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Abstract: Urban water demand prediction based on climate change is always challenging for water
utilities because of the uncertainty that results from a sudden rise in water demand due to stochastic
patterns of climatic factors. For this purpose, a novel combined methodology including, firstly, data
pre-processing techniques were employed to decompose the time series of water and climatic factors
by using empirical mode decomposition and identifying the best model input via tolerance to avoid
multi-collinearity. Second, the artificial neural network (ANN) model was optimised by an up-to-date
slime mould algorithm (SMA-ANN) to predict the medium term of the stochastic signal of monthly
urban water demand. Ten climatic factors over 16 years were used to simulate the stochastic signal of
water demand. The results reveal that SMA outperforms a multi-verse optimiser and backtracking
search algorithm based on error scale. The performance of the hybrid model SMA-ANN is better
than ANN (stand-alone) based on the range of statistical criteria. Generally, this methodology yields
accurate results with a coefficient of determination of 0.9 and a mean absolute relative error of 0.001.
This study can assist local water managers to efficiently manage the present water system and plan
extensions to accommodate the increasing water demand.

Keywords: artificial neural network; backtracking search algorithm; empirical mode decomposition;
multi-verse optimiser; slime mould algorithm; water demand model

1. Introduction

Security of municipal water is fundamental to gain a sustainable environment in modern cities,
especially under the impact of global warming and socio-economic variables. Additionally, most cities
are located close to freshwater sources to ensure the prosperity of both industry and agriculture. For the
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mentioned reasons, freshwater scarcity is a classic problem for policymakers [1,2]. Recently, the World
Economic Forum confirmed that water scarcity is one of the largest international risks because of the
limited amount of accessible freshwater (approximately 0.014% of the total amount of water on Earth).
In addition, climate change, water pollution and poor management of freshwater sources are other
major factors that contribute to water scarcity. For example, climate change increases water demand
which increases the pressure on the urban water system, especially during periods of water shortage.
Accordingly, water companies must devise strategies to tackle this issue. Hence, water utilities should
support and enhance the management of the municipal water system [3–5].

Hemati et al. [6] reported that, during the period from 1930 to 2009, Melbourne experienced
two short-term droughts and three long-term droughts (the last one was from 1997 to 2009). As a
result, annual rainfall was adversely affected, making its influence on the municipal water supply
system keenly felt. In addition, Roy and Majumder [7] stated that hazardous weather events, such as
heatwaves in Australia, are likely to be more regular or extreme, leading to alterations in the amount
of freshwater available.

In the last few decades, there has been a surge of interest in the effects of climate change on the
demand for freshwater. Although data from several sources have identified that the increase of urban
water demand is associated with climatic factors, researchers have not looked at the variability of
climate change in much detail. Therefore, to date, the impact of climate change on urban water demand
has still not yet been extensively investigated. Consequently, the uncertainty in water sustainability has
increased due to the lack of knowledge about the impact of climate change on the demand of water [8].

Prediction of municipal water demand is crucial to manage, operate and plan urban water systems.
It leads to a balance between water need and delivery, especially with the fluctuations caused by
climate change that cause unexpected growth in water demand, fluctuations in stochastic patterns and
an increase in the uncertainty for water utilities. Additionally, estimating water demand is quite useful
for proper management, operation and upgrading of present freshwater sources [8–10]. Ebrahim
Banihabib and Mousavi-Mirkalaei [11] stated that modelling techniques for prediction of municipal
water demand are required to address the potential water security. Prediction of medium-term water
demand is classified as a tactical type, and it is used to improve water supply networks and installations
and to manage dam reservoirs [12].

A review of different municipal water demand modelling techniques over the past few
decades [5,13–16] highlighted various issues that include: (1) Most of these methods and techniques
were focused on the prediction of short-term water demand, and little research has considered
medium- to long-term urban water demand; (2) different artificial intelligence techniques were
successfully applied to simulate urban water demand, such as artificial neural network [8], support
vector regression [17], adaptive neuro-fuzzy inference system [18] and random forests [19]; (3) several
studies indicated that hybrid techniques yield superior outcomes when compared with the classical
single models, such as Chen et al. [19] and Altunkaynak and Nigussie [20]; and (4) a number of
methods, techniques and models have been used to forecast water demand based on weather or
climatic factors. However, these techniques have been largely deterministic and focus generally on
only a few weather variables, such as the study of Mouatadid and Adamowski [21]. Very limited
research has used the stochastic signal to predict water demand based on climatic factors, such as the
studies of Zubaidi et al. [22] and Zubaidi et al. [8]. These studies used the stochastic model to predict
the stochastic signal of water demand of an area in Melbourne that served by the Yarra Valley Water
utility, considering the effects of five climatic factors, and applied two hybrid models (particle swarm
optimisation and artificial neural network (PSO-ANN)) and lightning search algorithm and artificial
neural network (LSA-ANN).

