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Abstract: In this article, we describe the use of diagnostic timescales as simple tools for illuminating 

how aquatic ecosystems work, with a focus on coastal systems such as estuaries, lagoons, tidal 

rivers, reefs, deltas, gulfs, and continental shelves. Intending this as a tutorial as well as a review, 

we discuss relevant fundamental concepts (e.g., Lagrangian and Eulerian perspectives and 

methods, parcels, particles, and tracers), and describe many of the most commonly used diagnostic 

timescales and definitions. Citing field-based, model-based, and simple algebraic methods, we 

describe how physical timescales (e.g., residence time, flushing time, age, transit time) and 

biogeochemical timescales (e.g., for growth, decay, uptake, turnover, or consumption) are estimated 

and implemented (sometimes together) to illuminate coupled physical-biogeochemical systems. 

Multiple application examples are then provided to demonstrate how timescales have proven useful 

in simplifying, understanding, and modeling complex coastal aquatic systems. We discuss 

timescales from the perspective of “holism”, the degree of process richness incorporated into them, 

and the value of clarity in defining timescales used and in describing how they were estimated. Our 

objective is to provide context, new applications and methodological ideas and, for those new to 

timescale methods, a starting place for implementing them in their own work. 

Keywords: timescale; transport; hydrodynamic; ecological; biogeochemical; coastal; estuary; 

residence time; age; flushing time 

 

1. Introduction 

“Nature is pleased with simplicity. And nature is no dummy.” 

—Commonly attributed to Isaac Newton 

A common refrain of environmental scientists is: “Environmental science isn’t rocket science. 

It’s harder than rocket science.” Understanding, predicting, and managing the workings of 

environmental systems is a grand challenge, due in no small part to the intricate interactions between 

physical, biological, and geochemical processes that are, individually, complex enough for whole 

careers to be spent deciphering them. Moreover, those processes—and the interactions between 

them—operate and vary over a daunting range of temporal and spatial scales, from milliseconds to 

millennia, and from the microscopic to scales visible from space. Fortunately, technological 

advancements in field and laboratory instrumentation, remote sensing, and computing have 
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permitted us to measure and model environmental systems with ever-increasing extent and 

resolution. More complex tools, thus, facilitate our understanding of the complexity. Simplicity, also, 

has a role to play in unraveling the complexity, by reducing it to its essential parts and giving it shape, 

so it can be more easily grasped. Diagnostic timescales represent one such simplifying tool. 

1.1. What Are Timescales? 

“Timescale” is generally defined as “the amount of time that something takes or during which 

something happens” [1]. In practice, a timescale often denotes an estimate expressing a representative 

or overall magnitude, as opposed to a precise value [2,3]. Similar to length, velocity, and other 

commonly used scales, timescales are thus often presented in order-of-magnitude terms [2]. 

The term “timescale” may carry many subtly different meanings, including [3]: (1) a typical 

period of fluctuation in system forcing or response (e.g., [4–11]); (2) a period of system adjustment or 

response to low-frequency forcing [11–14]; (3) the period of variability captured by measurements or 

models [15–17]; (4) the temporal lens through which processes are examined [9,18–20]; (5) a 

diagnostic parameter with units of time whose inverse characterizes the rate at which a process or 

collection of processes unfolds [21–26]. 

Herein, we primarily use “timescale” in the sense of the last definition above, i.e., to convey 

approximately how long a process takes or, inversely, the speed of a process. Rates of physical, 

biological, or chemical processes are often represented by parameters with different and mixed units 

(e.g., velocity (length/time), diffusivity (length2/time), water discharge (length3/time), growth, decay 

or uptake (1/time), water column production (mass/(area-time)), ingestion (mass food/(mass tissue-

time))). Timescales can be defined and quantified for each of these processes by a variety of methods 

to be detailed in later sections. Regardless of the approach for estimating values for timescales, the 

following holds when using them in the fifth sense above: A smaller (or “shorter”) timescale indicates 

a faster process, whereas a larger (or “longer”) timescale suggests that the process is slower [27]. 

In the water realm generally, timescales are often invoked as an explanatory concept or order-

of-magnitude diagnostic tool to help illuminate how natural or managed systems work. They are 

used to describe the flows through and/or functioning of aquifers [28]; lakes, reservoirs, and 

freshwater embayments [29–35]; streams, rivers, and floodplains [36,37]; hydrologic catchments [38–

41]; estuaries and other coastal or tidal systems [42–45]; wetlands [46,47]; the continental shelf and 

open ocean [48–50]; and the atmosphere [51]. This review primarily focuses on estuaries and coastal 

systems, with some references to other domains as well. 

Timescales may be estimated to represent the time for completion of a process [3], which in 

aquatic systems may include diffusive mixing over the water column depth or a fraction of it [4,25,52]; 

traversal of a water body or reach [53,54] or between two locations of interest [55,56]; flushing or 

“renewal” of an estuary by river flow, tides, wind, and/or other forcings [45,57,58]; settling of 

particles through a water column or layer thereof [59,60]; growth or decay by a specified factor, such 

as e [25,27]; or filtration of a water column or water body volume by benthic organisms [23,25,61,62]. 

Specific examples illustrating why and how timescales are calculated for a variety of such cases are 

provided in later sections. 

1.2. Some Fundamental Concepts and Definitions 

The timescale literature is replete with terms like Lagrangian, Eulerian, parcels, particles, 

constituents, volumes, tracers, and water types, making it difficult to avoid confusion. Therefore, 

before launching into the pith of this paper, we first attempt to clarify some terms and concepts in 

order to minimize confusion in the sections that follow. While some definitions are well-established 

(e.g., the basic Lagrangian and Eulerian descriptions), agreement among scientists and 

mathematicians is not unanimous regarding others of these concepts and terms. Thus, the following 

discussion of parcels, particles, volumes, etc. represents merely how we authors have chosen to define 

them (largely following [63]). Regardless, we intend (and hope) that some discussion of these 

fundamentals may help us find our way in this jungle! 
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1.2.1. Constituents, Particles, Parcels, and Types 

Water in aquatic environments is a mixture containing a large number of dissolved and 

particulate constituents (e.g., pure water, dissolved gases, pollutants, nutrients, sediment, plankton 

cells, etc.) At any time and position, each constituent may be ascribed a “concentration”, a concept 

associated with various definitions and, hence, various units (e.g., g/kg, kg/m3, mol/L, cells/L, etc.) 

Since there is a huge number of constituents, it may be convenient to focus on groups of constituents, 

i.e., aggregates, whose concentrations may be seen to obey equations similar to those pertaining to 

individual constituents [63,64]. This is why many use the word “constituent” (or a similar term) even 

if the substance under consideration is actually an aggregate (e.g., salt). The water in an aquatic 

ecosystem is itself an “aggregate,” consisting of all of its constituents. Pure water is by far its 

dominant constituent, making the density of the water mixture close to that of pure water. The water 

mixture density may be regarded as a constant in most terms of the equations to be dealt with (the 

“Boussinesq approximation”). 

A “particle” is a metaphor useful for verbal or written interpretations as well as Lagrangian 

calculations (see below). It is a discrete material point having zero volume and non-zero mass [63]. 

An individual particle, as defined herein, only contains mass of a single constituent and, depending 

on that constituent, may contain many ions, molecules, sediment grains, or plankton cells, all of 

which share the same history (Figure 1). The mass of a particle of a given constituent must be much 

smaller than the total mass of the constituent present in the domain of interest but may be much 

larger than that of a single molecule, to prevent excessive demands on computational resources (see 

discussion of Lagrangian approaches below). Because a particle has zero volume, it cannot have 

volume-normalized concentrations or densities associated with it. On the other hand, concentrations 

and densities are definable for “elemental volumes.” An elemental volume is a control volume, 

delineated only by thought [63], that can contain many particles representing a variety of 

constituents. Its size is much smaller than the smallest resolved macroscopic processes. A fluid parcel 

is an elemental volume that moves with the fluid mixture velocity, i.e., the mass-weighted average 

of the velocities of all the molecules present in it (see Figure 1). (This is termed the “barycentric 

velocity” [65]). Under the Boussinesq approximation, a water parcel’s volume is constant in time, but 

its shape is not, and its mass is also considered constant. However, the masses of its individual 

constituents (i.e., the precise mixture of constituent particles contained within the volume) may 

change over time due to diffusive transport through its boundaries (see Figure 2). Thus, a fluid parcel 

(or “water parcel”) does not always contain the same molecules or atoms over time. Clearly, the 

“water parcel” concept, as defined herein, is a mathematical notion very different from that of 

“particle”. 
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Figure 1. Cartoon depicting the relationships between water parcels, particles, and molecules, cells, 

etc., as defined herein. A water parcel is a mixture of particles, the most numerous of which are pure 

water particles. A particle is a material point at which many atoms, molecules, cells, etc., of an 

individual constituent or aggregate are concentrated. (Following Deleersnijder et al. [63]). 

 

Figure 2. Cartoon depicting a water parcel as it is transported through an aquatic ecosystem between 

times t1 and t2. The water parcel’s volume is constant, but its shape is not. Due to diffusion (magenta 

arrows), the particles contained within the parcel at t2 are not the same as the particles contained in 

the parcel at t1. Each “particle” is composed of multiple molecules, atoms, or cells of a particular 

constituent or aggregate. (Following Deleersnijder et al. [63]). 
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Depending on its origin or other differentiating factors, water at any location and time may be 

split into several water “types”. Water types can be differentiated or “marked” by tracers, which can 

be measured during transport [66–69]. Tracers are constituents that are, ideally, inert (they undergo 

no reactions) and hydrodynamically “passive”. As for any other constituent or aggregate, every 

water type may be viewed as being made up of (water) particles, which should not be confused with 

water parcels. 

1.2.2. Lagrangian and Eulerian Descriptions and Approaches 

The two approaches for describing fluid motion are the Lagrangian description (which follows the 

paths and histories of specific individual fluid parcels) and the Eulerian description (in which time-

dependent variables are defined at fixed positions in space) [70,71]. One can think of these two 

descriptions as different reference frames for an observer of changes in some fluid property. In the 

Eulerian frame of reference, the observer sits at a fixed point in space, similar to a moored sensor, 

and observes “local” changes in fluid properties over time [71]; this stationary Eulerian observer also 

has the capacity to see enough of its neighborhood to evaluate local space derivatives. For an observer 

in the Lagrangian frame (i.e., one who jumps on a fluid parcel and rides along with it), the observed 

changes are a combination of “local” changes with time and “advective” changes due to transport of 

the parcel and observer across spatial gradients in the water property [71]. 

The concentration for each constituent may be obtained numerically from the solution of an 

appropriate reactive transport equation (RTE), i.e., a partial differential equation taking into account 

advection, diffusion, reactions (if any), and settling (for negatively buoyant particulate matter). The 

RTE is frequently solved with an Eulerian approach, treating the water and its constituents as 

“continuous media”. Except in very idealized situations for which an analytical solution is possible, 

the RTE is solved numerically, and the continuous concentration field is discretised in time (timestep 

by timestep) and space (gridcell by gridcell). Reactions in the Eulerian method are dealt with 

relatively efficiently. The main challenge with Eulerian numerical solutions lies in the representation 

of advection, i.e., avoidance of both spurious oscillations and artificial smoothing of concentration 

gradients [72–74]. 

In the Lagrangian approach, each constituent under study is concentrated into so-called 

“particles” [63]. The motion of Lagrangian particles is simulated numerically by means of a time-

marching procedure. During each time increment, the displacement of a particle is the sum of a 

deterministic drift and a stochastic component related to diffusive processes [75–77]. Lagrangian 

computational methods are generally superior to Eulerian methods for the representation of 

advection. Due to the stochasticity, however, the fate of a single particle is irrelevant when the aim is 

to derive a concentration [78,79]: A large number of numerical particles must be seeded into the 

domain of interest and tracked in order to obtain accurate concentration fields. Reactions can be taken 

into account, which is usually done in an Eulerian mode [80]. Well-designed Eulerian and Lagrangian 

schemes must result in concentration estimates converging to the exact solution as the space and time 

increments decrease for the former methods and as the time resolution and the number of particles 

increase for the latter. Therefore, discrepancies between Eulerian and Lagrangian simulation results 

are always due to numerical inaccuracies (or erroneous implementation) and, hence, must not be 

ascribed to supposedly irreconcilable differences between the two approaches. While conservative 

Eulerian methods are (by definition) ideally suited for the evaluation of fluxes [81], Lagrangian 

methods are often used for assessing connectivity [82–86]. 

Timescales may be employed in order to diagnose the behavior of every constituent, including 

a water type. They can be evaluated with either an Eulerian or a Lagrangian method. While 

mathematical descriptions of reactive transport (i.e., models) most often rely on the Eulerian 

perspective, verbal descriptions and interpretations usually take the Lagrangian perspective [79]. 
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1.3. Transport Timescales 

The most commonly used category of timescales in water science, engineering, and management 

are those falling under the category of “transport timescales” (e.g., residence time, flushing time, 

water age, transit time, etc.). These individual transport timescales each have distinct (though in some 

cases multiple) definitions and methods of estimation. Regrettably, in practice, the terms are often 

used loosely and interchangeably, with imprecise, fluid, or sometimes unexplained definitions and 

calculation methods [87,88]. Those implementing diagnostic timescales must be aware of such 

difficulties in order to avoid misunderstandings or even blatant errors. What transport timescales all 

have in common is they communicate approximately how long water, or a constituent transported 

with the water, has spent, will spend, or takes to arrive in a defined water body or subregion thereof 

as a result of physical transport processes. Transport timescales can be useful on their own or may be 

co-analyzed with other sorts of timescales to understand reactive transport [61,89–91]. Below, we 

define some frequently used transport timescales: 

 Residence time—Although the term “residence time” is frequently used to mean a variety of 

things [88,92–94], one of the most common definitions is the time taken by a particle to leave a 

water body or defined region of interest [92,95–97]. Because particles originating at different 

locations and times within a water body may require different amounts of time to exit, residence 

time (according to this definition) is a function of location and time [87,92,97]. A strict 

interpretation of this residence time definition is the time taken to leave a water body for the first 

time (see Figure 3), an important distinction in tidal systems where oscillatory transport can 

cause particles to exit and then re-enter the domain of interest one or more times [26,95,98,99]. 

Numerical simulations currently offer the best methods for estimating time- and position-

dependent timescales in realistic domains [66,97,100,101]; however, other (field-based [102–105], 

analytic [22,59]) methods may also provide trustworthy estimates, though with less resolution 

or with additional simplifying assumptions. Other residence time definitions, which are not 

location- and time-specific, also exist and see wide application (see “flushing time” below). 

 Age—Age is defined as the time elapsed since a particle entered a water body or defined region 

[88,94,96,106]. Because the time to reach a specific location after entering will vary across the 

water body and over time, age (like residence time, as per our preferred definition above) is also 

time- and location-specific (see Figure 3). Age is seen as the complement to the location- and 

time-specific residence time: while age is the time taken since entering to reach location x within 

a water body, residence time is the time remaining within the water body after reaching location 

x [87,88,96,106]. Some authors have generalized the common definition for age above, arriving 

at the following: “the time elapsed since the parcel under consideration left the region in which 

its age is prescribed to be zero” [63,64]. 

 Transit time—Transit time has been defined as the total time for a particle to travel across an 

entire water body or defined region, from entrance to exit [93,96]. Therefore, transit time is the 

sum of the location- and time-specific age and residence time (see Figure 3). Some authors have 

taken advantage of the fact that transit time is equivalent to age computed at the downstream 

boundary or exit of a water body [28,107]. Travel time is similar to transit time, in that it usually 

references the time taken to travel between two defined points in space [28]. The transit time and 

location- and time-specific age and residence time are easily derived analytically for a plug flow 

situation (see Appendix A). 

 Exposure time—Exposure time goes forward where the strict definition of residence time stops. 

