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Abstract: With the increase in global urbanization, satellite imagery and other types of geospatial 

data have been extensively used in urban landscape change research, which includes environmental 

modeling in order to assess the change impact on urban watersheds. For urban hydrological 

modeling, as a focus of this study, several related research questions are raised: (1) How sensitive 

are runoff simulation to land use and land cover change patterning? (2) How will input data quality 

impact the simulation outcome? (3) How effective is integrating and synthesizing various forms of 

geospatial data for runoff modeling? These issues were not fully or adequately addressed in 

previous related studies. With the aim of answering these questions as research objectives, we 

conducted a spatial land use and land cover (LULC) change analysis and an urban runoff simulation 

in the Blue River watershed in the Kansas City metropolitan area between 2003 and 2017. In this 

study, approaches were developed to incorporate the Hydrologic Engineering Center Hydrologic 

Modeling System (HEC-HMS) model with remote sensing, geographic information systems (GIS), 

and radar rainfall data. The impact of data quality on the model simulation outcome was also 

analyzed. The results indicate that there are no significant differences between simulated runoff 

responses in the two study years (2003 and 2017) due to spatial and temporal heterogeneity of 

urbanization processes in the region. While the metropolitan area has been experiencing remarkable 

urban development in the past few decades, the gain in built-up land in the study watershed during 

the study period is insignificant. On the other hand, the gain in vegetated land caused by forestation 

activities is offset by a decrease in farmland and grassland. The results show that increasing spatial 

data resolution does not necessarily or noticeably improve the HEC-HMS model performance or 

outcomes. Under these conditions, using Next Generation Weather Radar (NEXRAD) rainfall data 

in the simulation provides a satisfactory fit in hydrographs’ shapes, peak discharge amounts and 

time after calibration efforts, while they may overestimate the amount of rainfall as compared with 

gauge data. This study shows that the developed approach of synthesizing satellite, GIS, and radar 

rainfall data in hydrological modeling is effective and useful for incorporating urban landscape and 

precipitation change data in dynamic flood risk assessment at a watershed level. 
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1. Introduction 

Flooding is one of the most severe and damaging natural hazards. As revealed by the Emergency 

Events Database (EM-DAT) Center for Research on the Epidemiology of Disasters (CRED) [1], from 

2005 to 2014, floods accounted for 46% of all natural disasters and affected about 85 million people. 

During the 20th century, floods were the number-one natural disaster in the United States in terms 
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of the number of lives lost and property damage [2]. As reported by the Federal Emergency 

Management Agency (FEMA), from 1978 to 2016, the total amount of paid losses for significant flood 

events was about USD 46.6 billion. Although this may indicate that climate change is responsible for 

the increase in flood occurrence and damages, this process is primarily intensified by urbanization 

[3]. According to the World Urbanization Report [4], 54% of the world’s population lives in urban 

areas, and it is projected that ongoing urbanization and population growth will add 2.5 billion people 

to the urban population by 2050. The world’s urban percentage increased from 43% in 1990 to 54% in 

2014, and it is expected to grow to 66% by 2050. In urban watersheds, the scenario of urbanization is 

that impervious surfaces, including roads, sidewalks, parking lots, airports, buildings, etc., are 

replacing the natural soil layer and, as a result, reducing infiltration, which leads to a decrease in 

travel time and the generation of rapid overland flow. This human modification of land use and land 

cover (LULC) can significantly influence the watershed hydrological conditions and increases the 

peak discharge and runoff, which affect people’s lives and properties. At the end of the 1960s, 

researchers began to focus on understanding the effect of intensive deforestation and urbanization 

on river systems [5]. The research was carried out to determine the effect of land use/cover change 

on urban flooding risk [6–10]. Saghafian et al. [9] found that the deterioration of vegetated land cover 

led to an increase in flood peak and volume.  

All of these human developments and related LULC change issues have led to the necessity of 

reliable flood and hydrological runoff modeling and predictions for advance warning and protection. 

Du et al. [11] applied an integrated simulation of land use changes and hydrological processes to 

investigate the impact of urbanization on the volume of direct runoff. The simulation results indicate 

that land use change has significantly increased direct runoff over the past two decades. Romero and 

Ordenes [12] concluded that the increased impervious areas in rural lands were causing flash floods. 

Olaide M et al. [13] used satellite images to determine the LULC change and how it influences urban 

flooding. The study found that marginal areas and vegetation were converted to residential areas, 

which increased the total impervious cover and generally increased the peak runoff. Various 

contributions have applied hydrological models to estimate and evaluate the impact of LULC change 

on the urban runoff process, flood magnitude, and frequency [7,8,10,14–16]. The Hydrologic 

Engineering Center Hydrologic Modeling System (HEC-HMS) is one of the semi-distributed models 

that take into account the spatial variation in the watershed parameters to simulate the rainfall-runoff 

processes of the watershed systems. The model has been widely applied for simulating runoff in 

flood risk assessment studies—for example, in [9,17]. Further, Oleyiblo and Li [18] indicated that the 

model accurately simulated the flood volume and peak time and is a powerful tool for flood 

forecasting. Koneti et al. [19] applied HEC-HMS for runoff simulation and found that the model 

better simulated the runoff at the sub-basin scale. Although there have been numerous urban runoff 

modeling efforts, as exampled above, our review suggests that there was a lack of understanding of 

the impact of spatial and temporal heterogeneity of urban development processes on runoff model 

outcomes. At the regional level, there are often “hot spots” and “cool spots” of urban development 

in both spatial and temporal domains. How sensitive are the urban runoff models, specifically HEC-

HMS, in their ability to reflect these variations in urbanization processes, as indicated by the 

patterning of LULC change? In previous studies, this issue was not fully and adequately addressed. 