Although the application of machine learning and data analytic methodologies in urban water
estimating have grown considerably in recent years, more investigations are needed to develop
new methodologies to enhance the results from present conservation and demand management
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programmes [5]. Altunkaynak and Nigussie [9] stated that the artificial neural network is a preferred
option to simulate water demand because it can deal with non-linear time series.

Different metaheuristic optimisation algorithms could be applied to tackle a range of problems for
various application domains. The main advantages of optimisation algorithms are their ability to select
the optimal values of parameters of the system under different conditions, and they have time-saving
qualities. Recently, a multi-verse optimiser (MVO) proposed by Mirjalili et al. [23] to solve various
optimisation problems, for example, has been used for energy management in smart cities [24] and
multi-level image segmentation [25]. Additionally, a backtracking search algorithm (BSA) has been
utilised to tackle several optimisation issues, such as predicting urban water demand depending on
previous water consumption data [26], photovoltaic models [27] and power signals [28]. Moreover,
a slime mould algorithm (SMA) has been proposed by Li et al. [29] and used in several optimisation
issues, but has not been investigated in the urban water sector, such as the spring design problem [30],
photovoltaic models [31] and image segmentation method [32].

In addition, the literature has emphasised the importance of using data pre-processing to improve
the quality of time series and to determine the best independent variables. More attention has recently
focused on data cleaning. Therefore, several signal pre-treatment techniques have been employed to
clean and/or detect the trend, seasonal and stochastic components of water consumption time series,
such as singular spectrum analysis (SSA) [33,34], wavelet transform (WT) [20,35], variational mode
decomposition (VMD) [36] and empirical mode decomposition (EMD) [37,38]. Another significant
aspect of data pre-processing is selecting the best independent variables, such as principal component
analysis (PCA) [39,40], mutual information (MI) [41,42] and variance inflation factor (VIF) [22,43].

Despite the fact that different techniques and approaches were used to forecast the future water
demand, water companies still face challenges in estimating the accurate water demand, especially
with the influence of climatic factors and their implications for future water demand. Therefore,
additional research studies are required to accurately estimate the growing water demand [8].

In this context, the main contributions of the current research are:

1. The employment of 10 climatic factors over 16 years to assess the impact of climate change on
urban water demand.

2. Development and analysis of a new hybrid algorithm SMA-ANN for the water demand
optimisation problem, and choosing the optimal hyperparameters of the ANN approach.

3. The application of two hybrid algorithms, MVO-ANN and BSA-ANN, for analysing and validating
the proposed SMA-ANN algorithm.

4. Using the novel methodology, which contains data pre-processing techniques (EMD and tolerance)
and hybrid SMA-ANN algorithm, to simulate the monthly stochastic pattern of water demand
based on the best scenario of climatic factors over 16 years.

5. Minimising the uncertainty by applying three metaheuristic algorithms for more validation,
and using the ANN (stand-alone) to confirm the results of the SMA-ANN model. Additionally,
employing 10 climatic factors that give scientific insight (i.e., to what extent climate change has
driven water demand) for policymakers to achieve sustainability.

To the best of the authors’ knowledge, the present study explores a novel methodology for the
first time: the effects of climate change on the monthly stochastic pattern of urban water demand.
The structure of the research is organised as follows: case study and data used are presented in
Section 2; the proposed methodology for predicting monthly stochastic water demand is described
in Section 3; Section 4 provides the analysis and compares the obtained results; and finally, Section 5
presents the final conclusions with some considerations of the study.

2. Case Study and Data Used

The suggested methodology was applied to the observed water consumption and climatic factor
data relating to the South East Water (SEW) utility, which is one of three retail water utilities that
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purchase water wholesale from the Melbourne Water company in Melbourne, Australia. The sources
of freshwater are 11 large storage facilities, which are refilled regularly by stormwater harvesting [44].
The urban water system network of SEW utility serves more than 1.7 million individuals in a 3640 km2

area, and the company has approximately 72,700 customers, categorised into residential, industrial
and commercial [45].