While the strict, spatially and temporally variable residence time only accounts for time spent 

within a defined region until leaving it the first time, exposure time accounts for the total time 

spent within the domain of interest [87], including “all subsequent re-entries” [95] (see Figure 

3). Thus, exposure time may be of particular relevance in systems with oscillatory tidal flows 

[108]. When computing exposure time with a numerical model, it is important that the 

computational domain be larger than the domain of interest [95], since transport processes 

outside the domain of interest control particle re-entry. 
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 Flushing time—”Flushing time is a bulk or integrative parameter describing the general exchange 

characteristics of a waterbody without identifying detailed underlying physical processes or their spatial 

distribution” ([27], adapted from [87]). There are numerous methods for defining and quantifying 

flushing times, many of them mathematically quite simple. For example, if advection is expected 

to dominate exchange between the domain of interest and an adjacent water body (as for a river 

reach), an advective flushing time may be estimated simply as V/Q, where V is the volume of the 

domain of interest, and Q is the rate of volumetric flow through it. For this situation, V/Q 

estimates the time for all water in the domain of interest to be replaced, whereas ½(V/Q) 

represents the mean time for replacement of the original water. Analogously, if we assume that 

an estuary behaves similarly to a “plug flow reactor”, i.e., with perfect cross-sectional mixing 

but zero streamwise mixing, V/Q would represent the time needed to replace all the water 

initially in the estuary by water entering through its upstream boundary (Figure 4). Some 

variations on this approach include: (A) substitution of V with freshwater volume Vfw and of Q 

with freshwater inflow rate Qfw, if one is interested in the time to replace freshwater [52,109] (this 

is often called the “freshwater fraction method” [58,110]); or (B) substitution of V and Q, 

respectively, with scalar mass M and scalar flux F (in units (mass/time)), if one is concerned with 

time for replacement of a scalar quantity [87]. (Incidentally, the V/Q [90,104], Vfw/Qfw [109], and 

M/F [111] formulations are sometimes called “residence times”.) It should be noted that the V/Q 

estimate depends on the (sometimes arbitrary) size of the domain of interest [112]. 

 e-folding flushing time—Another construct for quantifying time for flushing is the e-folding time 

(τe-fold). This approach capitalizes on the frequently observed exponential-like decrease of 

constituent mass within a water body over time as it is subjected to flushing. This roughly 

exponential decrease is often observed in the results of coastal transport simulations 

[87,100,101,112–115] (see Figure 5) and tracer experiments [116,117]. Mathematically, the 

exponential form results from assuming a constant flow rate through a perfectly well-mixed 

system of constant volume, as for a CSTR (continuously stirred tank reactor) [87]. The well-

mixed assumption employed here (Figure 6) is in stark contrast to the plug flow assumption 

above (Figure 4) and thus may be the more appropriate assumption for estuaries subject to 

strong (e.g., tidal) dispersive mixing. τe-fold may be obtained as (A) the reciprocal of the specific 

decay rate calculated from an exponential best-fit to a concentration time series [87,100,112,113] 

or simply as (B) the time when mass falls to 1/e (37%) of its initial value [114,117]. If the CSTR 

assumptions are perfectly met, τe-fold = V/Q, but if they are not met (e.g., for basins with 

bidirectional, tidal exchange flow), V/Q may not accurately characterize the effective flushing 

time captured by methods (A) or (B) above [87]. Although the well-mixed assumption is almost 

never satisfied, the e-folding construct is nonetheless employed widely and can work well in 

representing the net effect of all flushing processes acting on a basin. It is important to note the 

quantitative difference between this flushing time approach (which characterizes flushing of 

only 63%, or 1-e−1, of initial mass; Figure 6) and the simple advective V/Q, Vfw/Qfw, and M/F 

approaches above, whose aim is to characterize 100% replacement of initial mass or volume 

(Figure 4). Indeed, any perfect CSTR would never truly experience 100% replacement of initial 

mass, as suggested by the exponential dependency of concentration on time. Even so, for an inert 

constituent in a well-mixed system, the concentration tends to zero as time tends to infinity, 

resulting in a finite domain-averaged residence time, which is equal to the e-folding time 

[88,94,113,118]. 

 Tidal prism flushing time—Another class of flushing time approaches for estuaries—tidal prism 

models—prominently acknowledges tides as a flushing agent [119,120]. The most basic form for 

the tidal prism flushing time is V∙Ttide/Vp [58], where V is estuary volume, Ttide is the tidal period, 

and Vp is the tidal prism volume (i.e., estuary volume difference between high and low tides). 

Applications of this general approach may vary in the way V and Vp are defined or calculated 

[27,110]. Moreover, authors have employed a range of assumptions and adjustments for 

capturing the influence of freshwater inflow or return flow at the seaward boundary [27,58,119]. 
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Like the e-folding time, the tidal prism flushing (or “turnover” [58,110]) time is based on the 

assumption of well-mixedness [87,119]. 

 Turnover time—The V/Q [58], Vfw/Qfw [110], M/F [88,94], e-folding [121], and other bulk 

approaches [110] are also sometimes called “turnover times.” A relatively new approach for 

estimating bulk estuary turnover timescales is based on the total exchange flow (TEF) through a 

cross section at the estuary mouth; TEF is calculated using an isohaline framework [122], and 

the TEF timescale τTEF may be thought of as “the ratio of the mass of salt in the estuary to the salt flux 

into the estuary” [110]. (τTEF is also called a “residence time” [122].) In addition to physical 

processes, the term “turnover time” is frequently applied to biological or geochemical processes 

as well [62,90,123–125]. 

 Retention time—The term “retention time” is frequently, though not exclusively, used to refer to 

how long constituents (e.g., nutrients, sediment, organisms) remain within a particular aquatic 

environment or sub-environment [14,126]. Mechanisms influencing constituent retention can 

include both hydrodynamic processes (e.g., pools, eddies, and dead zones [14]; stratification and 

mixing [127]), sedimentation [14], biogeochemical processing [14], and motility of organisms 

[127]. Hydraulic “retention time” is sometimes treated interchangeably with “residence time” 

[128] or with expressions described herein as “flushing times” [129]. 

 

Figure 3. Schematic depicting the relationships between space- and time-dependent age, (strict) 

residence time, transit time, and exposure time, following Zimmerman [96], Delhez [98], Shen and 

Haas [121], Viero and Defina [130], Andutta et al. [22], and others. The dots represent successive 

locations for a single particle following a trajectory passing through locations xi at times ti. x0 and t0 

are the initial location and time. 
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Figure 4. Simplified depiction of advective, river-driven estuarine flushing, idealized as plug flow 

(perfect mixing over the flow cross section, zero mixing in the streamwise direction). Panels (A–D) 

follow a progression through time of river water gradually replacing estuarine water initially present 

at time t0. V is estuarine volume, and Q is river discharge. River water is depicted as magenta; original 

estuarine water is blue; water outside the estuary mouth is orange. Gray dashed lines represent 

upstream and downstream boundaries of the estuary. 

 

Figure 5. Based on a series of 45-day numerical particle transport simulations of Galveston Bay (Texas, 

USA) by Rayson et al. [100]: (a) e-folding flushing times for particles initialized on each day for a 

period spanning mid-March to mid-July 2009. Triangles represent start times for simulations used for 

exponential fits shown in (b), with the blue triangle representing a high discharge period and the red 
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triangle representing a low discharge period. (b) Example exponential fits for particle -tracking 

simulations with the three different start times indicated by the triangles in (a). Blue (red) dots and 

and dashed lines represent the model output and curve fit, respectively, for high (low) discharge 

periods. (c) RMSE (root mean square error) of the exponential best fit for all times modeled. 

(Reproduced with permission from M. Rayson, Journal of Geophysical Research: Oceans; published 

by Wiley, 2016.). 

 

Figure 6. Simplified depiction of the e-folding flushing time, driven by river, tidal, and/or other 

flushing processes. Panels (A–D) follow a progression through time of C, the estuarine concentration 

of a tracer or other constituent. The e-folding mathematical construct is based on the assumption of 

perfect mixing within the water body of interest (in this case, the estuary). Dark gray dashed lines 

represent upstream and downstream boundaries of the estuary. Dark purple represents initial 

estuarine water. Light gray represents replacement water. 

Given the variety of transport timescale definitions and estimation approaches, it can be 

challenging to identify the most useful timescale for addressing a particular question for a specific 

environment or set of conditions. Useful comparisons of various transport timescales and discussion 

of their assumptions and applicability can be found in [22,58,93,100,110,112,131]. 

1.4. What Are Timescales Good for? 

There are several advantages of and uses for diagnostic timescales in assessments of water 

related issues. Briefly, here are some ways of implementing timescales that we expound upon in later 

sections: 

 A more meaningful substitute for primitive variables and native process rates: Computed or measured 

primitive variables (e.g., velocity, pressure, temperature, concentration; also known as state 

variables) and native process rates (e.g., velocity, production, growth) are not always conducive 

to interpretation in their raw form [79,89]. (Here, we use the term “native process rate” to refer 

to the typical rate variable(s) used in connection with a particular process, e.g., velocity or 

discharge for water movement, or specific growth rate for biomass growth.) On the other hand, 

diagnostic timescales can incorporate valuable contextual information that native process rates 

and primitive variables do not. For that reason, timescales can serve as auxiliary variables that 
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might better illuminate a scientific problem [79,89]. For example, the primitive variable 

“velocity” alone contains no additional problem-specific information that can aid the user in 

understanding the practical effect of that velocity: it is just a velocity. Whereas the advective 

timescale τadv—the timescale counterpart to velocity—typically conveys the time needed for a 

particle to traverse a specified water body or distance (e.g., the time taken by a fisherman’s cooler 

to travel to the river mouth from the upstream location where it, sadly, fell overboard). 

Therefore, in comparison to a process rate or primitive variable, a timescale can in many cases 

take the user farther on an interpretive level by communicating what the process rate, materially, 

means in the context of the scientific question at hand. 

 A common currency for comparing speeds of processes: Timescales provide a common cross-

disciplinary currency by which the speed of disparate processes can be compared [23]. For 

example, consider the observed reduction in the concentration of a decaying pollutant in a river 

over the first couple days after release. Relevant process rates (e.g., decay (1/time), river 

discharge (volume/time)) can be transformed into timescales (τdecay, τflush) that can then be directly 

compared. Therefore, if τdecay is, for instance, 0.2 day and τflush is 30 days, the ~2 order-of-

magnitude difference in timescales suggests that decay is a much faster process than river-driven 

flushing and is likely primarily responsible for any significant concentration reduction in the 

couple days following pollutant release. Since they all carry the same units, timescales can thus 

help bridge the gap between scientific disciplines and make quick, back-of-the-envelope 

assessments of dominant processes possible. Timescale ratios can represent the competition 

between processes; in some cases, such dimensionless numbers can serve as simple indicators 

of how an ecosystem might respond to a combination of different physical, biological, or 

geochemical processes [21,23,25,132–136]. 

 Distilling numerical model outputs [89,137]: The output files of numerical fluid flow models can be 

immense. Making sense of all those gigabytes, or even terabytes, of spatially and temporally 

detailed data is a non-trivial effort [79,137,138]. Timescales can extract the essence from such 

comprehensive datasets. In contrast to other analysis techniques that might provide spatially 

(temporally) detailed glimpses of the output at limited points in time (space), timescales can 

integrate across space and/or time and take advantage of most, if not all, of the results [79,138]. 

For this reason, timescales derived from the results of complex numerical models may be 

considered “holistic” [79,138]. Importantly, a model-derived timescale, such as the transit time 

for a particle through an estuary, may be considered holistic in a second sense: it takes into 

account all processes and forcings included in the model that influence the transport (e.g., river 

flow, tides, wind, density gradients, etc.) [139]. It is this second meaning that we refer to 

hereinafter. 

 Comparing systems across space or time: An effective way of enhancing understanding of an aquatic 

system is through comparison with other systems or through assessing the functioning of a 

single system under different conditions over time. Timescales can help encapsulate the general 

physical or ecological state of aquatic systems across space or time, do so in a way that is 

relatively simple and intuitive, and allow for easy comparisons. 

 Building simple(r) models: The partial differential equations (PDEs) governing hydrodynamics 

and scalar transport are complex, as they are composed of many terms describing multiple 

influences on momentum and mass balances. Because high-quality (i.e., stable and accurate) 

numerical solutions to the governing equations can be computationally costly, justifiable 

simplification of these PDEs is therefore a worthwhile activity. One simplification approach 

implements timescales of variability in combination with other (e.g., velocity, length, pressure, 

density) scales to estimate the relative magnitudes of individual terms in time-marching 

equations [2]; terms that “scale” much smaller than other terms may be justifiably neglected, 

with the equations reducing to the most essential terms and, hopefully, the numerical solution 

becoming more tractable and efficient. Another method of simplification involves quantifying 

the primary processes with timescales, creating dimensionless ratios with those timescales, and 

then substituting those ratios appropriately into a time- or space-dependent equation. The 
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conversion of a mathematical relationship into dimensionless form can significantly reduce the 

complexity—and increase the solvability—of the equation [21,23]). 

 Assessing connectivity: Transport timescales can contribute substantially to assessments of 

connectivity between different aquatic systems or subregions within a system [56,95,140–142]. 

In fact, transport timescales can form the basis for one important assessment tool—the 

“connectivity matrix” [95,140] (see Section 3.4). 

 In conceptual models: Timescales are often invoked in conceptual models or qualitative 

descriptions of how systems work. Even if not quantified or clearly defined, well-known terms 

such as “residence time” capture a general meaning that a scientific or management audience 

can conceptually follow. Timescales are frequently used (in mental models, written descriptions, 

cartoons, schematics, etc.) to qualitatively explain ecological phenomena such as phytoplankton 

bloom development in coastal systems [6,143], legacy phosphorus across watersheds [14], 

coastal hypoxia [11], nutrient release from sediments in shallow lakes [144], and eutrophication 

in lakes [145] and coastal systems [146]. 

This paper focuses on timescales as diagnostic tools in the analysis of reactive transport 

problems in coastal waters and adjacent domains of interest. Hopefully, the information herein will 

be as useful to readers who have never before applied timescale methods as it will be to those who 

have. In the following sections, we describe various methods of diagnostic timescale estimation 

(Section 2); review previous studies in which diagnostic timescales have been implemented to 

understand, analyze, model, or explain how (primarily coastal) ecosystems function (Section 3). 

Throughout Sections 2 and 3, we describe the relationship between the holism of a timescale (i.e., 

process richness incorporated within it) and the complexity of the mathematical methods employed 

to derive it. In the Discussion (Section 4), we elaborate (following other authors before us) on the 

importance of carefully choosing, calculating, and describing timescales, as well as the concept of 

timescale holism. Finally, the Conclusions (Section 5) summarize the main points presented and make 

broad connections between the timescales discussed throughout. 

2. How Are Diagnostic Timescales Estimated? 

There are numerous approaches for estimating timescale magnitudes. Depending on the type of 

timescale, available computational resources or observational data, and the relative importance of 

expedience versus accuracy, there are usually rough pencil-and-paper approaches as well as more 

careful, calculation- or data-intensive methods that may be employed. If there are multiple feasible 

methods for attaching a numerical value to a timescale, then it can be useful and informative to 

implement them all and compare the results (e.g., [87,104,115]), as some approaches may capture 

underlying processes neglected by others. 

2.1. Combining Process Rates with Other Scales 

One relatively straightforward approach involves taking the reciprocal of a process rate and then 

combining with other appropriate dimensional (e.g., length, velocity, concentration) scales such that 

the remaining dimension is time (see Table 1 for examples) [52,92]. This method is often used in 

biological or geochemical studies and should be viable whenever characteristic values for the process 

rate and other needed scales are available. If the process rate or other scales are expected to exhibit a 

broad (e.g., more than one order of magnitude) range of values for the problem and setting under 

study, then it can be informative to use those ranges to provide an estimated range for the timescale 

[93]. Several aquatic processes, common algebraic expressions for their corresponding timescales, 

and their associated process rates are shown in Table 1. 
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Table 1. Processes operating in aquatic systems, associated native process rates and their units, and common mathematical expressions for their corresponding 

timescales. Scales combined with process rates to construct timescales include: L (length), Lz (vertical length), V (volume), M (integrated mass within a water body), 

Bp (phytoplankton biomass concentration), Ba (areal biomass concentration), DO (dissolved oxygen concentration), η (nutrient concentration). Specific growth or 

decay rate μ may be positive (growth) or negative (decay). Decay rate μdecay is assumed positive. Unless specified otherwise, concentrations here are assumed 

volumetric. Timescale expressions shown here may be adjusted if available parameters or units are different from those shown. 