In the past decade or so, hydrological modeling has been improved with the development of 

remote sensing, geographic information systems (GIS), and fine-resolution geospatial data, including 

satellite imagery, digital elevation models (DEM), and radar rainfall data. The accuracy of spatial 

information is critical for effective landscape and hydrologic modeling [20–22], and model outcomes 

and their interpretation are heavily dependent on the availability of input data at a given scale [23]. 

Although the concept of incorporating satellite imagery and other geospatial data into hydrological 

modeling is not a recent development, the availability of fine spatial resolution data and the 

development of modeling and computational tools make it possible to obtain more detailed 

information needed for landscape and flood risk assessment. In this regard, we find that there is a 

lack of tests of the feasibility and effectiveness of integrating various forms of geospatial data in a 

unified runoff simulation. Further, our review indicates that the impact of the quality of geospatial 
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data, specifically different spatial resolutions, on the model outcome has not been fully examined in 

previous studies, particularly in an urban watershed such as our case study area. 

The response of LULC to precipitation varies spatially; thus, spatially distributed rainfall data, 

such as Next Generation Weather Radar (NEXRAD), are critical in distributed hydrological models, 

such as HEC-HMS for accurate runoff computation, which requires calculating the mean areal 

precipitation (MAP) for the watershed. Using this dataset, computing MAP explicitly considers the 

spatial variability of rainfall compared with ground-based gauge rainfall [24]. Some previous studies 

have tested the performance of different NEXRAD precipitation products against the ground-based 

gauge data in hydrological modeling, and results have shown the superiority of NEXRAD data 

because of their ability to capture the rainfall spatial variations for better outcomes [25–27]. Only a 

few studies have attempted to couple NEXRAD Level 3 rainfall with the HEC-HMS model for the 

assessment of LULC change impact on urban flooding. For example, Knebl et al. [17] used NEXRAD 

data in HEC-HMS simulations and found that the model tended to overestimate the runoff, and the 

calibration runs improved the overall results. On the other hand, McCormick [28] found that the 

NEXRAD data were effective for utilization with HEC-HMS, and the model produced reasonable 

results. Given these different findings, a further understanding of this issue is essential.  

In summary, all the issues described above raised the research questions: (1) How sensitive are 

runoff simulation to land use and land cover change patterning? (2) How will input data quality 

impact the simulation outcome? (3) How effective are integrating and synthesizing various forms of 

geospatial data for runoff modeling? To address these questions, this study aims to (1) detect LULC 

changes and assess the impact of the change patterns on the watershed hydrological response 

(runoff); (2) examine the impact of data quality on simulation outcomes; (3) test the suitability of 

NEXRAD rainfall data when being used in integration with other geospatial datasets in runoff 

modeling.  

2. Materials and Methods 

2.1. Case Study Area: The Blue River Watershed 

The case study area (Figure 1) selected for the simulation is the Blue River watershed. It is a fifth-

order stream basin that covers about one-half of the Kansas City metropolitan area south of the 

Missouri River. It extends about 686 square kilometers through two states (Missouri and Kansas), 

four counties (Johnson and Wyandotte in Kansas; Jackson and Cass in Missouri), and 11 

municipalities [29], representing diverse LULC types. Most of the watershed consists of silt loams 

and silty clay loams, and more than a third of the watershed is under the urban land complex 

category. Approximately 60 to 70% of this category are impervious surfaces, which also contain silt 

loams and silty clay loam soils. These types of soil are associated with moderate to high runoff rates 

according to the hydrologic soil groups of the Natural Resources Conservation Service (NRCS) [30]. 

Generally, the Kansas City Metropolitan area has experienced remarkable urban development in the 

past few decades, which resulted in a significant increase in impervious surfaces (built-up land). 

However, this changing trend has varied spatially and temporally. As such, we selected this 

watershed for our case study, which has more diverse land use and development activities and a 

history of frequent floods, in order to better examine the LULC impact on the model outcome. 
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Figure 1. Location of the study area, the Blue River watershed, with major sub-watersheds and the 

locations of rain gauges, USGS streamflow gauges, and the Kansas City Radar rain station. 

