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Abstract: The East China Sea (ECS) is the largest marginal sea in the northern western Pacific
Ocean. In comparison to various physical studies, little information on the seasonal patterns in
community structure of phytoplankton is currently available. Based on high performance liquid
chromatography (HPLC) pigment analysis, spatiotemporal variations in phytoplankton community
compositions were investigated in the northern ECS. Water temperature and salinity generally
decreased toward the western part of the study area but warmer conditions in August led to strong
vertical stratification of the water column. In general, major inorganic nutrient concentrations were
considerably higher in the western part with a shallow water depth, and consistent with previous
results, had no discernable vertical pattern during our observation period except in August. This study
also revealed PO4-limited environmental conditions in May and August. The monthly averaged
integral chlorophyll-a concentration varied seasonally, highest (35.2 ± 20.22 mg m−2) in May and
lowest (5.2 ± 2.54 mg m−2) in February. No distinct vertical differences in phytoplankton community
compositions were observed for all the sampling seasons except in August when cyanobacteria
predominated in the nutrient-deficient surface layer and diatoms prevailed at deep layer. Canonical
correlation analysis results revealed that nutrient distribution and the water temperature were
the major drivers of the vertical distribution of phytoplankton communities in August. Spatially,
a noticeable difference in phytoplankton community structure between the eastern and western parts
was observed in November with diatom domination in the western part and cyanobacteria domination
in the eastern part, which were significantly (p < 0.01) correlated with water temperature, salinity,
light conditions, and nutrient concentrations. Overall, the two major phytoplankton groups were
diatoms (32.0%) and cyanobacteria (20.6%) in the northern ECS and the two groups were negatively
correlated, which holds a significant ecological meaning under expected warming ocean conditions.
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1. Introduction

Phytoplankton communities play an important role in marine ecosystems, affecting carbon
and nutrient cycling, the structure and efficiency of the food web, and the flux of particles to
deep waters [1–3]. Phytoplankton show a clear variation in community structure and abundance
in response to environmental changes, so the phytoplankton community structure can be used
as a useful indicator of ecosystem and water quality characteristics [4–6]. Therefore, in order to
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understand the structure and function of the ecosystem, it is necessary to monitor the spatiotemporal
changes in the phytoplankton community [7]. Various methods such as microscopy, flow cytometry,
and pigment analysis have been used to quantitatively analyze phytoplankton community structure.
Traditionally, microscopic methods have been the most commonly used to assess biomass and
community structure [8]. Microscopes can provide detailed information on species and size, but this
method requires taxonomic expertise and very considerable time. Furthermore, microscopic methods
fall short when identifying small organisms such as some of picophytoplankton and nano flagellates [9],
and the structure of fragile cells of many species can be altered during the process of fixation in Lugol’s
solution, formaldehyde, glutar-aldehyde, and similar fixatives [10,11]. Flow-cytometric analysis has
been developed for providing more rapid and automated method for identification of communities
of smaller phytoplankton. Flow-cytometric analysis requires a full understanding of the optical
characteristics of the species and can mainly separate phytoplankton communities into picoplanktonic
prokaryotes, picoeukaryotes, and nanoeukaryotes [12–14]. High performance liquid chromatography
(HPLC) was used for this study because HPLC method can be used to measure the concentration
of each pigment separately, and possible to determine the clustering of phytoplankton using the
extracted marker pigments [15]. In particular, this method can provide useful information on nano-
and pico-sized phytoplankton communities that are difficult to distinguish based on microscopic
observations [16].

The East China Sea (ECS) is the largest marginal sea in the northern west Pacific and approximately
70% of the area is made up of a wide continental shelf. ECS is one of the most productive areas
and possible sinks of carbon dioxide [17]. Furthermore, it is considered one of the most important
marine fishing grounds in China [18]. Various water masses affect in the ECS, such as the Yellow
Sea bottom cold water (YSCW) from the north, Changiiang diluted water (CDW) from the world’s
largest Yangtze river from the west, Kuroshio water (KW) from the east and Taiwan current warm
water (TCWW) from the south [19–22]. Generally, the environmental conditions vary from the eastern
part to the western part in the ECS. This complex topography and various water masses cause show
heterogeneous and complex environmental characteristics seasonally and spatially [23]. Previous
studies for phytoplankton community in the northern ECS are quite limited and most of the studies
have focused on the Yangtze River estuary and adjacent waters [24–26]. Three different phytoplankton
communities in the Yangtze River estuary have been identified according to water mass [27–29].
Diatoms are generally the most dominant groups in this area [27–31]. In the northern ECS near Korea,
several previous studies focused on the phytoplankton community were carried out in spring [32]
and summer [33,34] and mostly conducted over one season. In addition, most of the studies have
focused on the spatial distribution of diatoms and dinoflagellates which can be identified under the
microscope. To date, little information on the seasonal patterns in community structure that is inclusive
of all phytoplankton is currently available in the northern ECS. Therefore, the present study aimed
to investigate spatiotemporal changes in composition and distribution of phytoplankton community
structure in the northern ECS that is possible using pigment analysis through HPLC.

