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Abstract: The soil water characteristic curve is highly related to soil physical characteristics, which may
be affected by the soil erosion degree. To explore the applicability of the soil moisture characteristic
curve model in northeastern China, two erosion degrees, (1) lightly and (2) severely eroded black
soil sampled from 15 sites, were collected. The soil water contents at eight soil water suctions were
measured and the parameters of the Van Genuchten (VG) model were estimated. Then, two input
sets—SSCBD (sand, silt and clay percentages and bulk density) and SSCBDθ33θ1500 (SSCBD, and water
contents at 33 and 1500 kPa suction) based on the Rosetta model were compared for the VG model
prediction. The results showed that the parameters in the VG model had significant difference under
the two eroded soils of the saturated water content (θs), but the opposite was true for the residual
water content (θr), the scale parameter (α) and the shape parameter (n). In addition, the θs and θr

had no significant differences but the opposite was true for the α and n under the two input sets.
The simulated soil water content values of the VG model parameters derived from the Rosetta model
underestimated the measured ones, except the water contents at 0 kPa. Therefore the relationships
between m and n were modified for accuracy. The validation results showed that the VG model
performed well when the sand content was less than 80% for the input set of SSCBD. Using the input
set of SSCBDθ33θ1500 can lead to higher simulation accuracy and wider applicability compared with
SSCBD under black soil.

Keywords: northeastern China; Rosetta model; soil water characteristic curve; two erosion degrees;
VG model

1. Introduction

The soil water characteristic curve describes the relationship between soil water potential and
soil water content under unsaturated conditions, which is an important parameter for the study of
soil water movement and retention [1]. The soil water characteristic curve can be measured directly
using a pressure membrane gauge, centrifuge, or the tension meter method. However, these direct
measurements are expensive, difficult, and time-consuming [2–4]. Some concise and indirect deducing
models were successively proposed in the past several decades, such as those of Brooks–Corey [5],
Gardner [6], Van Genuchten [7], Kosugi [8], and Seki [9], et al. These models serve as viable inexpensive
and rapid ways to estimate soil hydraulic properties [10–15]. Among these models, the BC model
(Brooks-Corey model) and VG model are widely used in related studies since the range of applicability
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is wider and accuracy is higher compared with other models. Some studies have shown that the VG
model is more suitable to estimate the soil water content profile of soils with lower sand and higher
clay content compared to the BC model [16,17]. Moreover, the VG model can describe more accurate
soil water characteristic curves for farmland [18].

To determine the parameters of the VG model, undisturbed soil should be sampled, then the soil
water contents under different soil suction conditions should be measured [9]. Since soil sampling
might be affected by natural conditions and is more suitable for a small-scale study, the application
of the VG model is limited. The soil water characteristic curve is closely related to soil physical and
chemical characteristics [18–24]. Comparisons of soil water characteristic curves among different
soil textures, landforms, and land uses have been conducted in several studies [1,25–27]. Therefore,
many researchers have proposed methods to estimate VG parameters with soil physicochemical
properties [11,28–32]. Among these studies, the Rosetta model is the most widely used currently [11,31].
The Rosetta model was developed based on artificial neural network analysis, which can generate
parameters of the VG model through iterative correction between different input variables and output
variables [4]. This method reduces the measurement workload and improves the efficiency of obtaining
model parameters, especially for a large-scale study [33]. Recent publications related to the Rosetta
model pay more attention to the calculation of soil hydraulic parameters and quality comparisons of
different soil moisture transfer functions [34–36]. Novák et al. [34] found the Rosetta model predicted
soil saturated hydraulic conductivity, saturated water content, and residual water content better
than the Vereecken and HYPRES (Hydraulic Properties of European Soils) models. Wang et al. [35]
used the Rosetta model to predict soil hydraulic parameters of sandstone and sand complex soils,
and their results showed that as the proportion of sandstone in the compound soil increased, the wilting
coefficient varied slightly, while the field water holding capacity, saturated water content, effective
water content, and water storage varied widely. By adjusting the weight of the soil moisture parameters,
Zhang [36] improved the model accuracy. It was also found that the Rosetta model was better in
estimating field water holding capacity and worse in fitting saturated water content [33]. Application
of the Rosetta model at large scales has not been studied to a great extent.