2.2. Methodology 

Runoff-rainfall modeling requires a variety of spatial data inputs related to, for example, land 

use and land cover, terrain, soil, precipitation, and streamflow data records. These datasets are used 

as inputs for the HEC-HMS model. The method in this study can be described in several major stages 

(Figure 2). It first derives the LULC maps with 6, 20, and 30 m spatial resolution using the Maximum 

Likelihood classification (MLC) and performs a change detection analysis, which is followed by 

delineating the drainage networks with 3 and 30 m spatial resolution DEMs. The process then 

prepares the soil data in order to derive the Soil Conservation Service (SCS) curve number (CN) 

values and then prepares NEXRAD rainfall data. The final step includes the model setup and 

simulation run. 

 

Figure 2. Data processing and modeling procedures: orange boxes indicate data inputs with different 

spatial resolutions, blue indicates processing, and green indicates final simulation outputs. 
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2.2.1. LULC Classification, Accuracy Assessment, and Change Detection 

Four satellite images with various resolutions were used to derive the LULC maps of 2003 and 

2017 and to monitor the land use/cover change over time. For the year 2003, a SPOT image (20 m) 

and LANDSAT image (30 m) were used; for the year 2017, SPOT (6 m) and LANDSAT (30 m) images 

were utilized (Table 1). ERDAS IMAGINE 2016, an image processing software of HEXAGON 

Geospatial that performs advanced remote sensing analysis and spatial modeling, was used for 

image preprocessing, classification, and accuracy assessment in this study. A satellite image 

preprocessing technique, such as geometric correction, was applied to all four images. Using the 

SPOT 2017 image as a georeferenced image, an image-to-image registration was conducted on the 

SPOT 2003 image and LANDSAT 2003 and 2017 images, resulting in an accuracy of below 0.5 root-

mean-square error for each image. The selection of dates was based on the availability of images. The 

MLC classification was applied to derive land use and land cover maps, one of the required inputs 

for HEC-HMS. MLC is the most common classification used with remote sensing data [31]. It is based 

on the probability that a pixel belongs to a particular class and considers the variability of classes 

using a covariance matrix [32]. Spectral signature samples were carefully collected to ensure proper 

representation of the class spectral reflectance to obtain reasonable estimates of the conditional mean 

vector and covariance matrix. This process enables more accurate classification results. The error 

matrix method, the most effective and widely accepted measure to evaluate the accuracy of thematic 

maps, was used to evaluate the accuracy of the classification results. It compares information from 

reference sites with information on the classified map for a number of sample areas. Kappa is another 

measure of image classification accuracy that is based on the difference between the actual agreement 

in the error matrix (the agreement between the classification and the reference data) and the 

agreement expected by chance [33]. In this process, 250 reference points were randomly assigned to 

each of the four classified images. Some other available images from previous studies and Google 

Earth historical images were utilized for further verification of the reference points. 

Table 1. List of satellite images used in the study. 

Sensor Date Spatial Resolution (m) No. of Bands 

SPOT 4 15 September 2003 20 4 

SPOT 7 22 September 2017 6 4 

LANDSAT 5 5 September 2003 30 6 

LANDSAT 8 11 September 2017 30 6 

The classification scheme was determined to better reflect major land use/cover types in the 

study area and also represent the common types of land use/cover used for the SCS CN method in 

modeling the runoff. They include water, forestland, farmland/grassland, and built-up areas. The 

water class includes rivers, lakes, and ponds. The built-up area class contains all impervious surfaces, 

such as buildings, driveways, paved parking lots, etc. The farmland/grassland category represents 

farms, grass, and bare soil land, whereas the forestland class represents woods and trees. For change 

detection analysis, post-classification change detection was performed on classified SPOT and 

LANDSAT images using ERDAS IMAGINE 2018. Resampling was conducted on the SPOT 2003 (20 

m) image to obtain a uniform 6 m cell size for both images. There was no need to resample LANDSAT 

images because both have the same spatial resolution (30 m). 

2.2.2. Watershed Delineation 

For the purpose of comparison, USGS DEMs with two resolutions were utilized to delineate the 

watershed drainage network in order to investigate the impact of different spatial resolution data 

inputs on the simulation results. The first is LiDAR-derived DEM data with a 1/9 arc-second (3 m) 

horizontal resolution with a vertical accuracy of 0.87 m, and the second dataset has one arc-second 

(30 m) horizontal resolution with a vertical accuracy of about 3 m. The HEC-GeoHMS toolkit was 

used to delineate the drainage network with both DEMs. HEC-GeoHMS is a geospatial hydrologic 
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model extension for ArcMap released by the US Army Corps of Engineers [34]. The tool allows the 

modelers to analyze digital terrain data, derive stream and watershed drainage networks, and 

construct and prepare inputs for hydrological model software, such as HEC-HMS [35]. Using this 

tool, terrain preprocessing was performed in multiple steps, starting with filling the sinks and ending 

with delineating the catchment. A threshold value of 0.25% was chosen to define the streams in both 

DEMs. Terrain preprocessing outputs are composed of both raster and vector data, which are the 

primary inputs for the HEC-GeoHMS model setup. By defining the basin outlet point, the tool created 

the watershed boundaries and the stream networks and computed parameters. Two drainage 

watershed systems were extracted from both DEMs.  