2. Materials and Methods

2.1. Sampling Site and Water Sampling

Four cruises were carried out in the northern ECS from 1–9 February, 30 April–10 May, 2–10 August,
and 7–17 November in 2018, as representatives for winter, spring, summer, and autumn, respectively
(Figure 1; Table 1). Water samples were collected from three light depths (100%, 30%, and 1% penetration
of surface irradiance, PAR) using a CTD/rosette sampler fitted with Niskin bottles. The light depths were
determined by a Secchi disk. Phytoplankton pigments and physicochemical parameters (temperature,
salinity, and major nutrients; N, P, and Si) were analyzed in samples drawn from the three light depths.
The vertical temperature and salinity were measured by SBE9/11 CTD (Sea-Bird Electronics, Bellevue,
WA, USA) sensors.
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Figure 1. Sampling stations in the northern East China Sea, 2018. The major currents in the northern 
East China Sea are based on [19]. 

Table 1. Description of sampling stations in the northern East China Sea for each cruise period, 2018. 

Date Station Latitude Longitude Euphotic Depth (m) 

February 

315-13 32.5 127.0 19 
315-17 32.5 125.9 5 
316-14 32.0 126.8 19 
316-17 32.0 125.9 14 
317-17 31.5 125.9 19 
317-21 31.5 124.5 5 

May 

315-13 32.5 127.0 27 
315-15 32.5 126.5 38 
315-21 32.5 124.5 11 
316-13 32 127.0 27 
316-17 32 125.9 27 
316-21 32 124.5 5 
317-13 31.5 127.0 16 
317-15 31.5 126.5 33 
317-21 31.5 124.5 14 

August 

315-13 32.5 127.0 41 
315-17 32.5 125.9 46 
315-21 32.5 124.5 22 
316-13 32 127.0 41 
316-17 32 125.9 27 
316-21 32 124.5 30 
317-13 31.5 127.0 35 
317-15 31.5 126.5 54 
317-19 31.5 125.3 35 
317-21 31.5 124.5 19 

October 

315-13 32.5 127.0 41 
315-15 32.5 126.5 41 
315-21 32.5 124.5 8 
316-13 32 127.0 33 
316-17 32 125.9 27 
316-19 32 125.3 8 
316-21 32 124.5 5 
317-13 31.5 127.0 49 
317-15 31.5 126.5 49 
317-21 31.5 124.5 5 

  

Figure 1. Sampling stations in the northern East China Sea, 2018. The major currents in the northern
East China Sea are based on [19].

Table 1. Description of sampling stations in the northern East China Sea for each cruise period, 2018.

Date Station Latitude Longitude Euphotic Depth (m)

February

315-13 32.5 127.0 19
315-17 32.5 125.9 5
316-14 32.0 126.8 19
316-17 32.0 125.9 14
317-17 31.5 125.9 19
317-21 31.5 124.5 5

May

315-13 32.5 127.0 27
315-15 32.5 126.5 38
315-21 32.5 124.5 11
316-13 32 127.0 27
316-17 32 125.9 27
316-21 32 124.5 5
317-13 31.5 127.0 16
317-15 31.5 126.5 33
317-21 31.5 124.5 14

August

315-13 32.5 127.0 41
315-17 32.5 125.9 46
315-21 32.5 124.5 22
316-13 32 127.0 41
316-17 32 125.9 27
316-21 32 124.5 30
317-13 31.5 127.0 35
317-15 31.5 126.5 54
317-19 31.5 125.3 35
317-21 31.5 124.5 19

October

315-13 32.5 127.0 41
315-15 32.5 126.5 41
315-21 32.5 124.5 8
316-13 32 127.0 33
316-17 32 125.9 27
316-19 32 125.3 8
316-21 32 124.5 5
317-13 31.5 127.0 49
317-15 31.5 126.5 49
317-21 31.5 124.5 5
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2.2. Phytoplankton Pigment Analysis