The collected data comprise monthly urban water consumption (megalitre, ML), maximum
temperature (Tmax) (◦C), minimum temperature (Tmin) (◦C), mean temperature (Tmean) (◦C), solar
radiation (Srad) (MJ/m2), potential evapotranspiration (FA-O56) (mm), vapour pressure (VP) (hpa),
rainfall (Rain) (mm), evaporation (Eva) (mm), maximum relative humidity (RHmax) (%) and minimum
relative humidity (RHmin) (%) from 2000 to 2015. Figure 1 shows the time series and box plot of
monthly water consumption for SEW utility. The figure reveals the decrease in water consumption
due to drought, and water-conserving policies and initiatives. After that, the consumption increased,
possibly because restrictions were eased after the impact of the drought lessened. It may also be due
to the strategies that Melbourne Corporation pursued by upgrading the dams and relying on other
resources, such as water desalination and water recycling [44].
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Figure 1. (A) Monthly time series, (B) box plot of municipal water consumption for SEW utility.

3. Proposed Methodology

There is a relatively small body of literature that is concerned with the impact of climate change
only on the municipal water demand. Accordingly, this paper proposes a novel combined methodology
for investigating the impact of climate change on water demand. It could be divided into five main
categories: data pre-processing, slime mould algorithm (SMA), artificial neural network (ANN), hybrid
metaheuristic algorithm-based artificial neural network and model evaluation. Figure 2 shows the
structure of the proposed methodology to predict monthly stochastic data of water demand based on
climatic factors.

3.1. Data Pre-Processing

Recent developments in urban water predictive methodologies have highlighted the need to apply
different data pre-processing techniques, which could be classified into normalisation, cleaning and
selection of best model input [5,46]. To be in accordance with Tabachnick and Fidell [47], the natural
logarithm was used to normalise all raw time series of water and climatic factors to reduce both the
impact of the outliers and the multi-collinearity between independent factors.

Zubaidi et al. [8] mention that the relation between water demand time series and climatic time
series is stochastic. Stochastic models will also offer a better reflection of reality and insight into the
system’s dynamics [48]. Hence, an empirical mode decomposition (EMD) approach was applied
to decompose the original time series of dependent and independent variables into trend, seasonal,
stochastic and noise components, and to detect the stochastic component after that. EMD is used
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in the analysis of various problems, such as machinery fault diagnosis [49] and biomedical signal
analysis [50].Water 2020, 12, x FOR PEER REVIEW 5 of 18 
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Figure 2. The proposed methodology for predicting water demand based on climatic factors.

EMD is also used for analysing geodetic data [51]. In this study, the authors have used EMD to
analyse the natural variability of sea level and its effect, among other factors, on the trend of the sea
level. Recently, Chu and Huang [52] utilised EMD for synthetisation and generation of flow data and
for increasing the number of flow time series for the same time period, which is used in the simulation
of a water supply system. This technique decomposes a time series into a number of time domain
components called intrinsic mode functions (IMFs). The latter must have two properties:

• The maximum difference between the number of local maxima and minima is one.
• The mean value of an IMF is zero.

For a time series x(t), the extraction of IMFs could be described briefly in the following steps [51]:

1. Assume hk − 1(t) = x(t), and hi,k − 1(t) = x(t), where i and k refer to the IMF number and the
iteration number for finding the accurate ith IMF, respectively.

2. Identify all the maxima and minima points of the series hi,k − 1(t).
3. Connect the maxima points by cubic spline interpolation and do the same thing for the minima

points. The linked maxima points are called the upper envelope, Ui,k − 1(t), while the linked
minima points are called the lower envelope, Li,k − 1(t).

4. The mean of the upper and lower envelopes is found using this formula: mi,k − 1(t) = (Ui,k − 1(t) −
Li,k − 1(t))/2.
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5. Form the following formula: hi,k(t): = hi,k − 1(t) −mi,k − 1(t). The component hi,k(t) is primarily
described as the first IMF. To determine the first IMF accurately, the hi,k(t) is considered as a new
signal, and the mean of upper envelope, lower envelope and the mean (i.e., UI,k(t), Li,k − 1(t) and
mi,k of the hi,k(t)) are calculated. The new component hi,k(t) is checked to see whether it has IMF
properties or not. If it does, then it (i.e., hk(t)) is identified as an IMF. If not, the process will be
repeated until IMF properties are obtained. The number of the repetitions to identify an IMF is
called iterations and is notated by k, while the IMF number is notated by i.