2.2.3. NEXRAD Rainfall Data Processing 

For model calibration, hourly NEXRAD Level III rainfall data, obtained from the National 

Weather Service (NWS) Weather Surveillance Radar Doppler units (WSR-88D) [36], were utilized. 

The accuracy of NEXRAD precipitation data is based on the Z-R relationship model that is used to 

estimate rainfall from reflectivity. An automated GIS-based approach was applied to prepare and 

process the data. A multi-step procedure was implemented utilizing NCEL Radar Software, ArcGIS 

10.7, and the standard UNIX Command. The decoding step produced about 2700 radar images for 

the selected events. Precipitation grids are required to be in the Data Storage System format (HEC-

DSS) for use in the HEC-HMS model. HEC-DSS is a dataset system designed to effectively store and 

retrieve sequential data, such as textual or gridded time-series data [37]. Figure 3 shows some selected 

rainfall images for the 2017 flood event of the one-hour NEXRAD precipitation data after processing. 

 

Figure 3. Spatially distributed cumulative precipitation (mm) of selected available one-hour 

NEXRAD Level III images (4 km) for the August 2017 flood event in the UTC time zone after 

processing. 

2.3. Runoff Simulation 

2.3.1. Urban Runoff Model: HEC-HMS 

The watershed model prepared by HEC-GeoHMS is shown in Figure 4. The watershed is 

divided into the four major sub-watersheds to accurately calculate and simulate the runoff. For model 

calibration and validation, we used three flooding events, which were reported as flash flood events 
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according to NOAA Storm Events Database [38]. The selected events for model calibration occurred 

in the periods of 2–6 June 2005 and 21–23 August 2017. The 2008 event was selected for model 

validation, which occurred from 29 to 31 July 2008 (Table 2). The available hourly and daily gauge 

data from NOAA/National Climatic Center [39] were used to evaluate NEXRAD Level III 

precipitation. Observed streamflow data from two USGS discharge gauges were available for all 

events. The study simulated the runoff hydrographs using HEC-HMS. For the accuracy of the runoff 

simulation, four separate models were used in the simulation to represent each element of the runoff 

process, including runoff volume, direct runoff, channel flow, and baseflow. The SCS CN loss method 

was utilized to compute the runoff volume. It estimates precipitation excess according to cumulative 

precipitation, soil type, land use/cover types, and antecedent moisture [24]. Soils were classified into 

A, B, C, and D categories according to their minimum infiltration rates, based on the hydrological 

soil group (HSG) (more details in National Engineering Handbook and TR-55 report [40,41]). The Soil 

Survey Geographic (SSURGO) data, available from the United States Department of Agriculture 

(USDA) [42], were prepared based on both the SSURGO and GeoHMS user’s manual instructions 

(Figure 4). Using the four SPOT and LANDSAT imagery-generated LULC maps and the soil data, 

the CN value for each cell in the elevation grid and the average CN value for each sub-watershed 

were calculated. 

 

Figure 4. The watershed model created by HEC-GeoHMS, and Hydrological soil group based on 

SSURGO data. 

Table 2. Total precipitation (mm) based on radar rainfall obtained from KC station. 

 Precipitation P Per Sub-Watershed (mm) 

  Date 
Total P 

(in) 
Upper Blue  

Indiana 

Greek 

Brush 

Greek 

Blue 

River 

Calibration 
Event 1 2–6 June 2005 504 144 134 104 122 

Event 2 21–23 August 2017 890 206 221 243 220 

Validation Event 3 29–31 July 2008 703 233 219 97 154 

The ModClark model was selected to simulate the direct runoff of the excess precipitation in the 

watershed to be utilized with NEXRAD precipitation data. The ModClark algorithm is the modified 

version of the Clark unit hydrograph that is suitable for the use of spatially distributed precipitation 

data (Figure 5). This distributed parameter model accounts explicitly for variation in runoff travel 

time and storage. In this method, a grid is overlaid on the watershed, which allows for calculating 

the distances from all regions of the watershed to the outlet to compute the inflow and outflow. The 

model then combines them to determine the direct runoff hydrograph [43,44].  
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Figure 5. ModClark model’s conceptual structure; adopted from [44]. 

The application of the model requires Storage coefficient R and Time of concentration tc. R 

represents the temporary storage rainfall excess while the drainage is processing to the outlet. It can 

be calculated by dividing the flow at the inflection point on the hydrograph’s falling limb by the 

time derived from the flow. Alternatively, it can be estimated as: 

�/(�� + �)  =  0.6   (1) 

Time of concentration tc was estimated according to the SCS TR-55 method using HEC-GeoHMS for 

each cell of the model and is derived as: 

����� = ��(����� ∕ ����) (2) 

where tc is the time of concentration for the subwatershed and a function of basin length and slope, 

dcell the travel distance from the cell to the outlet, and dmax the travel distance from the cell furthest 

from the outlet. For routing (channel flow) modeling, the Lag method was applied. It is widely used, 

mainly in urban drainage channels, and is calculated as: 

�� = �
��               ����� 

 ������     ����� 
� (3) 

where Ot = outflow hydrograph ordinate at time t; It = inflow hydrograph ordinate at time t; lag = time 

by which the inflow ordinates are to be lagged. As with other parameters, it can be estimated with 

the availability of observed streamflow hydrographs as the elapsed time between the time of 

hydrograph peaks. Baseflow was modeled using the Constant Monthly Baseflow method that 

represents the baseflow as a constant flow, which may vary monthly. Monthly baseflow values from 

the available USGS streamflow gauges were calculated for each flood event [24].  