Water samples for photosynthetic pigment analysis were filtered through 47 mm GF/F filters
(Whatman, Maidstone, UK; 07 µm), and then stored in a freezer at −80 ◦C to avoid degradation.
Pigments were extracted in 100% acetone (5 mL) with cantaxanthin (100 µL) as an internal standard for
24 h in the dark at 4 ◦C and placed in an ultra-sonic bath to disrupt a cell [35,36]. An aliquot water of
1 mL was passed through a 0.45 µm PTFE syringe filter to rid the samples of particles. After the extracts
were centrifuged for 10 min at 3500 rpm to remove cellular debris and glass fibers. All procedures were
carried out under low light conditions to minimize pigment degradation. Pigments were analyzed using
a HPLC (Agilent Infinite 1260, Santa Clara, CA, USA), and the separation of pigments was performed
using a slightly modified method of [37] and [38]. The peaks were identified based on their retention
time compared with those of pure standards (chlorophyll a, chlorophyll b, β-carotene, fucoxanthin,
prasinoxanthin, 19′-hexanoyloxyfucoxanthin, diadinoxanthin, 19′-butanoyloxy-fucoxanthin, peridinin,
alloxanthin, neoxanthin, violaxanthin, prasinoxanthin, lutein, and zeaxanthin obtained from DHI,
Denmark). The concentrations of pigments in samples were calculated as following equation. Standard
response factor (Rf) was calculated based on the standard pigment and dividing the concentration of
the standard by the measured peak area [38].

Concentration = Area × Rf × (Ve/Vs) [ngL−1] (1)

Area = area of the peak in the sample [area]
Rf = standard response factor [ngL−1 area−1]
Ve = AIS/(peak area of IS added to sample) × (Volume of IS added to sample) [L]
Vs = volume of filtered water sample [L]
AIS = peak area of IS when 1 mL IS is mixed with 300 µL of H2O
IS = Internal Standard

The CHEMTAX program was used to estimate the contribution of the different phytoplankton
community structure to the total chlorophyll a [15,16]. The contribution of diatoms, dinoflagellates,
prymnesiophytes, chlorophytes, chrysophytes, cryptophytes, cyanobacteria and prasinophytes were
calculated based on the program. Twelve pigments and initial pigment ratios for around the Korean
peninsula were used for this study [38]. In the following CHEMTAX, to derive the most accurate
phytoplankton groups, data was binned according to sampling month and three light depths (100%,
30% and 1% penetration of surface irradiance, PAR) [39,40].

2.3. Dissolved Inorganic Nutrient Concentration

An aliquot of water (100 mL) was filtered onboard through GF/F filters (Whatman, Maidstone,
UK; 07 µm) for dissolved inorganic nutrient concentrations (NH4, NO2, NO3, PO4, and SiO2) and kept
frozen (−20 ◦C) until further analysis. Concentrations of nutrients were determined in an automatic
analyzer (Quaatro, Bran + Luebbe, Germany) belonging to the National Institute of Fisheries Science
(NIFS), Korea. Dissolved inorganic nitrogen (DIN) concentrations were calculated as the sum of NH4,
NO2 and NO3.

For verifying P-limited water conditions, Excess Nitrate (ExN), which is calculated as ExN =

DIN-(R*PO4) (R = Redfield N:P ratio of 16), was used in this study [41–43]. ExN values of <0 indicate
PO4-enriched condition, while ExN > 0 indicates the converse condition [41–43].

2.4. Statistical Analysis

Canonical correspondence analysis (CCA) was performed using “past 3” software to explain
the relationship between environmental parameters and phytoplankton community structure [44].
Temperature, salinity, depth, DIN, PO4, SiO2, and ExN were include for the environmental parameters.
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3. Results

3.1. Physical Environments

Seasonal distribution patterns of temperature and salinity during the four cruises are summarized
in Table 1. The average temperature was lowest in February (winter) at 13.7 ± 2.9 ◦C and gradually
increased to highest in August (summer) at 24.2 ± 4.7 ◦C. The average salinity was highest at 34.1 ± 0.6
in February and lowest at 32.3 ± 0.7 in August. In February, the water temperature decreased toward
the western part from the eastern part in the study area and the salinity showed the same trend as the
water temperature (Table 1). The water temperature and salinity in May (spring) were also relatively
higher in the eastern part and lower in the western but the difference in water temperature was smaller
in May compared to that in February. On the other hand, the water temperature and salinity were
inversely spatially distributed in August with low in the eastern and high in the western parts and
the differences were smallest during the observation period. Vertically, the temperature increased
with depth in August, which resulted in a strong stratification (Figure 2). In November (autumn),
the patterns in water temperature and salinity were similar to those in February and May.
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(b) May, (c) August, and (d) Nov for temperature; and (e) February, (f) May, (g) August, and (h)
November for salinity.