Process Native Process Rate Units Timescale Relevant Citations 

Diffusion/Dispersion/Mixing Diffusion/Dispersion/Mixing Coefficient (K) length2/time L2/K [42,49,52,59,147] 

Advection Velocity (U) length/time L/U [23,49,59] 

Flushing by river flow Volumetric flow rate (Q) length3/time V/Q [87] 

Flushing by scalar flux Mass flux rate (F) mass/time M/F [42] 
1Growth or decay Specific growth or decay rate (μ) 1/time 1/μ [25] 

2Decay by one-half Specific decay rate (μdecay) 1/time ln(2)/μdecay [125] 
3Growth by factor of 2 Specific growth rate (μgrowth) 1/time ln(2)/μgrowth [127] 

Sinking/settling Sinking speed (w) length/time Lz/w [59,60] 
4Productivity  Areal Productivity (Pa) biomass/(length2-time) Ba/Pa [125] 

4Benthic consumption Grazing/Filtration/Clearance rate (BG) length3/(length2-time) Lz/BG [23,25,62,124] 

Zooplankton grazing Zooplankton community grazing rate (ZG) biomass/(length3-time) Bp/ZG [23,148] 

Oxygen consumption Net oxygen consumption rate (CDO) mass O2/(length3-time) DO/CDO [21,132] 
4Nutrient uptake Nutrient uptake rate (υ) mass nutrient/(length3-time) η/υ [90] 

1 This timescale is sometimes called an e-folding time or mean life [149] for decaying substances. 2 This timescale is typically called a “half-life.” If the decay rate 

carries a negative sign, then the applicable expression is ln(0.5)/μdecay. 3 This timescale is typically called a “doubling time.” 4 These timescales are sometimes referred 

to as “turnover” times. 
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The choice of process rates and auxiliary scales should be guided by the specific question at hand 

and a priori knowledge of the system. For example, if we are interested in understanding whether 

vertical mixing is slow enough to allow for algal accumulation in the euphotic zone, then we might 

(1) estimate the algal growth timescale τgrowth as the reciprocal of a typical specific net growth rate in 

the euphotic zone, (2) estimate the timescale for vertical mixing ����
����  as the square of the water 

column depth divided by ����� , a typical (e.g., mean or mid-depth [25]) turbulent diffusivity for the 

water column, and (3) compare the two timescales. (An argument could be made to use half of the 

water column depth as the characteristic length scale, but since these scaling exercises are meant to 

be approximate, it may not matter significantly.) If ����
���� is significantly shorter (i.e., at least an order 

of magnitude smaller) than τgrowth, then we would expect vertical mixing to be rapid enough to prevent 

an algal bloom in the euphotic layer. If, on the other hand, ����
���� is significantly longer than τgrowth, 

then we would not expect vertical mixing to be strong enough to single-handedly prevent a surface 

bloom. If we instead wish to understand whether longitudinal dispersion is fast enough to limit algal 

accumulation within a defined water body, then (1) an algal growth timescale might be more 

appropriately based on a typical (e.g., mean) net growth rate over the water column, especially if 

vertically well-mixed, and (2) the mixing timescale would be more appropriately estimated as the 

square of the water body length divided by Klong, a longitudinal dispersion coefficient [42]. 

Furthermore, if transport through a water body is known to be governed primarily by advection 

induced by river flow as opposed to dispersive processes, then an advective timescale (e.g., water 

body volume V divided by river discharge Q) may be a more relevant transport timescale to compare 

with the algal growth timescale. Incidentally, the relative importance of advection versus dispersion 

(or diffusion) is a matter that itself can be illuminated using this sort of scaling approach: The well-

known Peclet number (i.e., the ratio of a diffusive timescale to an advective timescale) is a 

dimensionless ratio implemented for this very purpose [22,59,88]. 

A variety of methods can be employed to obtain biogeochemical rates that can then be 

transformed into timescales, as in Table 1. Middelburg and Nieuwenhuize [90] performed shipboard 

measurements and incubations with running estuarine water to obtain nitrogen concentrations and 

specific uptake rates, which were manipulated to obtain absolute uptake rates and then turnover 

times for particulate nitrogen, ammonium, and nitrate. Phytoplankton growth timescales have been 

estimated as the reciprocal of specific net growth rates based on numerical models, measurements of 

primary production, or published relationships [23]. Middelburg et al. [125] determined algal 

turnover times for microphytobenthos as B:P (biomass:production) ratios based on tidal flat core 

samples and 14C uptake experiments. Timescales for algal losses to bivalve grazing have been 

calculated from water depth and grazing rates based on benthic biomass samples, published 

temperature-dependent pumping rate relationships, and laboratory-based expressions incorporating 

the food-limiting effect of concentration boundary layers [23,62]. Lopez et al. [148] estimated the 

specific loss rate of phytoplankton to zooplankton grazing based on tow net sampling, analyses to 

obtain carbon weight and community grazing rate, and measurements of phytoplankton biomass; 

that specific loss rate was then combined with benthic grazing losses to then obtain a collective 

timescale for loss [23]. Shen et al. [21] estimated the timescale for biochemical oxygen consumption 

based on temperature, surface dissolved oxygen concentration, and net oxygen consumption rate, 

which was taken as the sum of sediment oxygen demand and net water column respiration and based 

on previously published measurements and modeling constants. Crump et al. [91] calculated 

estuarine bacterial community doubling times from bacterial production (based on leucine 

incorporation) and bacterial cell counts. A timescale for contaminant depuration was calculated as 

the biological half-life of trace elements in mussels fed radiolabeled diatoms in a laboratory [150]. The 

timescale for 50% survival for larvae of broadcast spawning corals was quantified in laboratory 

experiments starting with gametes collected in the field (Nozawa and Okubo 2011); these “T50” values 

were ultimately compared with model-computed residence times to gain insight into ecological 

connectivity and the potential for self-seeding [135,136]. 

Timescales based on simple algebraic combinations of process rates and other parameters (as in 

Table 1) are usually low on the holism scale, in that they typically do not account for multiple major 
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drivers or underlying processes. This is not necessarily a bad thing. Timescales that each isolate an 

individual process can be useful for assessing governing processes via comparisons with other 

process-specific timescales. 

2.2. Transport Timescales Based on Observational Data 

Observational data from the field can provide characteristic values for process rates and 

auxiliary scales (e.g., discharge, velocity, depth, concentration) for use with the method described in 

Section 2.1 [23,25,90,125]. Observations can also provide a strong empirical basis for more directly 

estimating transport timescales. Field-based approaches have the important advantage that the 

acquired transport information is obtained in the actual water body, in which all relevant processes 

(river flow, wind, tides, etc.) are operative, making the derived timescales holistic [139]. 

A significant distinction between observational strategies is whether the measurements are 

Lagrangian (following a water parcel through time and space) or Eulerian (observed at prescribed 

locations in space that are determined by humans, not hydrodynamics). Below, we describe drifter-

based approaches. While the information obtained from drifters is not well suited for 

straightforwardly estimating fluxes, their Lagrangian nature can reveal the transport pathways and 

ultimate fate of solutes, particles or biota in the water, as well as their associated timescales of 

transport [151]. On the other hand, tracer-based approaches are generally Eulerian (e.g., those 

involving measurements of velocity, flow rate, concentration, etc., at set locations) and can also 

provide bases for transport timescale estimation but may not predict fate or specific transport 

trajectories [151]. 

2.2.1. Drifter-Based Experiments 

Lagrangian drifter experiments in the field have permitted the direct measurement of residence 

times [102–105,152] and transit times [103] (Figure 7) within specific regions; residence times within 

circulation features such as currents, gyres, and eddies [153]; and travel times between defined areas 

[55,56,142]. This general approach can involve vessel-based [151,154] or satellite-based [56,152,153] 

drifter tracking (e.g., see Figure 8A), with the latter becoming increasingly more affordable given 

recent technological advances [103,104]. In addition, low-cost buoyant objects such as driftcards [104] 

or plastic “daisy-like” drifters [155], whose finding time, location, and identifying information are 

reported by citizen finders, can be released by the thousands [104,156]. Drifter-based methods have 

been deployed in the deep waters of the Adriatic Sea [152] and coastal Antarctica [153], in fjords such 

as the Strait of Georgia in the Salish Sea [104], and in shallower bays such as Faga’alu Bay (American 

Samoa) [102] and the San Francisco Bay-Delta (California, USA) [151,154]. If tracked at high enough 

frequency, drifters can not only reveal overall transport timescales (e.g., how long it took a water 

parcel to travel from point A to point B) but also the specific travel pathways taken. Such information 

can be particularly valuable in tidal systems, where travel paths can be especially circuitous and 

unintuitive (see Figure 8B–E). Pathway or precise transport time information is likely not achievable 

with drift cards or other objects that are not tracked at adequately high frequency; however, if many 

driftcards are found in a given area, a crude estimate of transit time might be provided by the earliest 

driftcards found [104]. Limitations of drifter-based field approaches include the impracticality of 

releasing large numbers of real drifters, especially compared to the analogous number possible in 

numerical models [104,142,152]; grounding and potential refloating of drifters (see Figure 8D,E) [104]; 

for surface drifters, the “constraint to follow the 2D surface flow” [157], potentially diverging from a true 

representation of water particles, which can be mixed vertically and thereby experience a range of 

velocities [104]; wave and wind interactions [104,157,158]; global positioning system (GPS) 

inaccuracy [157]; and the finite lifetime of satellite-tracked drifters due to battery failure or other 

factors [103,152]. 
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Figure 7. Results from the drifter field studies of Manning et al. [103] in the Gulf of Maine. Upper 

Panel: calculated residence times in days (italics), low frequency speed in cm/s, and direction in 

degrees True. Number of observations (“nobs”) is in parentheses. Lower Panel: tracks of drifters 

entering waters offshore Cutler Maine from the northeast and heading southwest in the Eastern 

Maine Coastal Current. Transit time (7.3 d) is the mean time for drifters to traverse the region outlined 

in purple. (Modified from Manning et al. [103], with permission from Elsevier). 
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Figure 8. From the drifter studies of Storlazzi et al. [102] in Faga’alu Bay (American Samoa): (A) a 

deployed drifter; individual drifter tracks, with orange symbols representing drifter deployment 

locations and red circles representing drifter recovery locations for conditions of (B) calm and (C) 

strong winds. (Modified from Storlazzi et al. [102].) From the drifter field studies of Pawlowicz et al. 

[104]: tracks for drifters released in (D) the northern Strait of Georgia (SoG) and (E) Victoria Sill in the 

Salish Sea. Statistics in legends represent the number of tracks for each category; when two numbers 

are provided separated by a slash, the first is number of tracks, and the second is the number of unique 

drifter IDs [104]. “JdF” is “Juan de Fuca” Strait. (Modified from Pawlowicz et al. [104] and licensed 

under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)). 

A novel twist on the drifter approach involved the acoustic tagging of juvenile salmon to 

ascertain fish travel times through defined reaches and then draw linkages between travel times, 

river flow, routing, and fish survival [159]. These fish travel times represent an extra-holistic timescale 

in that they not only include the effects of processes influencing flow but also incorporate the effects 

of fish behavior. 

2.2.2. Tracer-Based Experiments 

Another class of field-based approaches for quantifying timescales involves both artificial and 

natural tracer studies. Artificial tracers include those released into surface waters either intentionally 

(e.g., rhodamine [117,160,161] or fluorescein [162] dye; NaCl in freshwater [37]; controlled 

radionuclide discharges from nuclear fuel reprocessing plants [163,164]) or unintentionally (e.g., 

radioactivity from the Fukushima Daiichi [165,166] and Chernobyl nuclear plant accidents [167] or 

from nuclear weapons testing [167]). Natural tracers include salinity [160,168], radioactive isotopes 

(e.g., Ra: [169–171]; Th and U: [172]); and stable isotopes (H and O: [173]). Field measurements of 

these tracers can be analyzed in a variety of ways (sometimes in combination with models) to estimate 

timescales such as water age [160,169–171,173,174]; travel or transit time [160,169]; residence time 

[160,171]; residence time in the ocean surface mixed layer [172]; flushing time [168]; or environmental 

half-time [165,166]. Along with extensive application in estuaries and other coastal systems 

[160,166,169–171,173], field tracer methods have also been implemented in streams [37], catchments 



Water 2020, 12, 2717 18 of 63 

[41], constructed wetlands [161], and in the open ocean [172]. Timescale estimates gleaned from these 

approaches have proven useful for evaluating the performance of numerical models [165,174] and 

have improved understanding of nutrient uptake [37,173], phytoplankton dynamics [173], trace 

metal export from the ocean surface mixed layer [172], the magnitude of a radioactive contaminant 

source [166], “biological tides” in constructed wetlands [161], seaward transport of river plumes 

[169], and fluid retention within seagrass [117] or macroalgae [162] canopies. 

As one example of novel tracer-based approaches, Downing et al. [173] measured ratios of stable 

isotopes of hydrogen and oxygen in water at high-frequency aboard a high-speed boat as it wound 

its way along a sampling circuit through a complex tidal environment (the Cache Slough Complex in 

the Sacramento-San Joaquin Delta, USA; see Figure 9). Analyses of the isotope measurements 

permitted estimation of water age [173] along the transect. Estimated water age was co-analyzed with 

other parameters measured along the sampling circuit (e.g., nitrate, chlorophyll a fluorescence) to 

improve understanding of the linkages between transport time, algal production, and nutrient 

uptake (Figure 9A–C) [173]. Moreover, the authors used fits to an exponential relationship between 

change-in-nitrate versus change-in-water-age along boat tracks to obtain channel-specific estimates 

of whole-ecosystem net nitrate uptake rates (Figure 9D,E). As an alternative to the traditional tracer 

salinity, the authors’ estimates of water age were later used to assess the skill of a numerical transport 

model for this environment, where characteristically low salinities can be considerably influenced by 

often poorly quantified agricultural return flows [174]. This same approach was used to evaluate the 

influence of an emergency drought barrier (installed to prevent salinity intrusion) on transport times, 

water quality, and ecosystem processes in a different part of that same ecosystem [62]. 

 

Figure 9. (A) Water age “τ”, (B) chlorophyll a fluorescence, and (C) nitrate, based on concurrent 

mapping by Downing et al. [173] aboard a high-speed boat in the Cache Slough Complex of the 

Sacramento-San Joaquin Delta (USA). Low (high) fCHLA generally corresponded with small (large) 

τ. Nitrate had roughly the opposite pattern relative to τ. For (D) Prospect Slough and (E) the 
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Sacramento Deep Water Ship Channel (“DWSC”), fits to an exponential relationship between change-

in-nitrate versus change-in-water-age along boat tracks, used to estimate total-ecosystem net nitrate 

uptake rate. Estimated uptake rates were 0.039 d−1 in Prospect Slough and 0.006 d−1 in the DWSC. 

(Adapted from Downing et al. [173] (https://pubs.acs.org/doi/10.1021/acs.est.6b05745), with 

permission from American Chemical Society. This is an unofficial adaptation of an article that 

appeared in an ACS publication. ACS has not endorsed the content of this adaptation or the context 

of its use. Further permissions related to the material excerpted should be directed to the ACS). 

2.3. Transport Timescales Based on Numerical Models 

With the ongoing improvements in numerical methods for surface water hydrodynamics and 

transport, as well as continual advances in computational resources, the application of numerical 

models for estimating transport timescales is becoming increasingly common. There is a variety of 

methods for doing so, including forward and backward methods and approaches implementing 

numerical tracers or particles. Similar to timescales derived from field-based methods, those 

extracted from a numerical model can also be highly holistic [139], with the timescale holism limited 

by the holism of the model (i.e., all processes accounted for in the model that influence tracer or 

particle distribution will be accounted for in the derived timescales, but those that are missing from 

the model will not be “felt” by the timescales [175]). Although they may be holistic, model-based 

timescales, by their very design, tend to focus on the larger time and space scales of motion and filter 

out the smaller time and space variations. 

2.3.1. Forward Methods 

The most common overall model-based approach for quantifying timescales—the forward 

approach—is in some ways the most intuitively simple because it involves running numerical 

transport models for the purpose they are usually designed: marching forward in time. Numerical 

tracers or particles are injected into or released within a water body, and then they are transported 

by a hydrodynamic model’s computed velocities, diffusivities, etc. The computed concentration 

fields or particle distributions over time are analyzed in order to extract information about how long 

water—or the “stuff” transported with it—has spent or will spend within a defined domain or on a 

trajectory to another. 