2.3.2. Model Performance 

The model performance was evaluated by assigning the following indicators: 

Nash–Sutcliffe Efficiency (E) 

E indicates how well the result of observed flow versus the simulated flow fits the 1:1 line. The 

value of E ranges between 1.0 (perfect fit) and −∞. An efficiency value below zero means that the 

value of the observed data would have been a better predictor than the model [45].  
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Percent Bias (EPBIAS) 

EPBIAS measures the average tendency of the simulated data to be larger or smaller than their 

observed counterparts. A low value indicates a more accurate simulation. Positive results mean 

underestimation, whereas negative values mean overestimation [46]. 

The Root-Mean-Square Error Standard Deviation (RMSE Std Dev) 

The resulting value of the RMSE Std Dev varies from 0, as an optimal fit, to a larger positive 

value. The lower the value, the better the simulation performance [46]. 

3. Results and Discussion 

3.1. LULC Maps, Classification Accuracy, and Change Detection 

Figure 6 shows the classified LULC maps using SPOT and LANDSAT 2003 images and 2017 

images. The use of the higher spatial resolution image (SPOT 6 m), as compared with the lower spatial 

resolution images (SPOT 20 m), improved the overall classification accuracy.  

 

Figure 6. Classified images of SPOT (S) and LANDSAT (LS) (2003 and 2017). 

Tables 3 and 4 summarize the classification accuracy assessment results, including producer’s 

and user’s accuracies for each image. The overall classification accuracy results with SPOT images 

increased from 85% (2003) to 92% (2017). The overall accuracy results with LANDSAT images are 

87.60% for the 2003 image and 84% for the 2017 image. The calculated classification accuracies show 

satisfactory results for the purpose of this study, in which LULC maps with different resolutions are 

produced as inputs for the runoff modeling. SPOT and LANDSAT imagery classification results 

show an increase in water bodies and forestland and a decrease in farmland/grassland. There is a 

marginal gain in built-up area (Table 5). As a result, during the study period, farmland and grassland 

remained the largest land use type, followed by forestland, built-up area, and water bodies. 
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Table 3. Accuracy assessment results of SPOT images. 

 2003 Accuracy Assessment (%) 2017 Accuracy Assessment (%) 

Class Area  Producer’s  User’s  Area Producer’s  User’s  

Water 1.00 66.67 100.00 1.19 100.00 100.00 

Forest 19.42 88.46 93.88 30.78 88.51 100.00 

Farmland/Grassland 52.02 96.30 80.00 40.43 91.92 90.10 

Built-up area 27.55 71.26 89.86 27.68 96.72 85.51 

Total area % 100   100   

Overall Accuracy % 85.60 92.00 

Overall Kappa  0.7745 0.8798 

Table 4. Accuracy assessment results of LANDSAT images. 

 2003 Accuracy Assessment (%) 2017 Accuracy Assessment (%) 

Class Area  Producer’s  User’s  Area  Producer’s  User’s  

Water 1.02 100.00 100.00 1.17 40.00 66.67 

Forest 14.53 80.49 91.67 18.96 76.79 91.49 

Farmland/Grassland 45.69 84.55 91.23 44.78 84.40 82.14 

Built-up area 39.75 95.18 81.44 35.06 91.25 82.95 

Total area % 100   100   

Overall Accuracy % 87.60 84.00 

Overall Kappa 0.8010 0.7537 

Table 5. Total change in LULC obtained from classified images. 

 SPOT (Area km2) LANDSAT (Area km2) 

Class 2003 2017 Total Total% 2003 2017 Total Total% 

Water 6.9 8.22 1.32 0.19 7.03 8.1 1.07 0.15 

Forestland 133.51 211.13 77.62 11.31 100.02 130.58 30.56 4.44 

Farmland/Grassland 357.6 277.3 −80.3 −11.70 314.45 308.38 −6.07 −1.00 

Built-up 189.4 189.21 −0.19 −0.02 266.71 241.45 −25.2 −3.67 

Change detection statistics were calculated and are shown in Tables 6 and 7. Both classifications 

reveal an increase in the water class (0.19% from SPOT imagery and 0.15% from LANDSAT imagery). 

Forestland increased by a higher percentage (11% from SPOT imagery and 4% from LANDSAT 

imagery). These change patterns might have been caused by efforts to restore the Blue River 

watershed’s ecosystem, such as a partnership project, called Renew the Blue, that restores riparian 

forests, upland habitats, and wetlands in the study watershed [47]. The increase in forestland through 

forestation activities was mostly at the cost of losing farmland and grassland, according to image 

classification results. A small decrease in built-up areas might also be associated with the gain in 

forestland. The built-up area class shows, in SPOT classification results, a decrease of 0.02%, which 

can be considered as no change, while LANDSAT classification results indicate that the decrease in 

built-up areas was about 3.67%. These change patterns are consistent with the similar findings of Ji 

et al.’s [48] study, which found that, between 1992 and 2010, forestland increased by about 4%; 

farmland and grassland decreased by about 16%; built-up areas increased by about 10%. 