3.2. Dissolved Inorganic Nutrient Concentrations

Inorganic nutrient concentrations at the three light depths for each cruise are summarized in Table 2.
DIN and PO4 concentrations were highest in February and remained low in other seasons, whereas
SiO2 tended to increase from May to August and November. In February, the ranges of DIN, PO4 and
SiO2 concentrations from surface to 1% light depths were 5.3–14.1 µM, 0.3–0.6 µM, and 6.0–16.8 µM,
respectively. There were no distinct vertical patterns, but in the horizontal direction, DIN, PO4, and SiO2

tended to increase from the northeast to the southwest stations. In May, the ranges of DIN, PO4,
and SiO2 concentrations were 2.5–12.3 µM, <0.1–0.3 µM, and 3.4–12.4 µM, respectively. No marked
vertical patterns in the concentrations were observed but horizontally, DIN and SiO2 showed relatively
higher in the western part compared to the eastern part in May. Generally, PO4 concentrations in May
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were very low at all the stations with an average of 0.1 µM except for St. 316-21. The ranges of DIN,
PO4, and SiO2 concentrations were 1.6–16.9 µM, <0.1–0.5 µM, and 2.1–14.7 µM, respectively, in August.
Unlike other seasons, noticeable vertical distributions of nutrients were observed in August with low
concentrations at surface but increasing with depth. In November, the ranges of DIN, PO4, and SiO2

concentrations were 2.1–15.9 µM, 0.1–0.6 µM, and 2.0–15.8 µM, respectively. Nutrient concentrations
were relatively higher in the western part compared to the eastern part and the differences in the
concentrations between the eastern and western parts were largest in November among the four
cruises but no vertically distinct distributions were found.

Table 2. The dissolved inorganic nutrient concentrations (µM) at the euphotic depths (100%, 30%, and
1%) of water column in the northern East China Sea, 2018.

Station Light (%) NH4 NO2 NO3 DIN PO4 SiO2

February

315-13
100% 0.84 0.40 4.81 6.04 0.33 7.15
30% 0.92 0.36 4.01 5.29 0.29 6.27
1% 1.01 0.39 5.07 6.48 0.32 7.11

315-17
100% 0.80 0.10 10.66 11.56 0.60 13.67
30% 0.93 0.08 5.07 6.08 0.33 6.79
1% 0.90 0.08 4.92 5.90 0.35 8.07

316-14
100% 0.93 0.09 8.31 9.33 0.33 8.76
30% 0.91 0.09 7.95 8.95 0.35 8.65
1% 0.91 0.10 8.06 9.07 0.33 8.50

316-17
100% 0.85 0.28 5.10 6.23 0.29 6.96
30% 0.73 0.27 4.79 5.78 0.29 6.83
1% 1.05 0.24 4.66 5.95 0.29 6.60

317-17
100% 1.01 0.18 7.87 9.07 0.41 9.82
30% 0.80 0.15 5.24 6.19 0.34 6.04
1% 0.79 0.11 7.80 8.70 0.41 9.97

317-21
100% 0.81 0.09 11.55 12.46 0.53 14.46
30% 0.78 0.10 12.34 13.22 0.61 15.37
1% 0.82 0.10 13.19 14.11 0.60 16.77

average 0.88 0.18 7.30 8.36 0.39 9.32

S.D 0.09 0.11 2.94 2.84 0.11 3.40

May

315-13
100% 1.58 0.09 1.98 3.66 0.02 3.45
30% 1.51 0.05 1.17 2.74 0.02 3.44
1% 1.56 0.06 1.31 2.93 0.02 4.68

315-15
100% 1.59 0.06 3.23 4.88 0.03 3.99
30% 1.49 0.04 1.43 2.95 0.02 4.11
1% 1.56 0.05 1.29 2.89 0.04 4.59

315-21
100% 1.64 0.23 4.47 6.34 0.11 11.36
30% 1.65 0.21 3.68 5.54 0.13 11.54
1% 1.52 0.16 3.51 5.19 0.08 10.68

316-13
100% 1.96 0.07 3.43 5.46 0.03 5.78
30% 1.60 0.05 1.04 2.68 0.02 4.36
1% 1.77 0.19 4.51 6.47 0.18 6.91

316-17
100% 2.14 0.06 1.41 3.61 0.03 6.64
30% 1.61 0.07 1.11 2.79 0.04 7.15
1% 1.54 0.04 1.30 2.88 0.03 6.59

316-21
100% 1.53 0.51 10.23 12.26 0.33 9.86
30% 1.44 0.48 8.90 10.82 0.30 9.50
1% 1.47 0.44 7.51 9.43 0.30 7.83

317-13
100% 2.65 0.30 1.69 4.64 0.03 3.72
30% 1.55 0.06 1.06 2.66 0.01 5.95
1% 1.60 0.06 0.85 2.51 0.01 5.52

317-15

100% 1.55 0.05 1.27 2.86 0.01 3.89
30% 1.57 0.05 1.01 2.63 0.01 3.97
1% 1.57 0.26 2.61 4.44 0.10 6.03

317-21
100% 2.06 0.10 2.61 4.78 0.01 8.87
30% 1.72 0.08 1.45 3.26 0.01 9.58
1% 1.58 0.45 8.12 10.16 0.31 12.41

average 1.67 0.16 3.04 4.87 0.08 6.75

S.D 0.26 0.15 2.66 2.76 0.10 2.79
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Table 2. Cont.