Forward model-based, particle-tracking approaches have been applied in a variety of coastal 

environments and beyond. For example, Defne and Ganju [101] implemented hydrodynamic and 

Lagrangian transport models in the Barnegat Bay-Little Egg Harbor estuary (New Jersey, USA) to 

quantify spatially variable residence times, as well as whole-estuary flushing parameters. Nearly 

80,000 virtual particles were released uniformly in the horizontal every hour for one day. Particles 

were tracked until they left the estuarine system, with residence time for each particle recorded as 

the time elapsed between release and exit from the system (see Figure 10). They also applied the 

classic e-folding approach and its “double-exponential” variation [175] to the totality of particles to 

quantify system-level flushing times. (In some cases, a double-exponential can offer an improved fit 

to a tracer “decay” timeseries, relative to the single exponential form described in Section 1.3 

[101,175]). Moreover, Defne and Ganju [101] ran multiple simulations, turning individual forcings on 

and off and allowing for the identification of mechanisms most dominant in controlling flushing 

(Figure 10). Similar Lagrangian approaches have been applied to obtain transport timescales in: New 

Caledonia [112], the coastal transition zone off California (USA) [112], the Bay of Quinte (Ontario, 

Canada) [147], the Virginia Coast Reserve (USA) [176], the Mururoa atoll lagoon (French Polynesia) 

[113], the Great Barrier Reef (Australia) [45], and Galveston Bay (Texas, USA) [177]. 
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Figure 10. Spatially variable residence times computed by Defne and Ganju [101] with coupled 3D 

hydrodynamic and particle tracking models applied to Barnegat Bay-Little Egg Harbor (New Jersey, 

USA). The scenarios shown are (a) tidal forcing only, (b) tidal plus remote coastal forcing, (c) like (b) 

but with river flow added, (d) like (c) but with meteorological forcing added. Two inlets—Little Egg 

Inlet at the southern end and Barnegat Inlet near the center—connect the ocean and estuary (see 

Figure 1 in [101] for detailed site map). (Modified from Defne and Ganju [101]). 

Forward-running models implementing conservative numerical tracers (an Eulerian approach) 

are also commonly used for assessing timescales. For example, flushing (or renewal) time can be 

obtained by tracking total tracer mass in a defined region and identifying the time needed for mass 

to decay to a prescribed level (e.g., 1/e [114,121] or some other fraction [178] of initial mass). 
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Alternatively, an exponential or similar curve fit to the total-mass timeseries can allow for estimation 

of flushing (or turnover) time [112,114,121,175,179]. This regional approach can also be applied at the 

scale of a single grid cell, by fitting an exponential to the cell’s concentration timeseries and obtaining 

a local flushing timescale as the reciprocal of the fitted decay coefficient; if this procedure is 

performed for all grid cells, maps of local transport time can be constructed [112,114]. Some authors 

have applied other constructs (e.g., Takeoka’s [88] “remnant function” concept [180], or the 

freshwater fraction method [168]) to extract spatially variable [180] or region-wide [168] transport 

timescales from tracer simulations. 

Over the past few decades, advanced theories have been developed for evaluating timescales at 

every time and location in the atmosphere [51,181,182], in aquifers [28,183], and in surface water 

bodies [63,64]. These timescales are generally derived from the solutions of partial differential 

equations (e.g., [64,97,140,141,182]). One such forward approach used extensively in coastal aquatic 

systems allows for the computation of spatially and temporally variable age of water (or of a 

constituent in the water) based on the solution of two forward advection-diffusion-reaction PDE’s 

[63,64]. This approach accounts for the fact that, due to diffusion, production, and destruction, any 

water parcel will likely contain particles with a distribution of ages. Accordingly, the core variable is 

the age distribution function, which may be viewed as the histogram of the ages of the particles of 

the constituent (or group of constituents, including the water itself) under consideration at a given 

time and location. Explicitly computing this variable may be computationally demanding [184], for 

five independent variables (time, 3 space coordinates, and the age) are to be dealt with. However, 

most studies have focused on the mean age (i.e., the mass weighted age of the particles under 

consideration), which is the ratio of the first-order moment of the distribution function (the “age 

concentration”) to the zeroth-order one (the concentration). Both the age concentration and the 

concentration satisfy coupled reactive transport equations in the time-space domain and, hence, are 

relatively easily computed. This approach has been applied and/or extended for the investigation of 

sediment transport [131,185–187], contaminants sorbed to sediment particles [107], pathways and fate 

of nutrients [188], interactions between ecosystem components (e.g., phytoplankton, zooplankton, 

nutrients) [189], connectivity [140,190], water renewal rates of semi- enclosed water bodies 

[66,100,174,191–196], ventilation of the deep ocean [49,197], and building reduced-complexity models 

that help interpret the results of complex ones [49]. A related forward method allows for the 

computation of average residence time for, practically, a limited number of subregions within a water 

body and/or start times [95,192]. Mathematically and numerically, this is an easily tractable problem 

for obtaining regional residence times [192] and exposure times [95], the latter having been shown 

useful in quantifying connectivity between subregions of a water body [95] (see Section 3.4 for more 

detail). 

2.3.2. Backward Methods 

Other advanced theories that rely on adjoint modelling, leading to backward-in-time numerical 

integration, have been presented over the past couple decades, also with applications to the 

atmosphere [182], groundwater [28], and surface waters [97–99,141]. Most relevant to the present 

discussion, the method of Delhez et al. [97] provides a computationally efficient means of obtaining 

surface water residence time at every grid cell and time step, not just for a limited number of locations, 

regions, or times as with the forward approach mentioned above [95,192]. Depending on the solution 

of an adjoint advection-diffusion problem, this backward-in-time approach has been extended to 

compute exposure times [98,99], thus allowing computation of the total cumulative time a particle 

spends within a defined water body, including time spent during multiple visits. This general 

method has been applied extensively in coastal systems including the English Channel and southern 

North Sea [97,99], the Scheldt Estuary [66], Brazilian estuaries [22], and the Chesapeake Bay [198]. 

For the lower James River (Virginia, USA), a tidal tributary of the Chesapeake, this approach [97] has 

been employed in the study of how transport processes influence the observed origins of harmful 

algal blooms [199] (see Section 3.4). Moreover, the theory has been generalized to the vertical 

dimension for computing light exposure of phytoplankton [200]. 
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A particularly useful extension of the adjoint residence time theory allows for the calculation of 

partial residence times, i.e., the amounts of time a particle spends in different subregions before 

exiting the water body [141]. As Lin and Liu [141] point out, this application is useful for 

understanding connectivity between subregions of an aquatic system. Figure 11 illustrates those 

authors’ calculation of partial residence times (PRTs) for Jiaozhou Bay (China). They divided 

Jiaozhou Bay (the control region, ω) into 6 subregions (ω1–ω6; Figure 11A), and their novel extension 

of the adjoint approach permitted them to compute PRTs for particles initialized at specific points in 

space (numbered stars in Figure 11A). For each of those seven release locations, Figure 11B shows the 

PRTs representing time spent in subregions ω1–ω6 before exiting the control region. For a given 

release location, the sum of all six PRTs (shaded portions of each bar in Figure 11B) equals the total 

residence time, i.e., the total time taken to leave the bay (top height of each bar). For pollutants 

discharged from a specific point location, this sort of information can quantify for resource managers 

how much time the pollutants spend in defined subregions on their way out of the bay [141], thereby 

highlighting areas potentially most impacted. PRTs are also displayed for each subregion ωi as time 

spent in ωi for particles released at every location in the domain (Figure 11C–H). These maps 

highlight the portions of the domain contributing particles spending the most time in a specific 

subregion and could, for example, provide insight into the major nutrient sources to a subregion and 

how much time those nutrients spend in the subregion before getting flushed out. 

 

Figure 11. Lin and Liu’s [141] (A) bathymetry map of Jiaozhou Bay (China), showing six subregions 

(ω1–ω6) in which partial residence times (PRTs) were calculated in (B–H), and seven release points 

(stars) for which PRTs in the subregions are shown in (B). (B) For particles initiated at each of seven 

locations, PRTs shown are time spent in each of six subregions before leaving the bay. For a given 

release location, the sum of the PRTs equals the total residence time within Jiaozhou Bay. (C–H) 

Spatial maps for each subregion representing time spent in the subregion for particles initiated at 



Water 2020, 12, 2717 23 of 63 

every location in the domain. Dashed lines represent the boundaries of each subregion. (Adapted by 

permission from Springer Nature Customer Service Center GmbH: Springer Nature, Ocean 

Dynamics, Partial residence times: determining residence time composition in different subregions, 

Lin and Liu, 2019. https://www.springer.com/journal/10236). 

3. Timescale Applications for Explaining Ecosystem Processes and Variability in Water Quality 

In this section, we describe previous studies that have referenced, estimated, and/or somehow 

implemented diagnostic timescales in order to help explain how aquatic ecosystems operate. We pay 

specific attention to biological and geochemical processes and responses of biota or water quality to 

(physical or other) environmental conditions. We proceed by grouping studies according to different 

modes of timescale use, so each type of use may include references to a variety of ecosystem variables, 

processes, or questions. 

3.1. Timescales in Conceptual Models 

Timescales are often used in a qualitative or semi-quantitative manner as components of 

conceptual models for helping explain how aquatic ecosystems are believed to operate. In such cases, 

the term “residence time” is often invoked, even though it is frequently neither defined nor 

quantified. Therefore, although there exist clear (albeit varied) mathematical definitions of residence 

time, that term is very frequently used—and understood—to refer generally to how long water, 

particles, organisms, or solutes spend in (or on their way to or from) a certain area, without specifying 

the details of how it might actually be calculated. “Retention” and “turnover” time are other terms 

often referred to in conceptual models. 

Prominent (inter-related) areas in which timescales have been invoked conceptually to explain 

aquatic ecosystem dynamics include nutrient processing, phytoplankton dynamics, eutrophication, 

and hypoxia. For example, in their review of legacy phosphorus in watersheds, Sharpley et al. [14] 

explained that “hotspots” of phosphorus retention and cycling can occur in areas with slower flows 

and longer water retention times (e.g., pools, eddies, channel margins) and in areas with sharp 

gradients in water and sediment retention times (e.g., where rapidly flowing water meets standing 

water). Boyer et al. [201] explained Florida Bay’s (USA) observed spatial differences in total organic 

nitrogen (TON), total phosphorus (TP), and phytoplankton biomass (as well as salinity and total 

organic carbon) as driven by differences in freshwater inputs and water residence time and, 

consequently, evaporation rates. In outlining his contemporary conceptual model of coastal 

eutrophication, Cloern [146] identified residence time as one component of the “filter” (the set of 

physical and biological attributes) that sets the sensitivity of individual coastal ecosystems to nutrient 

enrichment. Scavia et al. [143] linked climate change to estuarine phytoplankton bloom development, 

with residence time playing a key role: where freshwater runoff decreases, water residence time will 

increase, and phytoplankton production will also be expected to rise if the phytoplankton doubling 

time is shorter than the residence time. In such cases, susceptibility of coastal systems to 

eutrophication could be consequently heightened. Those authors also identified the potential role of 

humans in further altering residence times (e.g., by storing more freshwater within the watershed to 

combat drought), thereby intensifying algal production and vulnerability to eutrophication. Paerl 

and Huisman [202] described how massive cyanobacteria blooms have occurred when high-

residence time drought periods follow intense precipitation and nutrient discharge events—a 

scenario that could become more prevalent with global warming. Similar to Scavia et al. [143], Paerl 

and Huisman [202] also suggested that human interventions intended to control flow variability (e.g., 

construction of dams or sluices) could further increase residence times and thereby exacerbate 

ecological and human health problems caused by cyanobacteria. Rabalais and Turner [203] and 

Rabalais et al. [11] cited long water residence time as one of the key factors (along with stratification) 

controlling the likelihood that a coastal system will develop hypoxia. Residence time featured 

prominently in Durand’s [204] conceptual model of the aquatic food web of the Upper San Francisco 

Estuary (California, CA, USA), providing a linkage mechanism between physical forcings such as 
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hydrology, tides, and water diversion and the spatial and temporal variability of nutrients, 

phytoplankton, and zooplankton. 

Water residence time has also been identified as an important factor in conceptual models of 

estuarine metabolism. Hopkinson and Vallino [205] pointed to water residence time as an important 

influence on the autotrophic–heterotrophic nature of an estuary. They described how the relative 

magnitudes of the water residence (or “turnover”) time and biogeochemical time constants (e.g., for 

organic matter decomposition or autotrophic and heterotrophic production) can determine whether 

decomposition or biomass accumulation are significant within an estuary. Viewing water residence 

time from a biogeochemical perspective, those authors saw it as a descriptor of the time for materials 

to be processed in a system and thereby a potential limit on whether reactions can go to completion; 

the material residence time (and thus the time for reactions to proceed) could be effectively lengthened 

beyond the water residence time by the settling of organic particles to the bottom [205]. Relatedly, Battin 

et al. [206] developed a conceptual model of organic carbon processing to help explain how terrestrial 

organic carbon, which had long been believed to be recalcitrant, could fuel net heterotrophy in 

rapidly flowing fluvial networks, as recent data had indicated. Those authors proposed that 

hydrological storage and retention zones along the path to the ocean (created by, for example, 

morphological features, rough and highly permeable streambeds, debris, floodplains, or estuarine 

turbidity maxima) create “geophysical opportunities” [206] for microorganisms to metabolize 

organic carbon. In such environments, the residence time of microorganisms may be extended 

beyond that of water through attachment to surfaces (e.g., as biofilms). 

3.2. Implementing Timescales in Building Simple Models 

Some timescales can collapse a complex process or collection of processes into a single number 

(hence, the holistic label referred to earlier). For example, a transport timescale, properly calculated, 

can simultaneously account for wind-, tide-, river-, and density-driven hydrodynamics. Similarly, a 

benthic grazing timescale can integrate the contributions of community composition and biomass, 

pumping rates of different species, concentration boundary layers, and water column depth into a 

single value. Some timescales are also designed to integrate over space and/or time, removing spatial 

or temporal detail for a “bird’s eye” view of an aquatic system. Because timescales are such powerful 

encapsulators of complexity, they can prove useful in developing reduced-complexity mathematical 

models of ecosystem function. 

3.2.1. Simple Models of the Physical Environment 

There are several examples where timescales were used as tools to distill hydrodynamic 

complexity and then design simple models capturing the general physical behavior. For example, Liu 

et al. [207] ran multi-decadal simulations with global ocean-ice models, implementing a novel 

variation on an age tracer approach [208] to compute coastal residence time (CRT) worldwide (Figure 

12A). The goal was to quantify a coastal retention timescale that reflects the time spent by a water 

parcel in the coastal zone [207]. Those authors described CRT as the “total time a water parcel stays in 

any part of the global coastal ocean rather than a specified domain (i.e., a water parcel would accumulate CRT 

while traveling alongshore from one coastal system to another)” [207]. Moreover, while CRT for a water 

parcel accumulates with time spent in the coastal zone, CRT is gradually diminished with time spent 

in the open ocean; a water parcel that leaves, and then re-enters, the coastal zone thus returns with a 

lower CRT than that with which it left. This approach allows the “coastal signature” of a water parcel 

to gradually increase (or decrease) depending on time spent inside (or outside) the coastal zone [209]. 

CRT, by this definition, is similar to “exposure time” because both metrics continue to accumulate 

when a water parcel is within the domain of interest, even after having left. They are different, 

however, in that exposure time is preserved when a water parcel is outside the domain of interest, 

while CRT diminishes with time outside the domain. Given latitudinal differences observed in their 

computational results (Figure 12A), as well as the expectation that the degree of geometric enclosure 

could influence CRT, the authors [207] fitted a simple algebraic model (Figure12B) of three-

dimensional (3D) model-computed CRT [d] as a function of the Coriolis frequency f [1/s] (similar to 
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Sharples et al. [210]) and χ V/S [m], the ratio of the total volume of a coastal system to its total open 

boundary area. The simple model explained 73% of the variability in simulated CRT, thus providing 

a convenient method for estimating CRT. Delhez [98] first identified an inherent problem with the 

concept of exposure time, i.e., that it (as traditionally defined) will become infinite in a computational 

domain limited by impermeable boundaries. As a solution to this issue, he introduced first-order 

decay in his calculation of the exposure time, somewhat similar to the diminishment of CRT outside 

the coastal zone by Liu et al. [207]. 