6. When the ith IMF is obtained, the residue is obtained: resi = hi,k − 1 − IMFi.

7. The residue resi is now treated as the signal hi+1,k − 1 and the same steps 2–6 are repeated until no
more IMFs can be extracted.

The EDM process above is applied for all dependent and independent variables in this study.
Regarding the selection of the best model input, Pallant [52] recommended using a tolerance

method to choose the independent variables that have a tolerance value of more than 0.1, because
values less than 0.1 indicate the presence of multi-collinearity.

3.2. Slime Mould Algorithm (SMA)

The SMA is one of the recent nature-inspired algorithms. It refers to the mathematical model of
simulating the propagation wave of slime mould when forming the optimal path for connecting foods.
This model adaptively simulates the process of producing negative and positive feedback during the
propagation wave. This algorithm is incorporated into different optimisation problems, including
the engineering ones. The main two stages in the SMA algorithm are called approaching food and
warp food.

a. Approaching food

In this stage, the slime is approaching food based on its odour in the air, and this behaviour is
mathematically described as follows:

X(t + 1) =


→

Xb(t) +
→

vb×
(
→

W×
→

XA(t) −
→

XB(t)
)
, r < p

→
vc×

→

X(t), r ≥ p
(1)

where
→

vb is a parameter which ranges from −a to a.
→
vc represents a parameter which decreases from one to zero in a linear form.
Xb represents the current individual location corresponding to high odour concentration.
t is the current iteration.
X is the location of the slime mould.
XA and XB are randomly selected individuals from the mould.
W is the weight of the slime mould.
The formula of p can be represented as follows:

p = tanh[S(i) −DF] where iε 1, 2, 3, . . . , n (2)

S(i) represents the fitness of
→

X.
DF represents the best fitness over all the iterations.

As mentioned above,
→

vb ranges from −a to a, and a can be described as follows:

a = arctanh
(
−

( t
maxt

)
+ 1

)
(3)
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The
→

W formula can be described as follows:

W(SmeelIndex(t)) =

 1 + r× log
(

bF−S(i)
bF−wF + 1

)
, condition

1− r× log
(

bF−S(i)
bF−wF + 1

)
, others

(4)

SmeelIndex = sort(S) (5)

where
r denotes the random value within the interval [0, 1].
bF represents the optimal fitness obtained in the current iterative process.
wF represents the worst fitness value obtained in the current iterative process.
SmeelIndex refers to the sequence of fitness values.

b. Warp food

In this stage, the behaviour of the slime in conducting contraction of its venous structure is
mathematically described as follows.

→

X∗ =


rand× (UB− LB) + LB, rand < z

→

X(t) +
→

vb×
(

W → ×

→

XA(t) −
→

XB(t)
)
, r < p

→
vc×

→

X(t), r ≥ p

(6)

where LB and UB are the lower and upper boundaries of the search range, and rand and r are random
parameters ranging from 0 to 1. Further details of the SMA can be found in Li et al. [29]. In this study,
the SMA algorithm is combined with the ANN model to determine the optimum parameters of the
ANN model (see Section 3.4).

3.3. Artificial Neural Network (ANN)

In recent years, there has been an increasing interest in using the ANN model to predict urban
water demand, because it is capable of accurately simulating the nonlinear time series. Additionally,
Rahim et al. [5] reported that different multi-layer feedforward neural networks (MLFFNNs) have been
successfully developed utilising propagation networks in a water demand estimation model for short
and medium terms. The Levenberg–Marquardt (LM) backpropagation algorithm was employed for
training the ANN model because it can effectively simulate any independent/dependent map [53]. The
structure of the ANN model can be categorised into four layers: the input layer, two hidden layers and
an output layer. The input layer contains the independent variable (climatic factors), the output layer
involves the dependent variable (water demand) and the hidden layers comprise the hidden neurons,
which are responsible for stimulating the nonlinear relationship between water consumption and
climatic factors. As in Zubaidi et al. [43], the tansigmoidal activation function was considered in both
of the hidden layers and the linear activation function was utilised in the output layer. In this research,
total data can be randomly categorised into training (70%), testing (15%) and validation datasets
(15%) [54]. Following González Perea et al. [55], the ANN model was integrated with a metaheuristic
algorithm to determine the optimal hyperparameters of the ANN model that includes the learning rate
coefficient (LR) and the number of neurons hidden in the first (N1) and second (N2) hidden layers.

