Lazoglou, G.; Anagnostopoulou, C.; Skoulikaris, C.; Tolika, K. Bias correction of climate model’s precipitation
using the copula method and its application in river basin simulation. Water 2019, 11, 600. [CrossRef]

45. Camera, C.; Bruggeman, A.; Hadjinicolaou, P.; Michaelides, S.; Lange, M.A. Evaluation of a spatial rainfall
generator for generating high resolution precipitation projections over orographically complex terrain.
Stoch. Environ. Res. Risk Assess. 2017, 31, 757–773. [CrossRef]

46. Alexandersson, H.A. Homogeneity Test Applied to Precipitation Data. Int. J. Climatol. 1986, 6, 661–675.
[CrossRef]

47. Haugen, J.E.; Haakenstad, H. Validation of HIRHAM version 2 with 50 km and 25 km resolution. Regclim. Gen.
Tech. Rep. 2006, 9, 159–173.

48. Jacob, D.; Bärring, L.; Christensen, O.B.; Christensen, J.H.; de Castro, M.; Déqué, M.; Giorgi, F.; Hagemann, S.;
Hirschi, M.; Jones, R.; et al. An inter-comparison of regional climate models for Europe: Model performance
in present-day climate. Clim. Chang. 2007, 81, 31–52. [CrossRef]

49. Lenderink, G.; van den Hurk, B.; van Meijgaard, E.; van Ulden, A.; Cuijpers, H. Simulation of Present–Day
Climate in RACHMO2: First Results and Model Developments; Report TR-252; Royal Netherlands Meteorological
Institute: De Bilt, The Netherlands, 2003.

50. Jacob, D. A note of the simulation of the annual and inter-annual variability of the water budget over the
Baltic Sea drainage basin. Meteorol. Atmos. Phys. 2001, 77, 61–73. [CrossRef]

http://dx.doi.org/10.3390/w9020149
http://dx.doi.org/10.3390/w10080978
http://dx.doi.org/10.3390/w10091181
http://dx.doi.org/10.3390/cli6040079
http://dx.doi.org/10.1007/s00704-020-03130-6
http://dx.doi.org/10.1080/02626667.2010.513518
http://dx.doi.org/10.1175/JHM576.1
http://dx.doi.org/10.1623/hysj.53.4.671
http://dx.doi.org/10.1029/2010JD013936
http://dx.doi.org/10.1029/2011JD016768
http://dx.doi.org/10.1002/joc.3564
http://dx.doi.org/10.3390/w11030600
http://dx.doi.org/10.1007/s00477-016-1239-1
http://dx.doi.org/10.1002/joc.3370060607
http://dx.doi.org/10.1007/s10584-006-9213-4
http://dx.doi.org/10.1007/s007030170017


Water 2020, 12, 2750 10 of 10

51. Kjellström, E.; Barring, L.; Gollvik, S.; Hansson, U.; Jones, C.; Samuelsson, P.; Rummukainen, M.; Ullerstig, A.;
Willén, U.; Wyser, K. A 140-Year Simulation of European Climate with the New Version of the Rossby Centre Regional
Atmospheric Climate Model (RCA3); Reports Meteorology and Climatology; SMHI: Norrkoping, Sweden, 2005;
Volume 55, p. 108.

52. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001,
106, 2156–2202. [CrossRef]

53. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error
(RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

54. Chai, T.; Draxler, R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against
avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

55. Yang, Y.; Zhao, C.; Sun, L.; Wei, J. 2 Improved aerosol retrievals over complex regions using NPP Visible
Infrared Imaging Radiometer Suite observations. Earth Space Sci. 2019, 6, 629–645. [CrossRef]

56. Mavromatis, T. Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield
in north Greece with CERES-Wheat. Agric. Syst. 2016, 143, 38–48. [CrossRef]

57. Gallardo, C.; Arribas, A.; Prego, J.A.; Gaertner, M.A.; De Castro, M. Multi-year simulations using
a regional-climate model over the Iberian Peninsula: Current climate and doubled CO2 scenario. Q. J. R.
Meteorol. Soc. 2001, 127, 1659–1681.

58. Bergant, K.; Belda, M.; Halenka, T. Systematic errors in the simulation of European climate (1961–2000) with
RegCM3 driven by NCEP/NCAR reanalysis. Int. J. Climatol. 2007, 27, 455–472. [CrossRef]

59. Tolika, K.; Anagnostopoulou, C.; Velikou, K.; Vagenas, C. A comparison of the updated very high resolution
model RegCM3_10km with the previous version RegCM3_25km over the complex terrain of Greece:
Present and future projections. Theor. Appl. Climatol. 2016, 126, 715–726. [CrossRef]

60. Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate
change scenarios. J. Hydrol. 2012, 424, 264–277. [CrossRef]

61. Dafis, S.; Lolis, C.J.; Houssos, E.E.; Bartzokas, A. The atmospheric circulation characteristics favouring
snowfall in an area with complex relief in Northwestern Greece. Int. J. Climatol. 2016, 36, 3561–3577.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.3354/cr030079
http://dx.doi.org/10.5194/gmd-7-1247-2014
http://dx.doi.org/10.1029/2019EA000574
http://dx.doi.org/10.1016/j.agsy.2015.12.002
http://dx.doi.org/10.1002/joc.1413
http://dx.doi.org/10.1007/s00704-015-1583-y
http://dx.doi.org/10.1016/j.jhydrol.2012.01.011
http://dx.doi.org/10.1002/joc.4576
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Discussion and Conclusions 
	References