 

Figure 12. (A) A global map of coastal residence times (CRTs) simulated by Liu et al. [207] using high-

resolution, coupled global ocean-ice models and a novel variation on an age tracer approach; (B) 

simple model of CRT as a function of Coriolis parameter f and a geometric parameter χ, which is the 

ratio of total coastal system volume to total open boundary area. (Modified with permission from 

Xiao Liu, Geophysical Research Letters; published by Wiley, 2019). 

Other reduced-complexity models where timescales played a fundamental role include: (1) the 

simple but effective (R2 = 0.74 and 0.95) regression models of Kärnä and Baptista [194] relating system-

wide “renewing water age” (computed by a detailed 3D model) to observed river discharge and tidal 

range for the lower Columbia River Estuary (USA), thus allowing easy, quick estimates of water 

renewal timescales when 3D model simulations are not available; (2) the use by Mouchet and 

Deleersnijder [49] and [211] of mean ages and age distributions as a metric for evaluating the fidelity 

of the one-dimensional (1D) “leaky funnel” model to 3D models of ocean ventilation; (3) the 

derivation by Deleersnijder et al. [59] of simple estimates for mean residence time of sinking particles 
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in the surface mixed layer; and (4) the development by Palazzoli et al. [179] of a simple polynomial 

relationship for the flushing-induced tracer decay coefficient (reciprocal of e-folding flushing time), 

as a function of wind speed and direction for the Virginia Coast Reserve, a complex system of 

interconnected shallow coastal bays and inlets on the United States east coast. Yet more examples are 

to be found in [22,212,213]. 

3.2.2. Simple Ecological Models Using Physical Timescales 

A number of authors have taken advantage of the ability of transport timescales to capture the 

net effect of complex hydrodynamics on ecological processes. For example, Dettmann [214] derived 

simple algebraic models of estuarine nitrogen dynamics as a function of “freshwater residence time” 

(τfw). He started with an annual mass balance equation for total mass of biologically active, water-

column nitrogen (mN) in an estuary, 

���

��
= � − � − �   (1) 

where I is the total rate of nitrogen input from upland and oceanic sources, E is the rate of export to 

the sea, and R is the net annual rate of within-estuary removal of water column nitrogen, assumed to 

be proportional to mN. After making a number of simplifying assumptions (e.g., steady state, 

negligible nitrogen contribution from the ocean), Dettmann [214] arrived at the following 

dimensionless expression for FE(l), the annual net export (export to the sea minus input from the sea) 

expressed as a fraction of upland loading: 

��(�) =
1

1 + ����

 (2) 

as well as the below relationship for the annual fraction of upland loading that is denitrified: 

��(�) =
�����

1 + ����

 (3) 

In Equations (2) and (3), α is a first-order rate coefficient representing the net loss of nitrogen from 

the estuarine water column due to internal processes, and ε is the fraction of total internal losses 

accounted for by denitrification. The simplicity of Dettmann’s [214] above expressions is impressive, 

especially considering how well they fit previously published estuarine data (Equation (2): r2 = 0.94 

with α = 0.3 month−1; Equation (3): r2 = 0.85 with α = 0.3 month-1, ε = 0.69; Figure 13A,B). Moreover, 

the relationships make intuitive sense: the fraction of nitrogen input that is exported (denitrified) 

decreases (increases) as the transport timescale increases. This is logical because the longer nitrogen 

spends within an estuary, the more opportunity for it to incur denitrification and other loss processes, 

leaving less for export. 
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Figure 13. Dettmann’s [214] simple models for fraction of upland nitrogen loading to an estuary that 

is (A) exported (Equation (2) herein) and (B) denitrified (Equation (3) herein), expressed as functions 

of “freshwater residence time” and fit to data for several estuaries. “γ” in Dettmann’s [214] 

denitrification plot (B) is referred to as “ε” in Equation (3) and the text herein. (Modified from 

Dettmann [214].) Calculations of habitat-averaged phytoplankton (C) biomass and (D) productivity 

based on Lucas and Thompson’s [215] simple models expressed as a function of transport time 

(Equation (4) herein for algal biomass). (Modified from Lucas and Thompson [215]). 

Transport timescales have also proven useful in the development of simple models of 

phytoplankton dynamics. One such model was developed in order to (1) test a common, intuitive 

conceptual model that was helping shape multi-billion dollar ecosystem management plans in the 

Sacramento-San Joaquin Delta (SSJD), California, U.S.A., and then to (2) communicate the findings 

with a clarity that ecosystem managers, engineers, and scientists alike could find useful and relevant. 

The conceptual model, framed by [215] as a hypothesis to be tested, was that: “Habitats with longer 

transport times (slower hydrodynamics) are associated with higher phytoplankton biomass and productivity 

than habitats with shorter transport times (faster hydrodynamics)”. This conceptual model was important 

in ecosystem restoration planning because, unlike many coastal systems that produce excessive 

amounts of phytoplankton biomass, the SSJD is characterized by low phytoplankton biomass. 

Because SSJD phytoplankton biomass was low enough to limit the growth of some zooplankton 

species [216,217] and experienced a long-term decrease [218] alongside similar declines in 

herbivorous zooplankton [219,220] and fish [221,222], low phytoplankton biomass and productivity 

were implicated as factors contributing to the declines of the upper trophic levels. Consequently, 

SSJD restoration plans included actions aimed at amplifying primary productivity [223]. The above 

conceptual model, which was helping guide those plans, did not account for the filtration pressure 

of the exotic clam Corbicula fluminea [224,225]. The authors [215] therefore used the following simple 
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algebraic model for habitat averaged phytoplankton biomass as a function of transport time (defined 

as a “transit time”, i.e., (habitat length)/velocity) to test whether the above hypothesis holds in the 

presence of clams: 

���� =
���

���������
�exp����������� − 1�  (4) 

Bhab is habitat averaged algal biomass concentration, Bin is algal biomass concentration flowing into 

the habitat, μeff is the effective phytoplankton growth rate (accounting for depth-averaged algal 

growth, respiration, zooplankton grazing, and clam grazing), and τtran is transport time. Operative 

assumptions included a vertically well-mixed water column and steady-state conditions. A similar 

equation was derived also for habitat averaged phytoplankton net productivity. Results from the 

simple models (Figure 13C,D) showed clearly that the hypothesis does not always hold: 

Hydrodynamically “slower” habitats can be less productive than “faster” ones if benthic grazing is 

strong enough to render the effective phytoplankton growth rate negative. Further, it was evident 

that the range of possible outcomes broadens with longer transport times. Therefore, since it is 

difficult to predict the response of non-native bivalves to restoration, the ultimate functioning of 

created habitats—especially those with long transport times—is highly uncertain. This simple model 

was able to clearly demonstrate that widely held intuitive, management-relevant conceptual models 

of phytoplankton dynamics do not always hold—and can, in fact, be reversed—in the presence of 

strong benthic grazing. This same lesson could have been demonstrated with more complex 1D, two-

dimensional (2D) or 3D models, but the ultra-simple timescale-based form of Equation (4) isolated 

the salient processes and conveyed the message more effectively than more complex approaches 

might have. 

A global view of denitrification was taken by Seitzinger et al. [54], who developed spatially 

distributed global-scale estimates of denitrification across system types including terrestrial soils, 

groundwater, lakes, reservoirs, rivers, estuaries, continental shelves, and oceanic oxygen minimum 

zones. One part of their analysis revealed that, when data representing estuaries, river reaches, lakes, 

and continental shelves were combined, “water residence time” could explain a large portion of the 

variability in the annual fraction of nitrogen (N) inputs that is denitrified. The empirical relationship 

derived from that combined data set, 

  % � ������� = 23.4(����� ��������� ����)�.���  (5) 

where water residence time is in months, fits the data well (R2 = 0.56). To aid in their global-scale 

estimates of denitrification, those authors then used this simple empirical model (Equation (5)) to 

estimate denitrification in lakes and reservoirs, and developed a similar estuary-specific relationship 

(% N removed = 16.1 (Water Residence Time)0.30, r2 = 0.62). In this case, “water residence time” was likely 

defined and calculated in more than one way, given the large number of sources contributing to the 

dataset [226]. Regardless, and in spite of the gross simplification of complicated and site-specific 

transport processes by the single parameter “water residence time”, strong and useful relationships 

were obtained. Like Dettmann’s [214] relationship (Equation (3) above), the empirical models of 

Seitzinger et al. [54] are also consistent with intuition: as time spent by imported nitrogen within a 

water body increases, the longer the time available for processing and biogeochemical removal of 

that nitrogen. 

In their well-known work on the fate of nutrients at the land-sea margin, Nixon et al. [226] 

similarly compiled a collection of site-specific datasets to reveal strong linear-log empirical 

relationships between “residence time” and the fractional net export of nitrogen and phosphorus (P) 

from lakes and estuaries. Sharples et al. [210] powerfully applied simple empirical models based on 

the work of Seitzinger et al. [54] and Nixon et al. [226]. Their objective was to provide worldwide 

estimates of the N and P exported from the shelf to the open ocean. First, they developed a simple 

mechanistic model of how a river plume behaves after exiting an estuary, leading to straightforward 

relationships for estimating plume residence times on continental shelves worldwide (see Figure 

14A). Combining (1) their global estimates of residence time on the shelf (Figure 14A), (2) empirical 

relationships between fractional nutrient export and residence time based on Seitzinger et al. [54] and 
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Nixon et al. [226], and (3) a database of worldwide riverine nutrient loads [227], Sharples et al. [210] 

then produced global maps of riverine nutrient percentage (Figure 14B) and magnitude (Figure 14C) 

exported from shelves to the open ocean. These estimates ignore nutrient processing within estuaries, 

so estimated shelf-to-ocean export magnitudes are seen as an upper bound. 

 

Figure 14. Based on the global scale, simple mathematical modeling of Sharples et al. [210]: (A) 

average residence time “Tres” on the continental shelf; (B) estimated proportion of riverine DIP 

(dissolved inorganic phosphorus) exported to the open ocean; (C) estimated annual DIP mass export 

to the open ocean. The authors performed the same calculations for dissolved inorganic nitrogen and 

provided uncertainty estimates (not shown here). (Modified with permission from J. Sharples, Global 

Biogeochemical Cycles; published by Wiley, 2017). 



Water 2020, 12, 2717 30 of 63 

All of these studies exemplify how the synthesizing power of transport timescales can facilitate 

the development of simple, useful, and intuitive models for estimating biogeochemical responses to 

physical processes in coastal (and other) aquatic systems. These simple mathematical models have, 

in some cases, enabled large—even global—scale estimates of reactive constituent processing and 

delivery, an undertaking that may have been infeasible with detailed numerical transport-reaction 

models due to computational constraints and data limitations. 

3.2.3. Simple Ecological Models Using Physical and Biogeochemical Timescales 

Simplified mathematical models can incorporate ecological or geochemical timescales as well as 

transport timescales. For example, Lucas et al. [23] derived the following idealized model of algal 

transport, growth and loss in a generic vertically well-mixed aquatic system based on a common, 

steady-state plug flow equation: 

�(�) = ���� = ��� exp �
������� − �����

�
��  (6) 

where Bin is the phytoplankton biomass concentration entering a water body at the upstream 

boundary; B(x) is phytoplankton biomass at distance x downstream from the inlet (if the length of 

the domain is x, then B(x) is the same as Bout, the concentration exiting the domain at the downstream 

boundary); μgrowth and μloss, respectively, are the algal specific growth and combined in situ loss (e.g., 

grazing, senescence, sedimentation) rates (1/time); and u is the transport velocity (length/time). 

Substituting in timescales for advective transport (τtran=x/u), growth (τgrowth=1/μgrowth), and loss 

(τloss=1/μloss), and combining timescales into ratios, they arrived at the following dimensionless 

relationship: 

* *

*

1
exp([1 ] )out

out tran
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B
B

B

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  

 
(7) 

where ����
∗  is the outgoing biomass concentration normalized by the incoming biomass 

concentration, and �����
∗  and �����

∗  are, respectively, the loss and transport timescales normalized by 

the growth timescale. (�����
∗  is comparable to the “Damköhler number”, the dimensionless ratio of 

transport and reaction timescales used in chemical engineering [228] and in the hydrologic sciences 

[229] (see Section 3.4).) In Equation (6), the dependent variable (Bout) is a function of five parameters 

and variables; whereas the dependent variable in Equation (7) is a function of only two, allowing the 

relationship to be plotted (and, importantly, visualized) on a 2D surface (Figure 15 herein). Equation 

(7) and Figure 15 provide a simple tool for explaining why phytoplankton biomass can have a variety 

of relationships with transport time: biomass (����
∗ ) increases with time spent in a water body (i.e., 

moving rightward in Figure 15) if growth is faster than in situ loss (�����
∗ > 1), but decreases with 

transport time (�����
∗ ) if loss is faster than growth (�����

∗ < 1). If growth and aggregate loss rates are 

similar (�����
∗ ≈ 1), biomass does not change much while inside the water body (����

∗ ≈ 1), regardless 

of the transport time. In summary (and contrary to the intuition of some), transport time does not 

determine whether phytoplankton biomass increases or decreases within an aquatic system; rather, 

the growth-loss balance (represented by �����
∗ ) does [23]. The reader is referred to a recent publication 

by Wang et al. [24], who developed an analytical model for downstream phytoplankton 

concentration in a 1D advective system, going beyond the model in Equations (6) and (7) by 

incorporating a non-linear reaction term (e.g., to incorporate the effects of self-shading or 

phytoplankton-dependent grazing). Reducing to Equation (6) above under simplified conditions, 

that model has two primary components—water age and accumulative growth—and agrees well 

with observations in the James River. 
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Figure 15. Contours of ����
∗ , the ratio of outgoing algal biomass concentration to incoming 

concentration, as a function of two dimensionless parameters, �����
∗  (the ratio of the algal loss 

timescale to the growth timescale) and �����
∗  (the ratio of the transport timescale to the algal growth 

timescale). Based on the simple, timescale-based mathematical model of [23], Equation (7) herein. 

(From Lucas et al. [23]). 

Shen et al. [21] applied a similar approach to a different problem: hypoxia in the deep waters of 

the Chesapeake Bay. They first derived a closed-form, steady-state 1D (along-estuary) relationship 

for bottom-water dissolved oxygen (DO), accounting for three dominant processes: horizontal 

replenishment due to gravitational circulation, vertical replenishment via exchange with the surface 

layer, and consumption based on the combination of sediment oxygen demand and organic carbon 

decay in the water column. This expression (Equation (4) in [21]; not shown herein), though 

mathematically straightforward, described bottom DO as a function of 8 variables and parameters. 

After defining a timescale for each major governing process (τe for longitudinal transport driven by 

gravitational circulation, τv for vertical exchange, and τb for consumption), creating timescale ratios, 

and substituting those ratios into their 1D equation, Shen et al. [21] arrived at the following predictor 

of bottom layer DO concentration, c: 

*

*

1
1 (1 )e

s b

c
e

c



    (8) 

where cs is surface DO concentration, ��
∗ =

��

��
, and ��

∗ =
��

��
. (Equation (8) also incorporated the 

assumption that bottom and surface DO were equal at the estuary mouth.) ��
∗  (��

∗) represents the 

competition between consumption (gravitational circulation) and vertical exchange processes. 

Equation (8) succeeded in reducing the expression for c to a problem with only three independent 

variables. The relationship governing dimensionless bottom DO (c/cs) could thus be plotted in two 

dimensions, and the influence of the governing processes on the development (or avoidance) of 

hypoxia could be visualized (Figure 16). Notwithstanding the simplicity of Equation (8), estimates of 

bottom DO from this model compared well with observations (Figure 17), demonstrating how a 

complex hydrodynamic-biogeochemical problem could be broken down to a quantitatively accurate 

and illustrative algebraic relationship involving three timescales. 
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Figure 16. Contours of c:cs (ratio of bottom layer dissolved oxygen concentration (DO) to surface layer 

DO), as a function of two dimensionless parameters, ��
∗  (the biochemical consumption timescale 

normalized by the vertical exchange timescale) and ��
∗  (the timescale for transport driven by 

gravitational circulation normalized by the vertical exchange timescale). Based on the simple, 

timescale-based mathematical model of Shen et al. [21] (Equation (8) herein). Rectangular regions 

delineate regimes associated with control of DO by particular processes and/or likelihood of hypoxia. 