Table 6. Major LULC class changes from 2003 to 2017 from SPOT images. 

 Earlier State (2003) km2 

Later 

state 

(2017) 

 Water Forestland Farmland/Grassland Built-Up Total Loss 

Water 3.84 0.42 0.5 0.13 1.05 

Forestland 2.45 96.3  18.63 7.02 28.1 

Farmland/Grassland 1.6 89.5 204.3  76.51 167.61 

Built-up 0.2 22.25 48.35 102.17 70.8 

Total Gain 4.25 112.17 67.48 70.8   
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Table 7. Major LULC class changes from 2003 to 2017 from LANDSAT images. 

 Earlier State (2003) km2 

Later 

state 

(2017) 

 Water Forestland Farmland/Grassland Built-Up Total Loss 

Water 5.45 0.41 0.72 0.51 1.64 

Forestland 0.85 76.55 17.55 5.15 23.55 

Farmland/Grassland 0.96 48.79 225.24 39.54 89.29 

Built-up 0.82 4.91 64.83 196.22 70.56 

Total Gain 2.63 54.11 83.1 45.2  

Table 6 and Table 7 represent the total land cover transformation between 2003 and 2017. For 

instance, according to SPOT imagery classification results, forestland increased at the expense of 

farmland/grassland (89.5 km2) and built-up areas (22.25 km2). The total loss of farmland and 

grassland was about 167.61 km2; 89.5 km2 was converted to forest or trees, and the rest (76.15 km2) 

was converted to built-up areas. In general, forestland has increased the most, whereas the 

farmland/grassland class has decreased the most. According to LANDSAT imagery classification 

results, the farmland/grassland class was the larger contributor to the increase in forestland, and both 

forestland and built-up area classes contributed to the loss of farmland/grassland. The 

farmland/grassland class was the main land use type in both SPOT and LANDSAT results after 2003. 

In 2003, the built-up area was the second-largest land use; however, by 2017, forestland became the 

second-largest land cover in the watershed. Both results show an increase in water bodies, and in 

general, all classes contributed to this increase. This change detection analysis is essential for 

understanding the effect of past and current LULC regimes and the effect of LULC change that has 

been taking place in the watershed and its response to flood events. The study of Ji et al. [48] indicated 

that all watersheds in the entire metropolitan area gained about 7% in built-up areas from 1992 to 

2010. The above change statistics suggest that our study area (Blue River watershed) had a relatively 

low rate of urban development and more complex vegetation change patterning during the study 

period from 2003 to 2017. Naturally, further examination of whether the runoff simulation outcome 

can reflect such LULC change patterning was carried out, as described in Section 3.5.  

3.2. Watershed Extraction and CN Values 

Total stream length and watershed catchment area are often used to measure the level of details 

extracted from DEMs [20,49–51]. The watershed drainage networks extracted from 3 and 30 m DEMs 

are shown in Figure 7. The 3 m DEM represents a total stream length of 230 km and a catchment area 

of 685.56 km2, whereas the 30 m DEM represents a total stream length of 178.60 km and a catchment 

area of 685.59 km2. The 3 m DEM is sensitive to minor topographic variations, so it captures more 

details of topographic features. With a vertical resolution of less than 1 m (0.87 m), the 3 m DEM 

modeled about 51.4 km more streams. Even though the 3 m DEM modeled more stream length, the 

difference between both results can be considered insignificant. The 3 m DEM produced a more 

detailed stream network and slightly lower values of basin parameters compared with the 30 m DEM; 

however, the difference between both DEM results is not significant. Additionally, both DEMs 

produced the same watershed total area. This outcome agrees with the findings of other studies that 

have compared the impact of different DEM resolutions on hydrologic and hydraulic modeling 

results [51–53]. Thus, for hydrologic modeling, the use of a moderate-resolution DEM provides 

reasonable results. 
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Figure 7. Watershed boundaries and drainage streams extracted from 3 and 30 m DEMs. 

Estimated CN values using SPOT and LANDSAT LULC maps are shown in a color range from 

30 to 100 in Figure 8. Utilizing LULC maps with different spatial resolutions to estimate the CN values 

produced different results. LANDSAT LULC maps produced slightly higher values. The watershed, 

in general, has a high CN value even though the built-up area occupies just about 30–35%, and much 

of the area is vegetated land, which is occupied by farmland, grassland, and forestland. The reason 

for this is that the majority of the soil covering the watershed is from categories C and D, based on 

HSG, which usually have low infiltration and high potential runoff. 

 

Figure 8. CN values estimated from SPOT (S) and LANDSAT (LS) LULC maps. 