The northeastern black soil region is one of the major grain producing areas in China [37]. High
organic matter content and good soil structure are important for water storage of black soil. Black
soil in northeastern China is characterized with high clay content, and is therefore suitable for the
application of the VG model [17]. The black soils were defined as soils with the “mollic epipedon”,
which were classified as Isohumosols in Chinese Soil Taxonomy or Mollisols in the USDA (United States
Department of Agriculture) Soil Taxonomy [38]. However, over-exploitation and few conservation
measures have led to soil loss and soil productivity reduction since the 1950s. Moreover, the topography
of black soil regions is characterized by gentle, long slopes and cropland without any vegetation cover,
and they stay fallow from October to May, which leads to large topsoil erosion and deposition at the toe
of slopes [39]. The soil erosion rate is accelerated for the spring freezing and thawing effect and heavy
storms occurring in the rainy season. The soil erosion degree can be represented by the depth of the
black soil layers, as the soil color would gradually lighten as erosion occurs. In addition, soil erosion
will change the soil physicochemical properties and structure [40], leading to loss of soil nutrients,
increases in runoff, reduction in infiltration as well as effective water capacity, and will eventually
impact soil water storage [41–48]. Thus, the applicability of the VG model to the eroded black soil is
less certain and further evaluation is needed.

The objectives of this study were to (1) validate the applicability of the VG model in black soil, and
explore the relationship between the accuracy of the VG model and degree of soil erosion; (2) evaluate
the VG model parameters predicted by the Rosetta model and improve the estimation by modifying the
relation between parameters m and n in the VG model; (3) compare the Rosetta model’s performance
using data sets with varying percentages of sand, silt and clay and bulk density (SSCBD), and a special
subset of sand, silt and clay percentages, bulk density and water contents at 33 and 1500 kPa suction
(SSCBDθ33θ1500); (4) verify the application soil input sets of SSCBD and SSCBDθ33θ1500 to the Rosetta
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model to estimate the VG model parameters in the northeastern black soil. This study substantiates
the application of the Rosetta model to estimate VG model parameters at a large scale for northeastern
black soil.

2. Materials and Methods

2.1. Study Area

The study was conducted at the Jiusan Soil and Water Conservation Experimental Station of
Beijing Normal University, which is located in the Heshan Farm (northwestern part of Heilongjiang
Province, 125◦16′ E–125◦21′ E, 48◦59′ N–49◦03′ N). The study area is in the transitional zone from
the southern foothills of the Xiaoxing’anling Mountains to the Songnen Plain. Elevation ranges from
310 to 390 m, with long and gentle slopes. The slope length is 800–1500 m and the slope angle is
generally between 1◦ and 4◦ [49–52]. The climate is the mid-temperate continental monsoon climate,
with an annual average air temperature of 0.4 ◦C and large temperature differences between winter
and summer. Annual precipitation is around 500 mm, with 67% precipitation between June and
August [50,52].

The primary soil type in this area is black soil, accounting for 64.2% of the total area, which
is classified as Udic Isohumisols in the Chinese Soil Taxonomy, and Udic Argiboroll in the USDA
Soil Taxonomy, or a Luvic Phaeozem in the FAO (Food and Agriculture Organization of the United
Nations)/UNESCO (United Nations Educational, Scientific, and Cultural Organization) system [53].
The typical soil profiles in the study area can be divided into three layers, the topsoil which is porous
and fertile (A), the illuvial horizon (B), and the parent material layer (C). The soil color of each layer is
different, from layer (C) to layer (A) the soil color gets darker, and the clay content decreases as the
gravel content increases with depth [54]. The average soil bulk density is 1.27 g cm−3, with soil organic
matter content ranging from 3% to 5% [53,55]. The area is divided by artificially planted windbreak
forests, and ridges along the forests lead to three types of ridge direction, which are parallel, oblique or
vertical to the contours. The corresponding planting patterns were planted on contour, cross slope or
up-down slope.