Station Light (%) NH4 NO2 NO3 DIN PO4 SiO2

August

315-13
100% 0.41 0.06 1.49 1.97 0.06 8.31
30% 0.41 0.09 1.99 2.50 0.06 7.94
1% 0.44 0.09 14.14 14.67 0.53 13.75

315-17
100% 1.46 0.09 1.41 2.97 0.07 8.48
30% 0.40 0.05 1.16 1.61 0.05 8.62
1% 0.36 0.09 8.45 8.90 0.49 10.75

315-21
100% 0.80 0.14 2.18 3.13 0.07 7.07
30% 0.80 0.11 2.00 2.92 0.07 6.91
1% 1.17 1.66 5.68 8.51 0.11 11.79

316-13
100% 0.54 0.06 2.04 2.63 0.03 8.29
30% 2.76 0.07 0.96 3.78 0.03 3.31
1% 0.43 0.06 9.11 9.59 0.42 8.88

316-17
100% 0.72 0.20 2.96 3.88 0.08 2.61
30% 0.61 0.17 3.05 3.83 0.05 2.70
1% 0.74 0.29 13.84 14.86 0.34 14.71

316-21
100% 1.29 0.05 1.54 2.88 0.06 2.10
30% 0.56 0.06 1.68 2.31 0.07 2.74
1% 0.74 1.26 4.06 6.06 0.18 7.80

317-13
100% 0.58 0.04 3.35 3.96 0.06 5.45
30% 3.15 0.04 0.79 3.98 0.03 2.11
1% 0.49 0.45 10.73 11.67 0.28 11.89

317-15
100% 1.30 0.06 1.56 2.93 0.06 3.59
30% 1.02 0.06 1.96 3.04 0.09 4.12
1% 3.71 0.06 9.46 13.23 0.43 9.97

317-19
100% 0.67 0.05 1.63 2.35 0.05 2.12
30% 0.64 0.05 1.85 2.54 0.05 2.59
1% 1.11 0.69 6.50 8.30 0.15 8.53

317-21
100% 1.54 0.04 1.16 2.74 0.06 2.38
30% 0.40 0.04 1.68 2.11 0.06 3.73
1% 0.56 0.10 2.30 2.96 0.08 3.81

average 0.99 0.21 4.02 5.23 0.14 6.57

S.D 0.83 0.37 3.88 4.00 0.15 3.76

October

315-13
100% 0.66 0.15 1.79 2.61 0.18 2.72
30% 0.74 0.10 1.38 2.22 0.13 1.99
1% 0.79 0.14 1.18 2.11 0.17 2.32

315-15
100% 0.49 0.48 2.66 3.62 0.22 3.71
30% 0.63 0.40 1.88 2.90 0.17 3.09
1% 0.73 0.47 2.32 3.51 0.23 3.63

315-21
100% 2.07 0.13 13.73 15.93 0.56 13.36
30% 0.70 0.11 10.35 11.16 0.57 15.78
1% 0.62 0.12 10.91 11.65 0.56 14.81

316-13
100% 1.04 0.21 2.42 3.67 0.19 2.66
30% 0.60 0.07 1.93 2.60 0.10 2.79
1% 0.74 0.11 1.41 2.27 0.17 2.35

316-17
100% 0.60 0.49 5.38 6.47 0.36 7.99
30% 0.54 0.52 4.62 5.68 0.39 7.44
1% 0.60 0.54 4.34 5.49 0.41 6.93

316-19
100% 1.24 0.14 8.70 10.07 0.49 11.69
30% 0.78 0.12 9.28 10.18 0.47 12.39
1% 0.56 0.11 7.79 8.47 0.50 10.50

316-21
100% 0.87 0.07 6.30 7.24 0.47 8.25
30% 0.75 0.11 8.29 9.15 0.59 10.99
1% 0.89 0.11 9.28 10.28 0.55 12.24

317-13
100% 1.10 0.18 4.74 6.02 0.22 2.84
30% 0.66 0.09 1.81 2.55 0.17 2.35
1% 0.71 0.11 1.47 2.29 0.22 2.13

317-15
100% 0.88 0.16 2.27 3.30 0.22 2.99
30% 0.85 0.15 1.90 2.90 0.21 2.91
1% 1.39 0.21 2.00 3.60 0.23 3.04

317-21
100% 1.05 0.14 9.23 10.41 0.51 11.52
30% 0.65 0.12 8.16 8.93 0.53 10.68
1% 0.65 0.12 8.70 9.48 0.51 11.18

average 0.82 0.20 5.21 6.22 0.34 6.91

S.D 0.32 0.15 3.67 3.75 0.17 4.59
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3.3. Phytoplankton Biomass and Community Structure