3.3. NEXRAD Level III Validation 

NEXRAD data were validated against gauge rainfall records from three ground-based gauges 

that were only available for Upper Blue River and Indiana Creek sub-watersheds. Scatter plots in 

Figure 9 show a significant correlation between NEXRAD and gauge precipitation data for 2008 (R2 
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= 0.8) and 2017 events (R2 = 0.6), while there is a less significant correlation for the 2005 event (R2 = 

0.30). The Upper Blue River sub-watershed data for the 2008 event display the highest correlation, 

with an R2 value of 0.8. In contrast, for the 2005 event, both Upper Blue River and Indiana Creek sub-

watersheds show the lowest correlation (R2 = 0.3). There were some missing data in the gauge records 

for this event, which affected the correlation results. Validation outcomes of NEXRAD and gauge 

precipitation usually do not reveal a good relationship because of the possible errors in both of them 

[26,54,55]. Figure 10 compares the total precipitation of NEXRAD with gauge data. NEXRAD 

precipitation amounts were overestimated for two flood events compared with gauge rainfall. There 

is no difference between gauge and NEXRAD rainfall data for 2005 event for both sub-watersheds; 

however, it is about 0.4 percent for the 2008 event. For the 2017 event, the difference is about 0.2 

percent for Indiana Creek and 0.5 percent for Upper Blue River sub-watersheds. The overestimation 

is probably a result of area (radar grid cell) and point (gauge) errors [54]. On the other hand, the 

gauge precipitation might be underestimated due to issues with gauge funnels, which might have 

been temporarily blocked by grass, bird debris, or other objects, and as a result, the precipitation 

could be missing or delayed and underestimated [55]. 
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Figure 9. Scatter plots of hourly NEXRAD and gauge rainfall data of the flood events for (a) Upper 

Blue and (b) Indian Creek. 
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Figure 10. NEXRAD and gauge rainfall data of the flood events for two sub-watersheds (a) Upper 

Blue River and (b) Indiana Creek. 

3.4. Model Calibration and Validation 

The preliminary simulated runoff hydrographs show a reasonable overall fit with observed data 

for the watershed. Although the runoff was overestimated in the validation results, the calibration 

attempts provided better results. Calibration and validation results at the Blue River watershed outlet 

are shown in Figure 11.  
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Figure 11. Calibrated and validated hydrographs at the Blue River watershed outlet for SPOT (S) and 

LANDSAT (LS) LULC conditions. 

Model calibration is the derivation of a set of model parameter values that produces the best fit 

to the observed data; on the other hand, the validation process is running the model for different 
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simulation results compared to the 2008 validation models (uncalibrated). There is almost no 
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to 0.35 percent difference in direct runoff volume. Validation models provide relatively satisfactory 

results, although the peak discharge and runoff might be overestimated due to the precipitation 

amount overestimation in the NEXDAD data. The difference between observed and simulated peak 

discharge is about 0.36 percent, and direct runoff 0.5 percent. Better estimation for the rainfall amount 

in NEXRAD data could mitigate the runoff volume and simulate the peak discharge more accurately. 

At a sub-watershed level, the model tended to overestimate the runoff for some sub-watersheds, 

but for the rest of the sub-watersheds, the model more accurately estimated the runoff. Compared 

with the observed data, the calibrated hydrographs indicate relatively good performance. The 

difference in statistical results between all models with different data input resolutions and LULC 

conditions is not significant. All models simulated the runoff in a similar fashion. For instance, the 

results for the model with lower resolution and 2003 LULC data are E = 0.6, EPBIAS 60%, and RMSE 

Std Dev = 0.6, and the results for the model with higher resolution and 2017 LULC data are E = 0.7, 

EPBIAS = 32%, and RMSE Std Dev = 0.5. Thus, using moderate-resolution data (e.g., 30 m) for 

modeling can still provide satisfactory simulation outcomes. The validation hydrographs of the 2008 

event might have been overestimated due to the overestimation of the rainfall in the NEXRAD data. 

All validation models performed similarly. For example, the results for the model with lower 

resolution and 2003 LULC data are E = −0.9, EPBIAS 121%, and RMSE Std Dev = 1.4, and the results 

for the model with higher resolution and 2017 LULC are E = −0.7, EPBIAS = 120%, and RMSE Std Dev 

= 1.3. 

3.5. Impact of LULC Change and Data Quality on Runoff 

Using CN values estimated from 2003 (20 and 30 m) LULC maps and basin parameters extracted 

from 3 and 30 m DEMs, models 1 and 2, simulated with the 2005 event produced similar runoff 

hydrograph results. With CN values estimated from 2017 (6 and 30 m) LULC maps and basin 

parameters extracted from 3 m and 30 m DEMs, respectively, models 1.2 and 2.2 simulated with the 

2017 event produced close runoff hydrograph results as well. In addition, running models 1 and 2 

with the 2017 event and models 1.2 and 2.2 with the 2005 event generated closer results. In other 

words, all models, when simulating with the corresponding flood events, generated similar runoff 

hydrographs. For instance, as shown in Table 8, when simulating the 2005 event under the 2003 LULC 

condition (Model 1), the results show watershed discharges of 19,217.3 (cms), and under the 2017 

LULC condition (Model 1.2), discharges of 19,201.9 (cms) are observed. There is almost no difference 

between the two discharge amounts. This insignificant variance demonstrates that the simulation 

reflects outcomes that are consistent with the LULC change patterns in the study area and period. As 

discussed before, the built-up area in the watershed did not change notably during the study period, 

while the increase in forestland was offset by decreased farmland/grassland. 