3.4. Hybrid Metaheuristic Algorithm-Based Artificial Neural Network

In the ANN technique, before achieving the stages of training, testing and validation, it is important
to locate two hyperparameters, which are the learning rate coefficient (LR) and the number of neurons
hidden (N1 and N2) for the hidden layer one and two, respectively. These hyperparameters are
responsible for mapping the nonlinear relationship among the stochastic signals of water consumption
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and climatic factors. The determination of these hyperparameters, based on a trial and error procedure,
may not present the optimum solutions. For this purpose, the ANN model is hybridised with the slime
mould algorithm (SMA-ANN) (automated machine learning) to select the best LR, N1 and N2 for the
ANN model. Additionally, two extra metaheuristics were hybridised with the ANN, the multi-verse
optimiser (MVO-ANN) and the backtracking search algorithm (BSA-ANN), to assess and validate
the results of the SMA-ANN algorithm. Five population sizes (10, 20, 30, 40 and 50 popsize) with
200 iterations were employed for each hybrid algorithm to select the popsize that could offer the lower
value of fitness function (root mean square error, RMSE).

3.5. Model Evaluation

In this research, several performance statistical criteria were employed to evaluate the performance
of the suggested methodology, because there are no global performance criteria that are appropriate for
a particular usage. The performance criteria employed in this research are categorised into absolute,
relative and dimensionless errors [36]. The absolute error contains the mean absolute error (MAE,
Equation (7)) and mean square error (MSE, Equation (8)). The relative error comprises the mean
absolute relative error (MARE, Equation (9)). The dimensionless error contains the coefficient of
determination (R2, Equation (10)). In addition, a Bland–Altman scatterplot is used to graphically
represent the upper and lower limits of agreement area between (actual data–simulated data) on the
y-axis, and ((actual data + simulated data)/2) on the x-axis. Moreover, Augmented Dickey–Fuller
(ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests are used to examine the stationarity of
the stochastic component for dependent and independent variables.

MAE =

∑N
i=1|Ci − Pi|

N
(7)

MSE =

∑N
i=1(Ci − Pi)

2

N
(8)

MARE =
1
N

N∑
i=1

|Ci − Pi|

Ci
(9)

R2 =


∑N

i=1

(
Ci −Ci

)(
Pi − Pi

)
√∑ (

Ci −Ci

)2 ∑(
Pi − Pi

)2


2

(10)

where Ci: measured water consumption, Pi: predicted water demand, Ci: mean of measured water
consumption, Pi: mean of predicted water demand, N: length of data.

4. Results and Discussion

4.1. Preparation of Dependent and Independent Variables

Firstly, data on water consumption and 10 climatic factors were normalised and cleaned according
to Section 3.1. Figure 3 shows the normalised and cleaned water data. Figure 3A shows that the
variance of the seasonal periods along the time series had been reduced in comparison to Figure 1A.
Figure 3B shows that the time series, after the normalisation and treating of the outliers, tended to
follow a normal distribution in comparison with Figure 1B.
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Figure 3. (A) Monthly time series, (B) box plot of normalised and cleaned municipal water
consumption data.

Then, the EMD approach was applied to analyse the normalised data of water consumption and
all climatic factors to unravel the stochastic components of each time series. Figure 4 presents the
normalised and cleaned data for water consumption and its decomposed components, including trend,
seasonal, stochastic and noise. The Augmented Dickey–Fuller and Kwiatkowski–Phillips–Schmidt–Shin
tests were used to assess the stationarity of the stochastic component for each factor (i.e., these two
tests are used to test and select the stochastic signal). It can also be seen that other components (trend
and seasonal) represented the deterministic signal, which was driven by socio-economic factors.
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Figure 4. Normalised and cleaned water time series and the first five components obtained by EMD.

Table 1 presents the correlation coefficients between water consumption and climatic factors time
series in the raw and stochastic stage. The table shows that data pre-processing techniques produced
significant improvements in the quality of the data, such as increasing the correlation coefficient
between water consumption and maximum temperature time series (from 0.63 to 0.93). Additionally,
the correlation coefficient between the stochastic signal of water consumption and climatic factors over
16 years confirmed the relation between water consumption and climatic factors.
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Table 1. Correlation coefficients between water consumption and climatic factors in the raw and
stochastic stage.