2.2. Data Collection

Data were collected from 15 field sites in a watershed with an area of 28 km2. Soil samples were
taken from all of the field sites at depths of 0–20, 20–40 cm, and 40–60 cm. Soil erosion occurring in the
study area results in a thinner black soil layer, even disappearing in some locations. The field sites
were classified by their erosion phases. Erosion phases were classified based on the structure of soil
profiles (Table 1, Figure 1). The distribution of sampling sites appears in Figure 2.

Table 1. Classification of soil erosion.

Eroded Soil Degree Indication

Lightly A significant portion of horizon A remaining

Severely Exposure of horizon C or evidence of incorporation of horizon C
material into exposed horizon B through cultivation

A, mineral horizon; B, illuvial horizon; C, parent material.
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Figure 1. The types of soil profiles for different eroded soils.

Figure 2. The distribution of field sites.

The soil water characteristic curve, mechanical composition, and bulk density of the soil samples
collected from all three layers of each field site were measured. (1) The soil water characteristic curve for
a soil is defined as the relationship between water content and suction for the soil. Soil water contents
under 8 suctions (0, 33, 50, 100, 300, 500, 1000, and 1500 kPa) were measured and produced a data
set of 360 (15 soil sample sites × 3 layers × 8 soil water suctions) pairs of measured suction (h) versus
water content. Soil water contents for unsaturated soil were measured using the pressure membrane
apparatus; soil saturated water contents (0 kPa) were measured with several 100 cm3-cutting rings.
(2) The mechanical compositions were measured with the pipette method and produced a data set
with 45 (15 soil sample sites × 3 layers) groups. (3) Bulk densities were measured with cutting rings,
and 45 (15 soil sample sites × 3 layers) sets of data were collected.
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2.3. Model Calibration and Validation

The Van Genuchten (VG) model was applied in this study to describe the soil water characteristic
curve. The expression is as follows,

Θ =
θ− θr

θs − θr
=

[
1

1 + (αh)n

]m

(1)

where Θ is the effective water content; θ is the volumetric soil water content (cm3 cm−3) when the
matric potential is h (kPa); θs is the saturated water content (cm3 cm−3); θr is the residual water content
(cm3 cm−3), which is the soil water content in a very dry condition; α is a scale parameter that is
related to the inverse of the air entry suction (kPa−1), and m, n are shape parameters, and the default
relationship between the two parameters is,

m = 1− 1/n (2)

According to classification of soil erosion in Table 1, 7 field sites (4 lightly eroded and 3 severely
eroded soil field sites) of soil water contents were selected for fit, and the remaining 8 field sites of
soil water contents (5 lightly eroded and 3 severely eroded soil field sites) were used for verification
(Table 2). Firstly, 168 pairs of measured suction (h) versus water content from the 7 fitted field sites
were used to fit a set of parameters in the VG model using the program under different eroded soil.
Then, the derived set was used as input in the VG model equation and received another data set of soil
water content. Finally, 192 pairs of measured suction (h) versus water content from the 8 validated
field sites were used to compare with the results derived from the model.

Table 2. The number samples used in this study.

Eroded Degree Field Sites Layers Soil Water Contents Samples

Fitting Lightly 4 3 8 96 a

Severely 3 3 8 72 b

Verification
Lightly 5 3 8 120 c

Severely 3 3 8 72 d

Total 360
a 4 (Lightly soil sample sites) × 3 (layers) × 8 (soil water contents) = 96; b 3 (Severely soil sample sites) × 3 (layers) ×
8 (soil water contents) = 72; c 5 (Lightly soil sample sites) × 3 (layers) × 8 (soil water contents) = 120; d 3 (Severely
soil sample sites) × 3 (layers) × 8 (soil water contents) = 72.