Table 8. Simulated peak discharge under 2003 and 2017 LULC conditions at the Blue River outlet. 

Observed Peak Discharge (cms) Simulated Peak Discharge (cms) 
 Model 1 (2003) Model 1.2 (2017) 

2005 event (543.4) 543.8 543.7 

2017 event (936.7) 955.6 938 

2008 event (458.5) 747.9 726.7 
 Model 2 (2003) Model 2.2 (2017) 

2005 event (543.4) 543.3 543.3 

2017 event (936.7) 936.8 937.5 

2008 event (458.5) 727.7 736.3 

Comparing the results of model 1.2, which uses higher spatial resolution data, with model 2.2, 

which uses lower resolution data, reveals that for each flood event all simulated values are close. For 

instance, in model 1.2 (uses 6 m LULC and 3 m DEM data), the simulated peak discharge is 33,103.3 

cms for the 2017 event, while simulation with model 2.2 (with 30 m LULC and DEM data) results in 
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a peak discharge of 33,295.7 cms. This also shows consistency with the low variation in the CN value 

and DEM processing outputs derived from different spatial resolution data, which led to similar 

simulation outputs and performance statistics. In addition, the HEC-HMS model is a generalized 

model system and applies mathematical models to represent the watershed flow; hence, small 

differences between derived inputs from 3 and 30 m DEMs or 6 and 30 m images are not enough to 

notably affect the model outputs. In previous studies, the impact of spatial and temporal 

heterogeneity of urban development processes on runoff model outcomes was not fully and 

adequately addressed, particularly in an urban watershed, such as in our case study area. There is a 

lack of understanding of the impact of different spatial resolutions on the model outcome and the 

suitability of coupling NEXRAD rainfall with the HEC-HMS model to assess LULC change impact 

on urban flooding. Our study attempts to further address this issue. In our 14-year study period, we 

found that the LULC in the Blue River watershed did not significantly change. Since 2003, the buildup 

area occupied about 1/3 of the watershed, and the majority of the area is vegetated land (forestland, 

farmland, and grassland). This less dynamic regime of the LULC in the watershed led to similar 

responses to precipitation and storm events. For runoff simulation applications, it is useful to utilize 

the standard available data resolution (e.g., 30 m) for satellite images to generate LULC data and CN 

values, or for DEMs to extract watershed parameters, which may cost less compared with data with 

higher spatial resolution. As LULC, NEXRAD data vary spatially, which provides a more accurate 

representation of the rainfall over each area compared with the ground-based gauge data that 

represent the rainfall amount only in the location area. In our case study, the use of (4 km) NEXRAD 

precipitation data for the simulation provides reasonably accurate runoff hydrographs. Using the 

dataset may contribute to runoff overestimation or underestimation due to the uncertainty and error 

that is usually associated with radar precipitation. At a sub-watershed scale, we found that using 

HEC-HMS, NEXRAD data can represent the rainfall amount and simulate the runoff for small sub-

watersheds more accurately than large ones. Tests of other types of NEXRAD Level III precipitation 

data, such as the products of “dual-pol,” which clearly identify and detect rainfall, might reduce 

rainfall overestimation and provide better results.  

4. Conclusions 

In this study, urban runoff was simulated in an urban watershed that has diverse LULC and 

development activities, and its streams tend to be frequently flooded. The study aims to understand 

how LULC change patterning and the quality of input geospatial data affect the simulation outcomes 

as well as examine the effectiveness of NEXRAD rainfall data in such modeling settings. The study 

results reveal that the simulation with the HEC-HMS model sensitively responds to the spatial and 

temporal patterning of LULC dynamics indicated by the change rate of imperious surfaces and 

vegetated land-use processes. Specifically, the simulation outcomes reflect the slow-down period of 

urban development and associated ecological restoration efforts in the case study watershed during 

the study period. The study indicates that the developed simulation approach can better tolerate 

small variations in derived input parameters, such as CN values, watershed boundaries, parameters, 

and stream networks, suggesting that input data with a moderate spatial resolution (e.g., 30 m) are 

suitable for urban runoff simulation at a watershed scale. Further, this study illustrates that, in such 

modeling, applying spatially distributed precipitation data, such as the one-hour NEXRAD Level III 

data, provide reliable and satisfactory outcomes after calibration efforts, particularly in hydrograph 

shape, peak discharge amounts, and time. In addition, the rainfall amount overestimation in 

NEXRAD data results in higher peak discharge and runoff volume as compared with observed data. 

Finally, the study proves the feasibility and effectiveness of incorporating satellite imagery-based 

LULC maps with related geospatial data, including DEM and distributed radar precipitation, in 

hydrological simulation to assess the watershed’s hydrological response to flooding events. 
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