The monthly averaged chlorophyll-a concentration integrated from surface to 1% light depth was
highest (35.2± 20.22 mg m−2) in May and lowest (5.2± 2.54 mg m−2) in February (Figure 3). In February,
the integral chlorophyll-a concentration was relatively lower in the western part (2.8 mg m−2) compared
to that in the eastern part (6.7 ± 2.46 mg m−2) of our study area, which is similar to the temperature
distribution. In May, the integral chlorophyll-a concentration was highly variable across the study area
with the range of 8.2–70.0 mg m−2 and the chlorophyll-a concentration was relatively higher in the
southern part than in the northern part. In August, no distinct spatial distribution in the chlorophyll-a
concentration was observed. In November, the spatial distribution in the integral chlorophyll-a
concentration was opposite to that in August, which is similar to the nutrient distribution patterns
(Table 2).
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Generally, no distinct vertical differences in phytoplankton community compositions were
observed at 100%, 30%, and 1% light depths for all the sampling seasons except August (Figure 4).
The phytoplankton community compositions in August were conspicuously different between 30–100%
light depths and 1% light depths. Cyanobacteria predominated, contributing 63.3% to the total
phytoplankton biomass and diatoms were the second most abundant group (15.5%) at 100% light
depths, whereas diatoms contributed 58.2% followed by dinoflagellates (13.0%) and other classes (<10%)
at 1% light depths (Figure 4). Spatially, noticeable differences in phytoplankton community between
the eastern and western parts were observed season, especially in November. Diatoms predominated
in the western part, contributing 58.6% to the total phytoplankton biomass and cryptophytes were the
second most abundant group (27.4%), whereas cyanobacteria predominated (45.0%) in the eastern
part followed by cryptophytes (31.0%) in November. These two dominant groups were significantly
(p < 0.01) correlated with water temperature (Figure 5). The contribution of diatoms was negatively
related with water temperature (y = −0.0227x + 0.8061, r2 = 0.7207), whereas the contribution of
cyanobacteria had a positive relationship with water temperature (y = 0.0309x − 0.3506, r2 = 0.824).
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Figure 5. Relationships between contributions of two major phytoplankton communities and water
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Overall, the major phytoplankton community in the study site was diatoms with a contribution
more than 30% although it varied seasonally from 9.8% (November) and 50.0% (February) (Figure 6).
Cyanobacteria were the second highest contributors ranging from 0% to 38.3% during our study period.
Cyanobacteria were not appeared in February but their contribution increased steadily from May
to November. The contributions of cryptophytes ranged from 7.8% to 30.7%. The contributions of
prymnesiophytes were 5.4–7.6%, with a similar contribution for each cruise. Chlorophytes contributed
0.5–16.1%, with the highest contribution in February and were hardly observed in May and November
(0.5% and 0.8%, respectively). Chrysophytes had the contributions of 0.6–14.0%, showing their highest
contribution in February. Dinoflagellates showed their contributions of 0–17.4% and their highest
contribution was in August. In the case of prasinophytes, they showed the contributions ranging from
0% to 14.2% and the highest contribution was in May (Figure 6).
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3.4. Canonical Correspondence Analysis (CCA)

CCA results between phytoplankton community and environmental parameters for each season
are presented in Figure 7. In February, diatoms and chryptophytes showed negative correlations
with temperature and salinity and positive correlations with nutrients, whereas chrysophytes and
chlorophytes had positive correlations with temperature and salinity. In May, diatoms had no significant
correlation with any environment parameter, whereas cyanobacteria and chrysophytes had negative
correlations with nutrients and cyanobacteria had positive correlations with temperature and salinity.
In August, cyanobacteria had a positive correlation with temperature and negative correlations with
nutrients and depth. In comparison, diatoms had significantly positive correlations with nutrients and
depth in August. Similarly, cyanobacteria showed a strong positive correlation with temperature and
negative correlations with depth and nutrients in November. In comparison, diatoms had negative
correlations with temperature and depth, and positive correlations with nutrients in November.
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4. Discussion

The northern ECS is a typical temperate water seasonally affected mainly by four different
water masses. The CDW, TCWW, KW, and YSCW, but their influence can vary seasonally [45,46].
Mixed waters were mainly distributed in our study area in February but YSCW was found at the most
western stations (Sts. 315-21, 316-21, and 317-21) in May based on T-S diagrams. Low temperature,
strong winds, and vigorous vertical mixing are generally observed in February during the Northeast
Monsoon [47,48]. Weak surface stratification begins May and the water column was well stratified in
August with TCWW mainly distributed at surface layer whereas the YSCW is mainly distributed at
bottom layer (73 m). Normally, the surface layer in summer has a low density due to a high temperature
and low salinity water from the CDW and the lower layer forms a strong stratification due to the
distribution of the low temperature water from the YSCW and high salinity water from the TCWW [49].
In the northern ECS, the runoff from the Changjiang river is maximum in summer and minimum in
winter [50]. According to a previous study, CDW is a main source of fresh water input in the ECS,
increasing from spring to summer [51]. In November, the water masses were relatively well mixed
(Figure 2).