(Reuse and minor adaptation from Shen et al. [21], with permission from Wiley. © 2020, by the 

Association for the Sciences of Limnology and Oceanography, Inc.) 

 

Figure 17. Comparisons of the simple Shen et al. [21] model (solid lines) and DO observations at two 

stations in the Chesapeake Bay. (Reuse and minor adaptation from Shen et al. [21], with permission 

from Wiley. © 2020, by the Association for the Sciences of Limnology and Oceanography, Inc.). 

3.3. Assessing Relative Speeds or Dominance of Processes 

As described briefly in Section 1.4, because timescales all carry the same units, they represent a 

single cross-disciplinary currency allowing for the comparison of the speeds of disparate processes, 

be they physical, biological, or chemical. Many authors have taken advantage of this translational 

characteristic of timescales to gain insight into which simultaneously acting processes exert primary 

control over ecosystem functions and responses. Timescale comparison can also provide a simple 

approach for assessing the likelihood of a particular ecosystem response. For example, in their review 
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of coastal hypoxia, Fennel and Testa [132] defined a non-dimensional number γ as the ratio of a 

hypoxia timescale τhyp to water residence time. Akin to the DO consumption timescale τb of Shen et al. 

[21], τhyp was calculated as the ratio of an initial oxygen concentration to a volumetric oxygen 

consumption rate and represents the biogeochemically driven time to hypoxia occurrence. Residence 

time was taken to represent the time of restricted oxygen supply (i.e., how long biogeochemical 

consumption can operate uncountered by supply). The authors stated that γ “relates the two factors 

contributing to hypoxia generation—net biochemical oxygen consumption and restricted supply of oxygen, 

which is related to water residence time” [132]. They hypothesized that γ must be less than 1 for hypoxia 

to occur because, however slow oxygen consumption may be, hypoxia may still develop if 

hydrodynamically driven oxygen supply is impeded for an adequately long period of time. On the 

other hand, if oxygen consumption is rapid, hypoxia may be prevented if residence times are very 

short and oxygen is thus supplied on a frequent basis. Fennel and Testa [132] tested their hypothesis 

by estimating τhyp and residence time for nine hypoxic estuary and shelf systems (see Figure 18 

herein), finding that indeed γ < 1 (biogeochemical depletion is faster than replenishment) for the 

majority of hypoxic systems studied. (The non-conformance of two systems—the Gulf of St. 

Lawrence and the Namibian shelf—was explained by an assumed, uniformly applied initial oxygen 

concentration that was likely too high for those two environments due to the importance of low-

oxygen source waters.) The implementation of timescales thus allowed the authors to capture a great 

deal of the physical-biogeochemical complexity surrounding hypoxia development and distill it 

down to a simple ratio that performs well in describing hypoxia occurrence. 

 

Figure 18. Hypoxia timescale versus residence time for several hypoxic estuarine and shelf systems, 

as estimated by Fennel and Testa [132]. Systems falling below the diagonal 1:1 line are consistent with 

the authors’ hypothesis that γ, the ratio of the hypoxia timescale to the residence time, is less than 

unity for hypoxia to occur. Systems analyzed: (1) Pearl River Estuary (China); (2) East China Sea; (3) 

Northern Gulf of Mexico; (4) Long Island Sound (USA); (5) Chesapeake Bay (USA); (6) Northwestern 

Black Sea; (7) Baltic Sea; (8) Gulf of St. Lawrence (Canada); (9) Namibian Shelf. (Redrawn from Fennel 

and Testa [132] with the permission of K. Fennel.) 

Other interdisciplinary studies that similarly used timescale comparisons to understand, 

explain, or predict coastal ecosystem responses include: 

 Estuarine nitrogen processing: In their studies covering several European estuaries, Middelburg 

and Nieuwenhuize compared water “residence time” estimates to turnover times for particulate 
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nitrogen, nitrate, ammonium [90], and amino acids [123], providing insight into which nutrient 

forms may become limiting [90] and whether individual forms will be significantly modified 

during transport through an estuary [90,123]. 

 Hypoxia development in a tidal river: In their study of the effect of water diversion structures on 

water quality in a complex, heavily managed tidal environment, Monsen et al. [230] compared 

2D model-computed e-folding flushing times to half-lives for biological oxygen demand (BOD) 

[231]. They found that when a physical barrier was installed on a branch of the San Joaquin River 

(California, USA), consequently forcing all flow through the mainstem, flushing times on the 

mainstem could decrease enough (relative to BOD half-life) to prevent the development of 

hypoxia, a frequent occurrence in a deep portion of the mainstem San Joaquin. 

 Nutrient processing on shelves and export to the open ocean: Sharples et al. [210] compared their 

global-scale, latitudinally varying estimates of continental shelf residence times (Figure 14A 

herein) with nutrient processing times (assumed independent of latitude) in a discussion of 

which shelf regions would be expected to experience more (middle to high latitudes) or less (low 

latitudes) nitrate removal before exchange with the open ocean occurs. 

 Development of a unique estuarine bacterial community: In their study of the Parker River Estuary 

and Plum Island Sound (Massachusetts, USA), Crump et al. [91] studied the conditions for the 

development of a unique community of estuarine bacterioplankton, as opposed to the advected 

populations of riverine or marine origin that were prevalent in the estuary. They compared 

water residence times and bacterial doubling times across seasons and the salinity gradient, 

finding that a local estuarine community developed at intermediate salinity only in the summer 

and fall, when water residence time was much longer than average doubling time, thus allowing 

the local community ample time to develop. In contrast, no local bacterial community developed 

in spring, when residence time was similar to average doubling time—apparently short enough 

to prevent the development of new estuarine bacterioplankton populations [91]. 

 Benthic control of phytoplankton biomass: Several authors have compared benthic grazing 

timescales to transport and/or phytoplankton growth timescales to understand controls on 

estuarine aquaculture potential [134] or phytoplankton biomass [25,61,124,232–234]. Extending 

the conceptual model of Dame [233] (who expanded that of Smaal and Prins [234]), Strayer et 

al. [232] presented a graphical conceptual model (Figure 19A) of phytoplankton regulation as a 

function of hydrologic residence time on the horizontal axis and bivalve clearance time (i.e., time 

for a bivalve population to clear the overlying water column of phytoplankton through their 

pumping) on the vertical axis. They described three regimes within that 2D timescale space, each 

associated with a different control on phytoplankton biomass (advective loss, bivalve grazing, 

or phytoplankton growth), stating that the regime boundaries would vary as a function of 

phytoplankton net growth rate. The Strayer et al. [232] conceptual model (Figure 19A) was used 

to show how bivalve clearance rates changed as a function of bivalve invasion or population 

decline. The Strayer et al. [232] conceptual model was later extended through (1) the 

generalization of the benthic grazing timescale to include potentially any in situ loss process and 

(2) normalization of the loss and transport timescales by the algal growth timescale (Figure 19B) 

[23]. The latter model was derived from the simple, dimensionless expression in Equation (7), 

was consistent with the Strayer model control domains, and showed that the regime boundaries 

are in fact defined by two timescale ratios, i.e., at �����
∗  = 1, �����

∗  = 1, and �����
∗  = �����

∗  (see 

description in Section 3.2.3). These conceptual models, together, demonstrate the utility of 

timescales (and their ratios) in understanding and delineating the conditions under which an 

ecosystem response (e.g., algal biomass accumulation) is controlled by one of several processes. 
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Figure 19. (A) The conceptual model of Strayer et al. [232], which extended that of Dame [233] and 

described three domains of control of phytoplankton (i.e., by advection, bivalve grazing, or 

phytoplankton growth). Strayer et al. [232] explained that domain boundaries may be different from 

those shown, depending on phytoplankton net growth rates. Arrows describe how bivalve clearance 

times in five estuarine, river, and stream ecosystems changed over time as a result of bivalve invasion 

or population decline. Ecosystems are the following: HR, the Hudson River (New York, USA) after the 

Dreissena polymorpha (zebra mussel) invasion; SB, Suisun Bay (California, USA) after invasion by 

Potamocorbula amurensis; CB, the Chesapeake Bay (USA) after the decline of oyster populations; ENAS, 

a typical eastern North American stream after unionid decline; and PR, the freshwater tidal Potomac 

River (Maryland, USA) after the Corbicula fluminea invasion. (Redrawn from Strayer et al. [232] with 

the permission of D. Strayer.) (B) Reprise of Figure 15 with shaded areas added to describe domains 

of control on phytoplankton biomass [23], extending the conceptual model of Strayer et al. [232] in 

panel (A). Contours represent values of ����
∗ , the ratio of outgoing algal biomass concentration to 

incoming concentration. (From Lucas et al. [23].) 

3.4. Evaluating Connectivity 

Quantification of the connectivity between aquatic ecosystems, or between sub-regions within a 

single ecosystem, can be critical to understanding issues such as pollutant dispersal, protection of 

sensitive areas, algal bloom location, and other challenges faced by resource managers. Timescale 

estimation can form an important foundation for performing such quantitative assessments. For 
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example, de Brauwere et al. [95] ran a 2D tracer transport model for the Scheldt Estuary (Belgium, 

Netherlands), implementing the forward approach of Gourgue et al. [192] to compute exposure 

times. Following [235], they divided the estuary into 13 subdomains (Figure 20A), each of which had 

an associated numerical tracer. Their approach permitted them to compute for each region i and 

tracer a subdomain exposure time (SET), i.e., the total time spent in subdomain j by water initialized 

in subdomain i, including successive visits to subdomain j. The SET provides “a rough picture of where 

the water parcels released at different places spend most of the time on their journey out of the domain of 

interest” [95]. After normalizing SET by the total time spent in the estuary, these quantitative 

interconnections between subdomains were visualized as connectivity matrices (Figure 20B), 

inspired by the dependency matrix of Braunschweig et al. [236]. The connectivity matrix allows for 

the identification of “preferential connections” and disconnections between subdomains, as well as 

regions with longer relative exposure times [95]. As pointed out by the authors [95], this sort of 

information can be useful in identifying which parts of the larger system will likely be affected by 

pollution released in a particular subregion. 

 

Figure 20. (A) Zoom-in of the computational mesh of De Brauwere et al. [95], showing subregions of 

the Scheldt Estuary referred to in (B). Subregions were based on the compartmentalization of [235]. 

(B) Connectivity matrix based on computations of “subdomain exposure times” with a 2D tracer 

transport model. Colors represent the relative time spent in a particular subregion numbered on the 

horizontal axis by tracer initialized in a subregion on the vertical axis. (Modified from De Brauwere 

[95], with permission from Elsevier). 

Inspired by Liu et al. [190], Mouchet et al. [140] produced similar matrices of connectivity by 

generalizing the concept of age to “partial ages”, i.e., the amounts of time spent by a particle in 

different subregions on its way to location x within a water body. Age can be conceptualized with a 
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clock attached to a particle, the clock beginning to tick when the particle enters the water body (or at 

the moment of the particle’s birth [140]); the age is the time noted at the instant the particle arrives at 

location x. With partial age, on the other hand, every water particle has several clocks (one for each 

subregion) rather than one, and only one clock is ticking at a time, depending on the subdomain in 

which the particle is located [140]. Unlike the traditional concept of age, which provides only time 

spent in the system generally before reaching x, partial age provides information on the histories of 

particles and “some knowledge of the paths followed by the particles to reach a given region” [140]. The 

authors applied this approach to the problem of ventilation of the world’s deep oceans by water 

parcels after they touch the surface. Those authors defined subregions of the world ocean (Figure 

21A) and developed connectivity matrices based on simulations with a global ocean circulation 

model (Figure 21B). Manning et al. [103] developed a similar connectivity matrix for the Gulf of Maine 

based on the analysis of real drifter tracks. The reader is also referred to the work of Lin and Liu [141], 

who provided a method for computing “partial residence times” (i.e., the amounts of time spent by 

a particle in different subregions before leaving a water body; see Figure 11 and Section 2.3.2). Other 

studies employing timescales in the investigation of connectivity include: 

 Exposure of marine protected areas (MPAs) to shipping-related pollution: Delpeche-Ellmann et al. [56] 

analyzed the paths of GPS-tracked surface drifters released in the Gulf of Finland’s main 

shipping fairway, providing insight into which MPAs on the edges of the Gulf are most likely 

to be affected by pollutants originating in the fairway, as well as timescales for transport to the 

MPAs. The transport timescales provide information for environmental managers regarding the 

time available to respond to pollutant spills and contain them before they reach MPAs. 

 “Material connectivity”: Oldham et al. [229] noted that, in the field of hydrology, there have been 

numerous efforts at characterizing hydrological or hydraulic connectivity between landscapes; 

whereas, to their knowledge, there had been no attempts to “characterise connectivity in terms of 

the ‘effectiveness’ of transferring material,” a notion which those authors termed “material 

connectivity.” They argued that material connectivity must account for both physical transport 

and biological or chemical processing, since two environments may have strong hydrological 

connectivity between them but, if material carried by the water undergoes significant removal 

during transit, the material connectivity may be poor. The ratio of a transport timescale τtran to a 

reaction or “material processing” timescale τrxn—termed the Damköhler number (Da) in the 

chemical engineering literature and generalized by Oldham et al. [229]—was proposed to 

capture the conditions under which material connectivity is strong or weak. For example, when 

reactions remove a constituent during transit and Da = τtran/τrxn >> 1, transport is very slow 

compared to in situ loss processes; the constituent material will be substantially lost during 

transport, resulting in material disconnectivity even under conditions of hydraulic connectivity. 

On the other hand, if Da << 1, transport is very fast compared to processing, the material behaves 

essentially conservatively, and material connectivity is therefore strong. Relatedly, Brodie et al. 

[237] estimated residence times for freshwater and several water quality constituents exported 

to the Great Barrier Reef and made the case that residence times of pollutants in that system are 

potentially much greater than those of the water itself, contrary to common assumptions. 

 Harmful algal bloom (HAB) initiation in geometrically complex estuaries: Qin and Shen [199] 

performed both theoretical analyses and 3D numerical modeling to understand the roles of 

estuary geometry and hydrodynamic connectivity between estuary subregions in determining 

where HABs are first observed to begin. (For their species of interest, a density of 1000 cells/mL 

was defined as the HAB threshold). Their idealized analytical model (in which residence time 

was a key parameter) predicted that the location of first HAB occurrence in a hydraulically 

interconnected system of two water bodies (e.g., the mainstem of a tidal river and its tributary) 

is determined by the relative ratios of residence time to volume (τr/V) for the two water bodies. 

A HAB was predicted to be observed first in the water body with the larger τr/V ratio, i.e., the 

longer residence time and/or smaller volume. Results from numerical experiments with a 3D 

transport-reaction model of the lower James River (Figure 22A) were consistent with the 

theoretical model, demonstrating that—regardless of the initial source location of cells—
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flushing (represented by model-computed τr) and subregion volume V are indeed dominant 

factors determining where a HAB is first observed. Specifically, their 3D simulations were 

initiated with a non-zero algal concentration in the bottom layer of the lower James River 

mainstem (see Figure 22B), to represent cyst release in that region; initial algal concentrations 

were zero elsewhere, including in the tributaries. Nonetheless, only a few days were needed for 

concentrations in the tributaries to be higher than in the mainstem, initiated by cell transport 

from the mainstem driven by estuarine circulation. Simulated bloom-level densities ultimately 

developed first in the tributaries (Figure 22D), as predicted by the theoretical model. Both 

numerical and analytical results are consistent with, and help explain, first occurrences of toxic 

algal blooms in that system, which are frequently observed in the Lafayette River, a relatively 

small tributary to the James with a long residence time. 