Data Tmax Tmin Tmean Rain Eva Srad VP RHmax RHmin FA-O56

Raw 0.63 0.61 0.62 −0.10 0.61 0.60 0.55 −0.59 −0.54 0.63
Stochastic 0.93 0.91 0.92 −0.53 0.88 0.83 0.88 −0.89 −0.75 0.88

In the final stage of data pre-processing, a tolerance method was used to locate the best scenario
of independent factors, climatic factors, that could accurately simulate the stochastic component of
water demand and omit redundant factors to avoid multi-collinearity. The tolerance values for all of
the climatic factors in the initial stage were less than the minimum limit of acceptance (i.e., it should
be more than 0.1) except the Rain, which had a tolerance value equal to 0.43. So, the climatic factors
that had multi-collinearity were removed separately, one by one, until the tolerance values of the
selected model reached more than 0.1, as shown in Table 2. The latter shows that Tmax, RHmin
and Rain were selected to be the best scenario of independent factors based on the tolerance value.
As presented in Table 2, the tolerance value for each climatic factor was more than 0.1, which means
the multi-collinearity assumption was not violated.

Table 2. Collinearity statistics to the selected model input.

Climatic Factors Tolerance Value

Tmax 0.322
RHmin 0.344

Rain 0.867

Another graphical technique can show the significance of data pre-processing. Figure 5 presents
the box plot of the stochastic components of water consumption, Tmax, RHmin and Rain. It can be
seen that there were no outliers within the data, and the median was zero for water consumption and
Tmax, and nearly zero for all RHmin and Rain factors. The stochastic components of all factors showed
a normal distribution, which was confirmed by the Kolmogorov–Smirnov test with significance values
(Sig.) of more than 0.05 (i.e., the Sig. values were 2 for both minimum relative humidity and rainfall
factors). Additionally, Figure 5 reveals how the EMD technique enhanced the normal distribution of
water consumption compared to the distribution of water consumption in Figure 3B.

After preparing the stochastic signals of the dependent and independent factors, data were
organised into three sets (as mentioned in Section 3.3): training (70%, 134 datapoints), testing (15%,
29 datapoints) and validation (15%, 29 datapoints) to build and assess the prediction model. Accordingly,
this was to ensure that each dataset had data selected from along total time series (i.e., the values of the
key statistical parameters, such as the maximum limit, minimum limit and standard deviation for the
mentioned datasets were very comparable).

4.2. Model Configuration

The ANN model needed to be integrated with the metaheuristic algorithm to determine the
optimum hyperparameters of the ANN model, including LR, N1 and N2. Thus, the SMA algorithm
was hybridized with the ANN model, and the results, for more validation, were compared with the
MVO-ANN and BSA-ANN algorithms. Each algorithm was run five times based on population sizes
(10, 20, 30, 40 and 50 popsize) with 200 iterations to increase the solution range, as depicted in Figure 6.
It can be noticed that popsize of 50 offered the best solution for all hybrid algorithms based on the
fitness function (RMSE) (i.e., offered the lowest RMSE value).
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For a closer inspection of the 50 popsize of all of the three hybrid algorithms, Figure 7 shows
that the SMA-ANN algorithm yielded the lowest RMSE (0.0116) after 165 iterations, while the RMSE
was 0.01241 (after 33 iterations) and 0.01261 (after 60 iterations) for the MVO-ANN and BSA-ANN
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algorithms, respectively. That meant that the MVO-ANN and BSA-ANN algorithms did not improve
their performance, based on the value of fitness function (RMSE), along with the iteration limit.
For these reasons, SMA-ANN was a better choice to determine the hyperparameters of the ANN
approach compared to the MVO-ANN and BSA-ANN algorithms. So, the 50 popsize of the SMA-ANN
algorithm offered LR, N1 and N2 values of 0.7094, 2 and 6, respectively.Water 2020, 12, x FOR PEER REVIEW 12 of 18 
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BSA-ANN algorithms.

To scrutinise and validate the influence of integrating the ANN model with the SMA algorithm,
the performance of the ANN technique was inspected. Thus, wide scenarios of the trial and error
process were used to select the hyperparameters of the ANN technique. The outcomes presented that
the values of hyperparameters were LR = 0.6, N1 = 2 and N2 = 3.