In this study, we found that major inorganic nutrient concentrations were considerably higher in
the western part compared to those in the eastern part in February and November during this study
(Table 2), which is consistent with previous results [52]. The waters in the western part of the ECS
are fully mixed from surface to the bottom because of the shallow water depth (<50 m), but in the
eastern part vertical mixings occur only in the upper layer [35]. The noticeable vertical difference in
nutrient concentrations were observed in August (Table 2) due to a strong stratified water column
(Figure 2) which suppressed the upwelling of nutrients from the bottom layer. In addition, the seasonal
average N:P ratios in the study area ranged from 10.5 to 422.9 (55.1 ± 64.6) which are higher than
the Redfield ratio of 16 generally found in various oceans. [53] defined nutrient limitations following
as; PO4 limitation when Si:P > 22 and DIN:P > 22; N limitation when DIN:P < 10 and Si:DIN > 1;
Si limitation when Si:P < 10 and Si:DIN < 1. Various studies suggested that PO4 is a limiting nutrient
to phytoplankton growth in the ECS [41,54–56]. This study also verified PO4-limited environmental
conditions in May (124.5 ± 91.1) and August (50.3 ± 29.3) (Figure 8). According to [55] a high N:P ratio
is related to very low PO4 concentration. Indeed, low PO4 concentrations (approximately 0.1 µM) were
observed in May and August. These PO4-limited conditions could have caused the seasonal variation
in phytoplankton community in the ECS. According to [57], Diatoms would have a higher phosphorus
demand relative to other phytoplankton groups which may be reflected by lower N:P ratios in diatoms
compared to those in other groups. Indeed, [43] showed the phytoplankton community in mid-shelf
ECS in summer and identified 2 distinct phytoplankton communities under two major water masses
with different nutrient conditions: PO4-rich Kuroshio intermediate water (KW) indicated by a low
ExN value leading to diatom domination and PO4-limited CDW indicated by high ExN leading to
small phytoplankton domination such as chlorophytes and cyanobacteria. However, we did not find
the relationships in this study. In spring, diatoms were mostly dominant despite of PO4-limited water
conditions. The PO4- limited condition in spring could be due to the spring bloom of diatoms, which is
consistent with the results in Chesapeake Bay [58]. Even in our summer cruise period, opposite
relationship between diatoms and ExN was observed. This discrepancy between this and previous
studies could be caused by several factors. [42] observed pronounced effects of KW and CDW and a
large range of PO4 concentration, whereas in this study, TCWW current was largely dominant rather
than the KW and CDW and narrow range of PO4 concentration. In addition, the analysis in [42] was
performed only in the surface layer, whereas this study was performed within the euphotic layer
(surface to 1% light depth). Indeed, we also found a dominance of cyanobacteria in the surface layer
with a lack of PO4 and diatoms dominant at the nutrient-rich depths as discussed in detail below.
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Figure 8. Scatter diagrams of atomic nutrient ratios at the euphotic depths (100%, 30%, and 1%) in the
northern East China Sea, 2018.

The distinct vertical difference in dominant phytoplankton communities was observed in our
study area in August with cyanobacteria predominated at surface layer and diatoms prevailed at
deep layer. A strong water stratification appeared in the study area could have caused the vertical
pattern of phytoplankton community [59]. A stratified water column restricts the upward supply of
major inorganic nutrients to the upper euphotic surface layer. According to the resource competition
theory [60–62], pico-phytoplankton are favored over larger phytoplankton in nutrient-limited conditions
because of their higher nutrient affinity associated to their small size [63–65]. Thus, small size
cyanobacteria are predominant in the nutrient-deficient surface layer in August. Since zeaxanthin is
a marker pigment in cyanobacteria and plays an important role in protecting cyanobacteria against
photoinhibition [66], the high concentration of zeaxanthin at surface might be due to much higher
photosensitivity than that at the deep water column [67,68]. In addition, the water temperature
was approximately 7 ◦C higher at surface than the deep layer in August. Indeed, CCA revealed
a positive correlation between cyanobacteria and temperature in this study (Figure 7c). As water
temperature exceeds 20 ◦C, the growth rates of eukaryotic phytoplankton usually stabilize or decrease
whereas those of many cyanobacteria species increase because of their competitive advantage over
high temperature [69–71]. Therefore, the water temperature and nutrient distribution in August had a
great influence on the vertical distribution of phytoplankton communities.