To determine the parameters of the VG model, undisturbed soil should be sampled, then the soil
water contents under different soil suction conditions should be measured. The Rosetta model can
predict the parameters θs, θr, n and α for the VG model, and the inputs of the Rosetta model are easier
to collect. The Rosetta model has five options for input data: (a) input soil texture class; (b) input sand,
silt and clay percentages; (c) input sand, silt and clay percentages and bulk density; (d) input sand, silt,
and clay percentages, bulk density and water content at 33 kPa suction; (e) input sand, silt, and clay
percentages, bulk density and water contents at 33 and 1500 kPa suction. This study used two options,
sequence (c) with four inputs and sequence (e) with six inputs, to compare the fitting accuracy for the
VG model (Table 3).
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Table 3. Five hierarchical models of the Rosetta model.

Model
Hierarchical Sequence Data

Soil Texture Class Sand, Silt and Clay Percentages Bulk Density θ33 θ1500

a 4

b 4

c 4 4

d 4 4 4

e 4 4 4 4

θ33 and θ1500 represent water contents at 33 kPa and 1500 kPa suction, respectively.

The measured data set from 7 field sites (4 lightly eroded and 3 severely eroded soil field sites)
were classified according to the Table 2. Hierarchical sequence data were obtained for 21 groups as the
(c) and (e) model forms of the Rosetta model according to the Table 3. The 21 groups’ fitted parameters
as input of the VG model, including θs, θr, n and α, can obtain the 168 pairs of fitted suction (h) versus
water contents by calculation. Model accuracy was verified by comparing with the measured values.
If the model does not perform well according to the verification results, the relation between m and n
in the VG model needs modification. Finally, 192 pairs of measured water contents of the 8 field sites
(5 lightly eroded and 3 severely eroded soil field sites) in Table 2 were used to validate the performance
of the revised VG model.

2.4. Accuracy Assessment Methods

The measured soil water contents were compared with the predicted soil water contents to
assess the model performance by the mean of residuals (MR), Root Mean Square Error (RMSE),
Akaike’s information criterion (AIC) [56], and the 1:1 line regression method (one of the T test methods,
by estimating whether the confidence interval of the slope and intercept of the regressed equation
include the number of 1 and 0, respectively. If included, it indicates that there is no difference between
the regressed curve and the 1:1 line. It further indicates that there is no difference between the simulated
values and observed values) [39,56,57], which are calculated as follows,

MR =

∑N
i=1(θei − θmi)

N
(3)

RMSE =

√∑N
i=1(θei − θmi)

2

N
(4)

AIC = N ln


∑N

i=1(θei − θmi)
2

N

+ 2q (5)

where N is the total number of events, θmi is the measured value of soil water content, θei is the
estimated value of soil water content, and q is the number of model parameters.

3. Results

3.1. Validation of the VG Model

A total of 168 pairs of measured suction (h) versus water contents from the seven fitted field sites in
Table 2 were used to estimate a set of parameters in the Van Genuchten (VG) model using the program
under different eroded soil. T-tests showed that there were no significant differences for parameters
θr, α and n while there was significant difference for parameter θs (Table 4). The mean θr and n were
0.00 cm3 cm−3 and 1.11, respectively. The θs and α of the lightly eroded soil were 0.41 cm3 cm−3 and
0.27 kPa−1, which were decreased by 26.83% and 81.48% for the severely eroded soil, respectively.
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Table 4. The parameters of the VG model for different erosion soils.

Model Index Lightly Eroded Soil Severely Eroded Soil

VG model

θs (cm3 cm−3) 0.41 a 0.30 b

θr (cm3 cm−3) 0.00 a 0.00 a

α (kPa−1) 0.27 a 0.05 a

n 1.10 a 1.12 a

R2 0.77 0.58

Different letters indicate significant differences at p = 0.05.

The calculation soil water contents match well with measured values, indicating the VG model is
suitable for the northeastern black soil (Figure 3). Compared with the severely eroded soil, the lightly
eroded soil leads to better simulation quality using the VG model, except the saturated water content
at 0 kPa (Figure 3b, Table 5). The mean of residuals (MR) and Root Mean Square Error (RMSE), of the
lightly eroded soils were lower by 147.73% and 30.9% than those of severely eroded soils, respectively
(Table 5). In addition, the R2 of lightly eroded soils was higher than that of severely eroded soils
(Figure 3b).