4.3. Performance Evaluation

After determining the hyperparameters of the ANN model, the ANN model became ready to
simulate the monthly stochastic signal of municipal water demand. The ANN model was implemented
several times to get a better network (weights) that could accurately predict the water demand.
Different types of statistical tests were used to assess the ability of the model to forecast water demand
based on climatic factors (validation stage).

Three statistical metrics were applied to examine the ability of the model to generalise data in the
validation stage and compare the results of the SMA-ANN with the ANN model. Table 3 provides three
metrics, MAE, MSE (absolute error) and MARE (relative error), to assess the non-linear dependency
between the actual and simulated water demand for both models. According to Dawson et al. [56],
both models showed good accuracy, but the SMA-ANN could predict water demand rather well based
on the MARE value.

Table 3. Statistical indicators of SMA-ANN and ANN models in the validation stage.

Models MAE RMSE MARE

SMA-ANN 0.012 0.015 0.001
ANN 0.013 0.017 0.015

In addition, Figure 8 presents the coefficient of determination (R2) for the SMA-ANN and ANN
models. The values of R2 delivered information for the linear relationship between the actual water
consumption (Target, ML) and predicted water demand (Output, ML) for both models. Similar to the
error tests (absolute and relative), both models offered good results according to Dawson et al. [56].
However, the value of R2 for the SMA-ANN model was 0.9, which is more accurate than that of the
ANN model (0.87). Additionally, the scatter data for the SMA-ANN model were falling closer to the
ideal line than the scatter data for the ANN model.



Water 2020, 12, 2692 13 of 18
Water 2020, 12, x FOR PEER REVIEW 13 of 18 

 

  

Figure 8. The performance of SMA-ANN and ANN techniques in the validation stage. 

Figure 9 shows the Bland–Altman for the SMA-ANN and ANN models. The SMA-ANN has a 

mean = −0.002998 ML with limits of the agreement being −0.03358 and 0.02759 ML, while these values 

for the ANN model were −0.003439, −0.03536 and 0.02947 ML for the mean, lower and upper limits 

of agreement area, respectively. Additionally, a good agreement was noticed for the SMA-ANN 

model because up to 97% of the data were scattered between the limits of agreement, whereas the 

proportion was 90% for the ANN model. Generally, the obtained results revealed that the SMA-ANN 

model had limits of agreement much closer to the mean, and it had a higher agreement percentage 

compared to the ANN model. Additionally, there was no trend in the scattered data for both Figures 

8 and 9, and the randomness of the residual data was assessed and confirmed using the ADF test. 

That meant the tolerance method was successfully used to select the best model input. 

  

Figure 9. Bland–Altman plot of SMA-ANN and ANN techniques in the validation stage. 

The obtained results emphasised that the determination of the ANN’s parameters using 

hybridisation with the SMA algorithm was better than that conducted by trial and error procedure. 

In the former process (i.e., SMA-ANN), the parameters were determined automatically, whereas the 

latter was conducted manually. 

All the statistical tests examined and validated the SMA-ANN model and, for more examination, 

ADF and KPSST tests were used to check the stationarity of the simulated stochastic signal of water 

demand and residual analysis. The results showed that the simulated time series of water demand 

was stationary and the residual data were normally distributed, which was assessed by the  

Kolmogorov–Smirnov test. Furthermore, a graphical test was used to confirm the SMA-ANN model 

by comparing the observed and simulated water time series in the validation stage as shown in Figure 

10, which shows that the model could closely follow the trend and cycles of the observed stochastic 

Figure 8. The performance of SMA-ANN and ANN techniques in the validation stage.

Figure 9 shows the Bland–Altman for the SMA-ANN and ANN models. The SMA-ANN has a
mean = −0.002998 ML with limits of the agreement being −0.03358 and 0.02759 ML, while these values
for the ANN model were −0.003439, −0.03536 and 0.02947 ML for the mean, lower and upper limits of
agreement area, respectively. Additionally, a good agreement was noticed for the SMA-ANN model
because up to 97% of the data were scattered between the limits of agreement, whereas the proportion
was 90% for the ANN model. Generally, the obtained results revealed that the SMA-ANN model had
limits of agreement much closer to the mean, and it had a higher agreement percentage compared
to the ANN model. Additionally, there was no trend in the scattered data for both Figures 8 and 9,
and the randomness of the residual data was assessed and confirmed using the ADF test. That meant
the tolerance method was successfully used to select the best model input.
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The obtained results emphasised that the determination of the ANN’s parameters using
hybridisation with the SMA algorithm was better than that conducted by trial and error procedure.
In the former process (i.e., SMA-ANN), the parameters were determined automatically, whereas the
latter was conducted manually.