 

Figure 21. (A) Horizontal partitioning of the world ocean by Mouchet et al. [140] for use with a global 

ocean circulation model to evaluate connectivity between 30 different subdomains (each horizontal 
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partition is split into three boxes in the vertical dimension, denoted by “s” for surface, “i” for 

intermediate, or “d” for deep in (B)). (B) Connectivity matrix showing computed “partial age” (ai,j) 

for all subdomains, i.e., the mean time spent by particles in any subdomain i (vertical axis) before 

reaching the subdomain of interest j (horizontal axis). Partial age is normalized by the mean (total) 

water age in the corresponding sub-domain. (Adapted by permission from Springer Nature Customer 

Service Center GmbH: Springer Nature, Ocean Dynamics, Partial ages: diagnosing transport 

processes by means of multiple clocks, Mouchet et al., 2016. 

https://www.springer.com/journal/10236). 

 

Figure 22. (A) Map of the lower James River (USA) and its tributaries [199]. From a 3D model 

simulation performed by Qin and Shen [199], algal cell densities (B) specified as the initial condition 

(non-zero cell densities initially only in the bottom layer of the lower James River mainstem), and 
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computed cell densities (C) after 0.75 d; (D) after 24.29 d, when average surface density of the entire 

Lafayette River first reached bloom levels (1000 cells/mL); and (E) after 33.54 d, when the average 

surface density of the mainstem first reached bloom levels. These results are consistent with 

observations and with a simple theoretical model indicating that a simple parameter—the ratio of 

subregion residence time to its volume—can predict where harmful algal blooms are first observed 

[199]. (Modified from Qin and Shen [199], with permission from Elsevier). 

3.5. Comparing Systems across Space or Time 

Timescale estimates can serve as useful metrics to explain differences in functioning between 

aquatic ecosystems, or within a single system as a function of space or time (or, equivalently, varying 

conditions). As an example of all three comparison types, Peierls et al. [57] and Hall et al. [238] 

analyzed sample data for phytoplankton biomass (chlorophyll a) and estimated flushing times for 

two microtidal North Carolina (USA) estuaries—the New River Estuary (NewRE; [57,238]) and the 

Neuse River Estuary (NRE; [57])—to understand phytoplankton dependence on hydrologic 

variability and other factors. Because these estuaries are river dominated, the authors implemented 

the “date-specific freshwater replacement method” [239] to obtain flushing times across a range of 

hydrologic conditions for 9 (11) contiguous estuary segments encompassing their sampling stations 

in the NewRE (Figure 23A) (NRE (Figure 23C)). This transport timescale represented for each estuary 

segment the cumulative sum of flushing times upstream of and including that segment, serving as 

an estimate of the freshwater age [238]. This approach collapsed two parameters—location within the 

estuary and flow rate—into a single parameter (an advective timescale), while also producing a larger 

dataset than would have resulted if they had treated the estuary as a whole [57]. Phytoplankton 

biomass for both rivers had a non-monotonic relationship with flushing time (see Figure 23B,D 

herein), displaying a positive slope for flushing times shorter than a threshold value (~10 d [57]), a 

negative slope for flushing times above the threshold, and peak values near the threshold. The 

unimodal phytoplankton–flushing time relationship was interpreted as an indicator of a changing 

growth-loss balance over space and time [23,57] (see also Section 3.2.3 above). Specifically, the 

positive phytoplankton–flushing time relationship for shorter flushing times was taken as an 

indicator that intrinsic growth rate in those cases was faster than losses, likely due to high riverine 

nutrient concentrations in upstream reaches [238]. Whereas the negative phytoplankton–flushing 

time relationship for flushing times larger than the threshold was seen as an indicator of in situ losses 

that were faster than growth, possibly due to a combination of nutrient- limited growth and enhanced 

zooplankton grazing at the longer flushing times. This hypothesis was bolstered by the occurrence of 

nitrate depletion at similar flushing times as for peak algal biomass (i.e., around the 10-day threshold) 

[57]. Notable was the fact that these two distinct estuaries exhibited similar phytoplankton responses 

to flushing time, as well as similar threshold values [57]. The authors suggested that these unimodal 

chlorophyll a-flushing time patterns may be expected in other river-dominated estuaries where 

primary production is driven by riverine nutrients and flushing times range from values too-short to 

amply-long for complete assimilation of riverine nutrient loads [57,238]. Hall et al. [238] found similar 

non-monotonic relationships between photopigment concentrations (indicators of phytoplankton 

community composition) and flushing time in the NewRE. These linked studies provide a valuable 

example of how a suitably defined timescale can concentrate spatial and temporal variability into a 

single metric, thereby bringing simplicity and shape to ecological complexity and assisting in the 

identification of useful patterns. 
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Figure 23. From Peierls et al. [57], maps of the (A) New River Estuary (NewRE) and (C) Neuse River 

Estuary (NRE); for the (B) NewRE and (D) NRE, observation based ln(chlorophyll a) versus flushing 

time estimated with the “date-specific freshwater replacement method” [239]. (Adapted by 

permission from Springer Nature Customer Service Center GmbH: Springer Nature, Estuaries and 

Coasts, Non-monotonic Responses of Phytoplankton Biomass Accumulation to Hydrologic 

Variability: A Comparison of Two Coastal Plain North Carolina Estuaries, Peierls et al., 2012. 

https://www.springer.com/journal/12237). 

Other examples of studies in which timescales served as key diagnostics in cross-system, spatial 

or temporal ecosystem comparisons include [54,177,199,210,214,226,240–242], as well as the 

following: 

 Ecosystem responses to management actions: To understand changes in hydrodynamics, water 

quality, and ecosystem processes induced by the installation of a temporary physical salinity-

intrusion barrier in the Sacramento-San Joaquin Delta (California, USA), Kimmerer et al. [62] 

employed high-speed boat-based isotope mapping (same approach as in [173]) to produce 

spatial patterns of water age with and without the barrier. Benthic grazing turnover time (i.e., 

time for benthic bivalve population to filter through the entire overlying water column) was also 

estimated as one measure of ecosystem response to related changes in salinity. 

 Variability and drivers of estuarine flushing: In order to investigate the sensitivity of flushing in 

Mobile Bay (Alabama, USA) to river flow, wind, and baroclinic forcing, Du et al. [243] estimated 

both bulk (e-folding flushing time) and spatially variable (freshwater age) transport timescale 

metrics using a 3D numerical model. Deriving a simple empirical flushing time–discharge 

relationship based on a set of sensitivity runs and comparing to previous estimates based on a 
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2D depth-integrated model [244], they concluded that baroclinic processes reduce flushing times 

by approximately half. The spatial and temporal transport time patterns produced in these 

analyses (Figure 24 herein) could serve as valuable information toward interpreting variability 

in water quality and ecosystem processes. 

 Retention of harmful algal cells: Ralston et al. [127] employed a 3D coupled hydrodynamic-

biological model of the Nauset Estuary (Massachusetts, USA) to explore the physical and 

biological processes controlling recurrent blooms of the toxic alga Alexandrium fundyense. 

Implementing an e-folding approach to calculate A. fundyense residence times under a range of 

conditions, they explored the influence of swimming behavior, spring-neap tidal phase, wind, 

and stratification on retention of cells in one of the estuary’s salt ponds, concluding that all four 

processes are major factors determining retention. Although growth and mortality were turned 

off in these simulations, the computed residence times are particularly holistic, in that they not 

only include 3D hydrodynamic processes but also organism behavior (see Figure 25 herein). 

 Ecosystem transformations by bivalves: The graphical timescale-based conceptual model of Strayer 

et al. [232] (see Figure 19A and Section 3.3 above) describes the evolution of five aquatic 

ecosystems in response to major changes in bivalve grazer populations. The process controlling 

phytoplankton was shown to be capable of shifting between advection, grazing, and algal 

growth as a function of either bivalve invasion or population decline. 

 Hydrologic influence on zooplankton communities: Augmenting an 18-year field dataset with 

calculated water residence times, Burdis and Hirsch [33] explored several potential 

environmental drivers of zooplankton community structure in a natural riverine lake. As 

hypothesized, they found that water residence time was the most important driver of zooplankton 

abundance and community structure. Similar to Peierls et al. [57] and Hall et al. [238], use of a 

transport timescale allowed these authors to collapse spatial location and temporally variable 

hydrology into a single variable associated with each sample. 
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Figure 24. Maps of computed vertical mean freshwater age in Mobile Bay for (A) the dry season and 

(B) the wet season, based on the 3D numerical modeling of Du et al. [243]. Timeseries of (C) river 

discharge, (D) wind speed, and (E) computed freshwater age averaged over the main bay. For the age 

timeseries, surface water is gray, bottom water is black, and the vertical age difference is cyan [243]. 

(Modified with permission from J. Du, Journal of Geophysical Research: Oceans; published by Wiley, 

2018). 
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Figure 25. Computed residence times for the toxic alga A. fundyense based on the 3D model of Ralston 

et al. [127] for a pond within the Nauset Estuary (Massachusetts, USA). The different bars represent 

a variety of swimming and forcing cases under spring and neap tide conditions. “Swim”: diel vertical 

migration up to 1/kw depth, where kw is the light attenuation coefficient. “Don’t swim”: no vertical 

migration. “Swim to surface”: diel migration to the surface. “Swim + barotropic”: diel vertical 

migration to 1/kw with barotropic physics (uniform water density and thus no stratification). “Swim + 

barotropic + no wind”: diel vertical migration to 1/kw with barotropic physics and zero wind forcing. 

Horizontal lines: the residence time for tidal exchange assuming a well-mixed pond (volume of 

pond/tidal volume exchange), shown for reference. (Redrawn from Ralston et al. [127] with the 

permission of D. Ralston). 

4. Discussion 

4.1. The Timescale “Tower of Babel” 

In their seminal 1973 article on diagnostic timescales, Bolin and Rodhe [94] stated (what should 

have been) the obvious: “To avoid misunderstandings and even erroneous conclusions it is important to 

introduce precise definitions and to use them with care.” Surprisingly, or not, this wise piece of advice has 

been ignored by many [79]. (Indeed, we authors have at times committed the sins of sloppiness, 

ambiguity, and imprecision when using or referring to timescales in our own work.) This has led to 

a situation half-jokingly referred to as the “Tower of Babel” [79] by Viero and Defina [137], which we 

interpret as a reference to a wealth of poorly defined diagnostic timescales used rather carelessly or 

even timescales contradicting their very definitions, eventually causing misleading interpretations 

and conclusions to be produced [26,79]. 

The collective efforts of many scientists persist toward (1) establishing clear, consistent, and 

rigorous timescale definitions, (2) carefully choosing timescales and calculation methods appropriate 

to a scientific question, and (3) providing detail and transparency with respect to assumptions and 

calculation methods in presentations of studies implementing timescales. Realistically though, we 

may never—as an aquatic science community—converge on a universal set of timescale terms and 

definitions (objective (1) above). For that reason, objectives (2) and (3) are all the more important. 

Thus, the recommendations of Bolin and Rodhe [94] and many others [79,87,88,110] remain as 

relevant as ever. 

For evidence of the importance of choosing timescales with care, one need only look at the 

numerous studies that have estimated different transport timescales and/or implemented different 
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estimation methods for a single water body and set of conditions and then compared the results. 

Table 2 cites several such studies, summarizing for each one the magnitudes of the different timescale 

types and assessing the range of values as the ratio of the maximum transport timescale magnitude 

for that study to the minimum. In most cases cited in Table 2, timescale magnitudes spanned at least 

two orders of magnitude, demonstrating the criticality of choosing the most suitable timescale for the 

scientific question and setting of interest. Moreover, just as there is much to be learned from inter-

comparisons between aquatic ecosystems, portions of an ecosystem, or behaviors of an ecosystem 

across different time periods, valuable insights can be gained from the comparison of different 

timescales. For example, dispersive timescales for the Bay of Quinte were on the order of 1–3 years, 

whereas other transport timescales were on the order of a month or two (Table 2, [147]). Oveisy et al. 

[147] viewed this difference as an indicator that advective transport must play an important role in 

flushing of that system. The reader is also referred to Andutta et al. [22], who performed an extensive 

comparison of several transport timescale estimates for eight different estuaries (not included herein) 

and found variability similar to that shown in Table 2. 

Table 2. Compilation of transport timescales estimated in previous studies. Data is based on sources 

in “Author(s)” column. max(τ)/min(τ) is the ratio of the maximum timescale value to the minimum 

value for a water body and set of conditions. Q is volumetric flow rate. V is water body volume. M is 

total tracer mass. �̇ is mass loading rate. L is length. U is mean velocity. U’ is average deviation from 

depth-mean velocity. Ao is tidal amplitude. TEF is “total exchange flow” [122], an approach for 

estimating a salinity turnover time. “tc” is tidal cycles. Footnotes provide methodological 

information. Other specifics such as temporal or spatial averaging of parameters or timescales vary 

between authors; please see those publications for details. 

Author(s)  Water Body Time Period/Conditions Timescale(approach) Value 
���(�)

���(�)

Jouon et al. [112] SW lagoon of New Caledonia 
Constant, moderate trade 

wind 

V/Q 1 6.8 d 

2 Mean residence time 2 10.8 d 

e-folding 3 11.4 d 

Lemagie and Lerczak 

[110] 
Yaquina Bay (USA) Q = 10 m3/s, Ao = 125 cm 

TEF 1,4 3.96 tc 

26 

Tidal prism 1,4 1.27 tc 

Freshwater fraction 1,4 12.63 tc 

Transit (e-folding) 2,4 32.6 tc 

Flushing (e-folding) 2,4 5.16 tc 

Monsen et al. [87] Mildred Island (USA) June 1999 (low flow) 

V/Q 5 31-50 d 

17–28 
e-folding 6 7.7 d 

� �̇⁄  7 8.3–9.1 d 

Mean age 6,8 1.8 d 

Oveisy et al. [147] Bay of Quinte (Canada) Summer 2004 

e-folding 3,10 44 d 

14 
V/Q 1,9,11 64 d 

Residence time 2,10 52 d 

Dispersion 3,10 1.7 y 

Rayson et al. [100] Galveston Bay (USA) 
Mid–late April 2009 (peak 

flow) 

Freshwater fraction 1 ~10 d 

2 

TEF 1,12 ~20 d 

Mean residence time 2,12 ~20 d 

e-folding 2,12 ~20 d 

Mean age 3,12 ~20 d 

Rayson et al. [100] Galveston Bay (USA) Late July 2009 (low flow) 

Freshwater fraction 1,12 ~200 d 

10 

TEF 1,12 ~20 d 

Mean residence time 2,12 ~25 d 

e-folding 2,12 ~50 d 

Mean age 3,12 ~30 d 

Tartinville et al. [113] 
Mururoa atoll Lagoon (French 

Polynesia) 

Tides, wind, hoa inflow, 

stratification 

L/U 1 8.3 d 

1113 
L/U’ 1 5.3 d 

Diffusion 13  5900 d 

e-folding 2 114 d 

1 3D hydrodynamic model. 2 3D model with particle tracking. 3 3D model with tracer(s). 4 Based on 

power law regression of computed timescales as a function of discharge and tidal amplitude. 5 2D 

hydrodynamic model. 6 2D model with particle tracking. 7 2D model with tracer. 8 Mean of average 
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ages for two locations and two time periods. 9 Observations. 10 Mean of timescales calculated for 

individual tributary inflows. 11 Based on total discharge from all main tributaries. 12 Estimated based 

on visual inspection of published figures. 13 Diffusivity based on Okubo [245]. 

It is interesting and encouraging to note that, despite the quantitative differences between 

different timescale types as shown in Table 2, some synthetic studies relying on transport timescale 

values from several sources and water bodies (and calculated using a diversity of methods) have 

nonetheless produced statistically (and ecologically) significant relationships. In particular, Nixon et 

al. [226], Dettmann [214], and Seitzinger et al. [54] all relied on diverse data sources for transport 

timescales to develop their simple mathematical models describing nutrient fate as a function of 

transport time. (Note that [54,214] drew on data from [226].) Their models performed well, especially 

for ecology! One can wonder whether the performance of these models would be improved further 

if consistent transport timescale estimation methods had been available to populate each of the 

authors’ datasets. 

4.2. Holism of Timescales 

In Section 2, we discussed three broad categories of methods for estimating diagnostic 

timescales: (1) arithmetic manipulation of process rates, (2) field-based approaches implementing 

drifters or tracers, and (3) solution of partial differential equations with numerical models. Here, we 

discuss how categories (1) and (3) (primarily mathematical approaches) may be viewed as inhabiting 

different regions on a continuum of mathematical complexity. Further, we describe implications of 

that mathematical complexity for the potential holism of the resulting timescale and also discuss 

field-based timescale methods in this context. 