During the four research periods, spatial difference in phytoplankton community was not
significantly high, but in November, there was a clear difference in phytoplankton community between
the western and eastern parts. The most predominant phytoplankton communities were diatoms in the
western part and cyanobacteria in the eastern part. The cryptophytes were the third dominant species
in both western and eastern parts. CCA result showed that cyanobacteria are associated with high
temperature, high salinity, low nutrient concentrations, and depth, whereas diatoms are associated with
low temperature and high nutrient concentrations in November (Figure 7d). Nutrient concentrations
were also horizontally different, gradually decreasing toward the west. In relation to the distribution
of these nutrients, zeaxanthin (major pigments of cyanobacteria) showed a negative correlation with
nutrients (p < 0.01, t-test), whereas fucoxanthin (major pigments of diatoms) showed a positive
correlation with nutrients (p < 0.01, t-test). These correlations with the nutrient concentrations indicate
that nutrients are a major driver of the spatial difference in phytoplankton community distribution in
November. Moreover, there was a significant difference in light condition based on the euphotic depths
between in the western and eastern parts. The euphotic layer up to 1% depth was 43 m on average in the
eastern part, whereas it was 7 m in the western part. Light can be a limiting factor largely influencing
the spatial distribution of picophytoplankton, probably because the decreasing light in water is mostly
variable in the water column [72,73]. According to [74], diatoms have high growth efficiency under a
low light condition. In comparison to the phytoplankton community in the ECS, several studies in
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other oceanic basins influenced by large rivers were compared. Similar to the East China Sea, the Gulf
of Mexico is a phosphate-limited environment during summer period [75,76]. These studies showed
that diatoms generally predominate and cryptophytes are the second most abundant group in the
winter and spring periods and cyanobacteria are most dominant during PO4-limited summer time
compared to other seasons in the Gulf of Mexico. The spatiotemporal variations in the region are
controlled mainly by river flow runoff, along with other environmental variables such as wind pressure
and stratification [75,76]. In contrast, Western Tropical North Atlantic, which is a region largely affected
by the Amazon River, is mainly dominated by the diatom-diazotroph associations (DDAs) [43]. In this
region, the phytoplankton community structure and distributions are controlled by low concentrations
of inorganic nitrite and nitrate (NO2 + NO3) [43].

Based on the four different seasonal observations in this study, the yearly average contributions of
different phytoplankton communities were 32.0%, 20.6%, 17.2%, 6.9%, 6.4%, 6.4%, 5.7%, and 5.0% for
diatoms, cyanobacteria, cryptophytes, prymnesiophytes, chlorophytes, chrysophytes, dinoflagellates,
and prasinophytes, respectively, in the northern ECS. Chlorophyll-a concentrations were highest in
May and lowest in February in this study which is consistent with previous results in the ECS [56,77].
Previous studies reported that diatoms are associated with phytoplankton blooms in early spring
and that the dominant species in the ECS are mostly chain-forming diatoms such as Pseudonitzschia
delicatissima, Thalassionema nitzschioides, and Paralia sulcate [28]. Consistent with previous observations,
this study also verified that the dominant species were diatoms during the spring bloom in May.

5. Summary and Conclusions

There are multiple factors including light intensity, stability of water column, temperature,
and nutrient conditions [78] that can cause variations in phytoplankton compositions and spatial
distributions. The seasonal variations in the phytoplankton community were distinct in our study
area although spatial and vertical variations were observed along the seasons. Diatoms appeared to
be dominant in the northern ECS throughout the year in this study. Normally, diatoms are known
to be competitive over other species at low water temperatures [79]. Therefore, in February with
a low water temperature (Figure 2) and high nutrient concentrations (Table 2), diatoms were most
predominated among our study periods. Moreover, diatoms are more efficient at high nutrient
concentrations than small phytoplankton [80] and they can quickly respond to nutrient inputs [81].
Contrary to diatoms, cyanobacteria, as the next dominant species, started to appear in May and showed
their contribution gradually increased from May to November in this study. According to previous
research, water temperature is the main control factor for the distribution of cyanobacteria [82]. In this
study, we also found that water temperature is a main factor driving the seasonal variation in the
cyanobacteria contribution in the northern ECS throughout the year based on CCA result (Figure 7).
Overall, the cyanobacteria contribution was strongly negatively correlated with the diatom contribution
in the northern ECS during our study period in 2018 (Figure 6). This result implies an ecologically
significant meaning for the marine ecosystem in the northern ECS. Under expected warming ocean
scenarios, the potential change in dominant phytoplankton groups from diatoms to cyanobacteria could
cause substantial differences in quantity and qualitative aspects of primary marine food sources in the
northern ECS. Comprehensive monitoring for qualitative and quantitative characteristics of different
phytoplankton communities is warrant for a better understanding their potential consequences on the
entire marine ecosystem in the ECS.
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