All the statistical tests examined and validated the SMA-ANN model and, for more examination,
ADF and KPSST tests were used to check the stationarity of the simulated stochastic signal of
water demand and residual analysis. The results showed that the simulated time series of water
demand was stationary and the residual data were normally distributed, which was assessed by the
Kolmogorov–Smirnov test. Furthermore, a graphical test was used to confirm the SMA-ANN model by
comparing the observed and simulated water time series in the validation stage as shown in Figure 10,
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which shows that the model could closely follow the trend and cycles of the observed stochastic time
series based on the scale of error. There were several slight deviations in the simulated time series
that may have came from the influence of fluctuation of the climatic factors. However, based on both
scale of error and the result of the Bland–Altman for the SMA-ANN, the error could be considered
statistically insignificant.
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The most interesting conclusions that could be drawn from the above results were: (1) the EMD
technique had a significant rule to decompose the raw data to select the stochastic signals of dependent
and independent variables. Additionally, the tolerance method was effective in determining the best
scenario of independent factors. (2) The optimal hyperparameters of the ANN model were determined
based on the novel hybrid model, SMA-ANN, which outperformed both MVO-ANN and BSA-ANN
algorithms depending on the RMSE value. (3) The novel combined methodology that comprised
data analytic and machine learning could effectively simulate the stochastic signal of water demand
concerning climatic factors. (4) An automated machine learning outperformed trial and error procedure
based on several statistical tests. (5) Using three metaheuristic algorithms to build the prediction model
and validate the results by the ANN (stand-alone) and employing 10 climatic factors decreased the
uncertainty and increased the forecasting range. (6) The hybridisation of the model, as well as the way
of categorisation of the training, testing and validation samples, presented a promising application
of the developed model for covering unknown extreme events, particularly when it was applied to
predict data that were not used before in the model configuration. (7) The research provided important
scientific insights for managers and policymakers in SEW utility to manage the water supply system
under sudden increases in water demand due to the variability of the stochastic pattern of climatic
factors. They could, for example, feed the model with predicting climatic factors to forecast water
demand for medium-term (i.e., future). After that, they could compare the water demand in the future
with the capacity of the water system and decide whether the water system is capable of successfully
working under the extreme events or not. (8) The obtained results confirmed the association between
climate change and water demand for the medium term.

5. Conclusions

In this study, the potential of novel coupled data pre-processing and automated machine
learning for monthly stochastic urban water demand prediction based on several climatic factors was
investigated. Data for water consumption and 10 climatic factors for the South East Water utility in
Melbourne were utilised for building and assessing the proposed methodology. Data pre-processing
techniques were considered to analyse and select the stochastic signals of water consumption and
climatic factors time series by EMD approach, and to detect the best independent variables by the
tolerance method. The automated machine learning included the ANN model, which integrated with
the SMA algorithm to find optimal hyperparameters of the ANN model. The results highlighted the
importance of data pre-processing to prepare the stochastic pattern of dependent and independent
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variables and to select the best scenario of independent variables. Additionally, the SMA-ANN was
found to be superior to both the BSA-ANN and MVO-ANN algorithms based on RMSE as an objective
function. Moreover, the performance of the hybrid model, SMA-ANN, was more accurate than the
ANN (stand-alone) approach depending on different statistical tests. Furthermore, the outcomes
indicated that the suggested methodology can be successfully applied in regions that suffer from
climate change (i.e., drought), such as Melbourne. Consequently, the South East Water utility can take
advantage of this study’s findings to establish effective strategies for optimised system operation and
to maintain a balance between water requested and delivered. It also helps to establish appropriate
pricing plans, schedule new changes in the network and optimise the operating procedures, such as
pumps, to enhance the water quality, and to reduce the uncertainty. Based on recent literature, severe
weather will probably become more common in the future. Thus, there is an urgent need for more
studies that use the same or different data analytic and artificial intelligence techniques to simulate the
stochastic component of urban water demand based on climate factors for regions that suffer from
climate change. However, the availability of reliable data for water consumption and climatic factors
for the medium or long term is considered a principal limitation of this methodology.
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