Scientists for whom field-based timescale estimation approaches are not an option still have a 

broad range of methodological choices. We propose that method choice in that case can be reduced 

to two primary considerations: mathematical complexity of the calculation method and holism of the 

resulting timescale (i.e., the degree to which all relevant processes operating in the real system are 

taken into account). A holistic timescale is one that represents the net effect of a broad collection of 

driving processes (e.g., tides, wind, river inflow, density gradients, reactions, organism behavior) 

[139]. A non-holistic or “atomistic” timescale, by contrast, only represents a single process or tightly 

entwined set of related processes (such as the cross-sectional shear and mixing (and all the processes 

that influence them) that together result in the “process” of longitudinal (or shear flow [52,246]) 

dispersion). In cases where one wants to compare a biogeochemical process with the overall effect of 

physical transport, a holistic transport timescale including the effects of all major hydrodynamic 

influences may be particularly useful. Timescale holism is represented by the vertical axis in Figure 

26. 
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Figure 26. Schematic of diagnostic timescale holism as a function of the mathematical complexity of 

the calculation method (for computed timescales only). Timescales based on simple algebraic 

expressions tend to be less holistic, but potentially more useful for purposes of assessing dominant 

processes (Regime A). Complex numerical models have the potential to produce highly holistic 

timescales (Regime C) as well as timescale estimates at high spatial and temporal resolution. The 

effective level of holism depends on the process richness captured by the model simulation. More 

holistic timescales may be less useful for disentangling the relative speeds (and potential dominance) 

of individual processes (“process attribution”). Moderately holistic timescales may be derived from 

moderately complex numerical models or methods (Regime B) or from complex models that exclude 

some important processes (mid-region of Regime C). Examples: ●—adv =L/U or diff =L2/K. ○—��������� 

and ���������� from Andutta et al. [22], Equations (9) and (10) herein. Timescales derived from the 1D 

models of Delhez and Deleersnijder [200] or Vallino and Hopkinson [160] (∎); the 2D depth-averaged 

model of Monsen et al. [87] (□); the 1D hydrodynamic-biological model of Delhez et al. [189] (×); the 

3D hydrodynamic and transport model of Gross et al. [174] (∗); the 3D hydrodynamic and particle 

tracking model described by Defne and Ganju [101], with progressively more physical processes 

included (starting with white triangle progressing upward to black triangle; also see Figure 10 herein); 

the 3D hydrodynamic-ecological model of Ralston et al. [127] with progressively more physical 

processes and dinoflagellate swimming behaviors (starting with white five-pointed star up to black 

five-pointed star; also see Figure 25 herein). 

If we consider the mathematical complexity of the timescale estimation method (horizontal axis 

in Figure 26), the simple arithmetic relationships in Table 1 (and Section 2.1) inhabit the left end of 

the schematic (Regime A). These sorts of methods were available long before realistic multi-

dimensional numerical modeling was computationally feasible; thus, we refer to their results as 

“classical” timescales, following Deleersnijder [139]. These are generally “bulk” approaches and, as 

such, typically do not carry much if any resolution in space or time. As they usually describe a single 

process (e.g., advection or diffusion), these relationships (e.g., L/U or L2/K, respectively) tend to be 

relatively atomistic (see filled circle in Figure 26). Consequently, classical timescales have proven 

useful in estimating the relative magnitudes of the terms in the governing equations of eco-

hydrodynamics [139] or in comparing the speeds of different processes operating in an aquatic 

system (Section 3.3). It should be noted that while these classical algebraic timescale expressions may 

have the advantage of being mathematically simple, the methods to quantify the necessary 

parameters can be non-trivial. 

Over the past couple decades, a very different set of timescale estimation approaches has 

emerged, involving detailed multi-dimensional numerical models that solve PDEs [22,139]. These 

methods (Section 2.3) reside in the middle to right side of Figure 26 and have the potential to be 
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highly holistic (e.g., [174]; asterisk in Figure 26). The details of how the model is implemented and 

how much process richness is captured by the model simulation determine the level of holism 

associated with the resulting timescale. In fact, timescales derived in this way can be ultra-holistic, 

not only incorporating many hydrodynamical processes and forcings but also biological or 

geochemical processes, if represented in the model [107,127,188,189]. Many of these methods allow 

the calculation of timescales at any time or position in the computational domain (e.g., see Figures 

10–12,24), a key difference from typical bulk approaches. 

In contrast to more atomistic timescales, holistic timescales are not as well suited to 

understanding the relative speed (or, potentially, dominance) of individual processes (i.e., “process 

attribution” in Figure 26). If we take the advection versus diffusion example, the atomistic timescales 

L/U and L2/K allow for the direct comparison of the two processes. Whereas, residence time derived 

from a realistic 3D transport model will likely incorporate both processes into it, communicating their 

combined effect; this is something a classical timescale usually cannot achieve, unless one process is 

far more dominant than all others. Thus, atomistic timescales may bear little quantitative resemblance 

to holistic timescales [87,113], since they exclude the subtle and complex interplay between multiple 

processes operating in real systems and captured by realistic models [139]. Process attribution is 

perhaps less easy with a numerical PDE-based method than with simple algebraic expressions, but it 

is not impossible. It simply requires a different approach, such as sensitivity analyses that turn 

individual processes on or off, or coefficients up or down (e.g., [101,127]; triangles and five-pointed 

stars in Figure 26). 

Holistic timescales obtained from the numerical solution of PDEs are quite complex. The 

equations may be considered indisputable, but the initial and, above all, boundary conditions are not. 

They have a tremendous impact on the values of the computed timescales and must be prescribed 

with care, in accordance with the declared objectives of the study [79]. This crucial point is sometimes 

overlooked. For instance, there are many published papers in which the timescale related PDEs are 

correctly laid out with, unfortunately, little said about boundary conditions. 

There is a middle ground between the classical, atomistic timescales and those estimated from 

detailed numerical models. Some authors have shown that a small increase in mathematical 

complexity can markedly increase timescale holism. For example, based on the adjoint of the 1D 

advection–diffusion equation applied to V, a portion of the volume of an idealized infinite pipe, 

Andutta et al. [22] derived analytical expressions for domain-averaged residence time and exposure 

time (Equations (9) and (10) below, respectively), under the combined influence of advection and 

diffusion: 

��������� =
�

��

�
1

2
� +

�

��

�
1

��� − 1
−

1

��
�   (9) 

��������� =
�

��

�
1

2
� +

�

��

�
1

��
−

1 − ����

���
� (10) 

Pe is the dimensionless Peclet number, the ratio of the diffusive timescale to the advective timescale, 

and QR is the volumetric flow rate. Andutta et al. [22] also derived similar closed-form relationships 

for location-specific residence time and exposure time and for the water renewal time as well (not 

shown). With these expressions (see open circle in Figure 26), one can buy two processes for barely 

more than the calculational price of one! 

Similarly, it has been shown that, for a well-mixed aquatic system subjected to steady-state 

hydrodynamic exchange processes with the surrounding environment, the effective residence time 

for a reactive tracer undergoing first-order decay is [35]: 

����
∗ =

������������

������ + ������

 (11) 

where ����
∗  is the mean time for particles to leave the domain by crossing an open boundary as 

dictated by the hydrodynamics and/or by vanishing as a result of the (e.g., radioactive, 

biogeochemical) decay process. ������  is the mean life of the tracer (i.e., 1/μdecay, where μdecay is the 

specific decay rate and is assumed positive), and ������  is the time that would be taken by a 
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conservative particle to leave the domain under hydrodynamic forcing only. These timescales satisfy 

[118]: 

����
∗ ≤ ����������, �������   (12) 

In other words (and unsurprisingly), the time a particle is to be taken into consideration in the domain 

of interest is no larger than the timescale characterizing outward transport or that related to the first-

order decay. The combination of both processes causes the tracer to vanish faster than if only one of 

these phenomena were at work. ������  could be estimated via classical algebraic residence time 

formulations, resulting in a more atomistic transport timescale (Regime A in Figure 26), by 

moderately complex approaches (Regime B), or by complex multi-dimensional numerical models 

(Regime C), potentially producing a holistic transport timescale. The latter approach would result in 

a hybrid expression for ����
∗ , i.e., one that is a function of a classical, atomistic timescale (������) and 

a holistic one (������). The elegance of Equation (11) lies in the fact that a single algebraic timescale 

expression captures the interactions between two disparate sets of processes (transport and decay), 

the reciprocal of which can be implemented as an effective loss rate in the traditional exponential 

decay relationship [118]: 

�(�) = �(0)��(�∗)�   (13) 

where m(t) and m(0), respectively, are the tracer mass in the domain at times t and 0, and μ= 1/����
∗  

is an effective loss rate resulting from the combination of hydrodynamic transport processes and non-

transport decay processes. It is possible also to express the combined effect of decay and oscillatory 

transport between a domain and its adjacent environment (as captured by the exposure time) with a 

simple expression similar to Equation (11) above [118]. Other moderately complex mathematical 

methods for estimating timescales could involve simpler numerical models, such as 1D models (e.g., 

[160,200]; filled square in Figure 26), a 2D depth-averaged model incorporating tides, water 

diversions, and river flow but not wind or stratification (e.g., [87]; open square in Figure 26), or a 1D 

physical-biological model (e.g., [189]; “×“ in Figure 26). 

Figure 26 represents a first (and admittedly simplified) attempt at schematically capturing the 

general relationship between mathematical complexity and holism for computationally derived 

timescales. But what about timescales based on field observations, such as those involving tracers or 

drifters? Our expertise does not lie in field-based methods, so we will leave the development of such 

a diagram, if useful, to the appropriate experts. That said, we have reason to believe that such a 

diagram for field-based timescales would differ from Figure 26. First, field tracer- or drifter-derived 

timescales are inherently holistic, because observed drifter movements and tracer concentration fields 

are subject to the full set of physical drivers operating in the real system. These timescales are neither 

reliant on a modeler’s realistic incorporation of all relevant processes into their model, nor are they 

subject to numerical inaccuracies or instabilities, although they may be subject to other limitations or 

errors [104,142,152], as discussed in Section 2.2. For example, timescales based on drifters that track 

the surface or another fixed depth may be less holistic than those based on tracers because the former 

would not be free to travel vertically and thus sample the range of velocities that real water parcels 

would [104,142]. Second, complex mathematical methods have been applied to field tracer or drifter 

data toward a variety of objectives such as enhancing spatial coverage [142] or revealing temporal 

variability [41]. Advanced mathematical treatments have been implemented to correct for 

disconnects between the behavior of drifters (e.g., which are subject to grounding) and that of water 

particles (which generally refloat after touching the shore) [104]. Such corrective methods could be 

viewed as enhancing the holism of the timescale. On the other hand, advanced statistical approaches 

have also helped in disaggregating the effects of different processes (e.g., mean advection versus 

eddies [142]) on transport timescales. Thus, for field-based timescales, increased mathematical 

complexity appears to potentially result in either increased or decreased timescale holism. 

Much emphasis is placed (in this paper and in aquatic science generally) on the transport and 

renewal timescales of water. But many resource-management questions concern constituents other 

than pure water. It is an open question whether and to what extent water transport or renewal 

timescales are representative of, for example, dissolved and particulate pollutants, planktonic 
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organisms, and suspended sediment [35,237,247]. We must often assume, given the information that 

is available, that water is a proxy for the other constituents carried with it. Ultra-holistic timescales, 

which incorporate reaction-, behavior-, or buoyancy-driven processes as well as hydrodynamic ones 

(e.g., [107,127,189])—and their comparison to pure water transport timescales—may help us 

understand how good of a proxy water is for transported constituents. This is an area ripe for future 

study. 

5. Conclusions 

In the foregoing pages, we have discussed a variety of diagnostic timescale definitions, 

estimation methods, and applications, with a focus on coastal aquatic systems. It is critical to realize 

that most, if not all, of the timescales referred to above actually belong to only two categories, namely, 

the timescales concerned with the past and those looking into the future. Simply put, these two 

categories, respectively, can be considered in terms of the two types of questions that they aim to 

address for a particle: (1) How much time has elapsed since appearing in the domain of interest? (2) 

How much time will pass until it disappears from the domain of interest? 

The timescales of the first class may be called “age” in a generic manner, provided this concept 

is given a sufficiently general definition. Accordingly, we suggest that the age of a particle be defined 

as the time elapsed since it began to be taken into account, i.e., the time since it entered the domain 

of interest by crossing a boundary, by hitting a boundary where the age is (re-)set to zero, or by being 

produced by a reactive process. This description (following [189]) clearly goes beyond the traditional 

transport-specific definition of “age” in Section 1.3. 

The timescales looking into the future may be termed “exposure time”. For a given particle, it 

represents the time it will spend in the domain of interest until the particle ceases to be taken into 

consideration, either by being transported out of the domain once and for all or by being destroyed 

by a reaction. This broader definition also transcends the more traditional transport-oriented 

definition. The strict residence time is a special case of the exposure time, for in this case the particle 

is no longer considered at the instant it hits for the first time a boundary where the particle is assumed 

to be discarded. 

The aforementioned timescales (age and exposure time) are useful for estimating the water 

renewal rate of a semi-enclosed domain. To do so, the water is split into two types, i.e., the water 

present in the domain at the initial instant (original water) and the water progressively replacing it 

(renewing water). To evaluate how fast the original water leaves the domain, its exposure time is 

evaluated. The age of the renewing water allows one to estimate the rate at which this water enters 

the domain. This generic methodology was outlined in Gourgue et al. [192] and was applied by de 

Brye et al. [66] and Pham Van et al. [248]. At steady state, the domain-averaged age is equal to the 

domain-averaged residence time [249]. 

We have described how diagnostic timescales, which may be estimated in countless ways, can 

serve as useful tools for distilling the complexity of real ecosystems or numerical model outputs 

down to one or a few meaningful parameters; comparing the speeds of disparate (e.g., 

hydrodynamic, biological, geochemical, radiological) processes; quantifying connectivity; building 

simple ecosystem models; comparing ecosystems, portions of an ecosystem, or behaviors of a single 

system over time; and conveying qualitatively or semi-quantitatively how ecosystems work in 

conceptual models. The methods with which timescales are estimated can determine their 

applicability to the above uses and their relevance for addressing a given scientific question. One of 

the most appealing aspects of timescales lies in the simplicity they can lend as tools in environmental 

problem solving. Inspired by another scientist who reduced exceptional complexity down to the 

elegant and seemingly simple, we now recall the wise advice commonly attributed to Albert Einstein: 

“Everything should be made as simple as possible, but not simpler.” Timescales represent one method of 

reaching toward that simplicity. 
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Appendix A 

Let us consider a plug flow in a channel, i.e., velocity U is assumed cross-sectionally uniform 

and longitudinal mixing is zero. For a longitudinally uniform flow cross-section A and a constant 

volumetric flow rate Q (i.e., no tides), U is also longitudinally uniform (i.e., U = Q/A) and channel 

volume V = AL (see Figure A1). 

 

Figure A1. Depiction of plug flow (velocity U is uniform over the flow cross section; longitudinal 

diffusion Kx is zero) in an idealized channel, for which cross-sectional area A is longitudinally 

uniform, channel length is L, and volumetric flow rate Q (and therefore U) is constant and positive. 

Under these assumptions for a channel of length L, some transport timescales can be easily 

derived analytically, as follows: 

Age at location x (the time since entering the domain at x = 0): 

�(�) =
�

�
   (A1) 

Residence time at location x (time needed to travel to outlet at x = L from starting location x): 



Water 2020, 12, 2717 52 of 63 

�(�) =
� − �

�
   (A2) 

Transit time (time needed to traverse the entire channel from x = 0 to x = L): 

� = �(�) =
�

�
=

�

�
 (A3) 

Domain averaged age: 
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 (A4) 

Domain averaged residence time: 
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�

=
�

2�
 (A5) 

Note that the transit time (Equation (A3)) is twice the domain averaged age or residence time 

(Equations (A4) and (A5)). For one-dimensional analytical expressions for residence time and 

exposure time in the presence of both advection and longitudinal dispersion, the reader is referred to 

Andutta et al. [22]. 
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