Figure 3. (a) Measured soil water contents and simulated soil water characteristic curve (SWCC) for
different eroded soils; (b) Measured and simulated soil water contents for different eroded soils.

Table 5. MR, RMSE and Akaike’s information criterion (AIC) between simulated and measured soil
water contents for the lightly and the severely eroded soil.

Erosion
Degree

h
(kPa)

MR
(cm3 cm−3)

RMSE
(cm3 cm−3)

AIC
(cm3 cm−3)

Lightly 0 0.028 0.050 −78.08
30 0.012 0.027 −95.54
50 0.014 0.027 −95.18
100 0.012 0.027 −95.64
300 0.014 0.024 −98.90
500 0.012 0.019 −104.44

1000 0.005 0.016 −109.21
1500 −0.006 0.017 −107.81
All 0.011 0.028 −798.12
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Table 5. Cont.

Erosion
Degree

h
(kPa)

MR
(cm3 cm−3)

RMSE
(cm3 cm−3)

AIC
(cm3 cm−3)

Severely 0 0.011 0.030 −43.25
30 −0.038 0.047 −36.88
50 −0.029 0.043 −38.20
100 −0.035 0.043 −38.13
300 −0.028 0.043 −38.21
500 −0.019 0.037 −40.03

1000 −0.021 0.034 −41.41
1500 −0.033 0.041 −38.57
All −0.024 0.040 −354.66

For the lightly eroded soil, the measured soil water contents were higher than the simulated
except the water content at 1500 kPa, while the measured soil water contents were lower than the
simulated except the water content at 0 kPa for severely eroded soil (Figure 3a). The effects of fitting
results of the model in medium to high suctions were better for lightly eroded soil, while the model
predicted saturated water content better for severely eroded soil (Figure 3a).

3.2. Estimation of the VG Model Parameters Using Rosetta Model

3.2.1. The Parameters of the VG Model

Figure 4 illustrates that there were no significant differences between parametersθr andθs obtained
using two input sets, SSCBD (sand, silt and clay percentages and bulk density) and SSCBDθ33θ1500

(SSCBD, and water contents at 33 and 1500 kPa suction), but the differences between the scale
parameters α and the shape parameters n obtained using two input sets were significant at the p = 0.05
significance level for the same erosion degree. The mean θr and θs for the lightly eroded soil samples
were 1.29 and 1.12 times those for the severely eroded soil samples. Parameter α obtained by SSCBD
was 63.2% and 42.5% lower than SSCBDθ33θ1500 for different eroded soils. Parameter n was 1.46 and
1.38 for the lightly and the severely eroded soils, respectively, which was 13.4% and 1.4% higher than
that of SSCBDθ33θ1500.

Figure 4. Comparison of the VG model parameters obtained using the Rosetta model with inputs of
SSCBD and SSCBDθ33θ1500, respectively, for the lightly (L) and severely (S) eroded soil degrees. (a–d) is
the residual water content (θr), saturated water content (θs), scale parameter (α), and shape parameter
(n), respectively. Different letters indicate significant differences at p = 0.05 between output parameters
using two inputs (SSCBD and SSCBDθ33θ1500) at the p = 0.05 significance level with the t-test.
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3.2.2. Parameters Modification

Figure 5 shows that the input of SSCBDθ33θ1500 predicted better results of the soil water contents
compared with SSCBD. The measured soil water contents were higher than the simulated contents
except the water contents at 0 kPa for different eroded soils. Those results were further confirmed by
the relatively low MR, RMSE and AIC values obtained with input SSCBDθ33θ1500, as shown in Table 6.
For lightly eroded soil, using SSCBDθ33θ1500 significantly improved the quality of predicted soil water
contents, while there were no improvements for severely eroded soil.

Figure 5. Comparison of the measured and simulated soil water contents before correction, using the
input of SSCBD and SSCBDθ33θ1500, respectively, for the lightly and severely eroded soils.

Table 6. MR, RMSE and AIC between simulated and measured soil water contents for the lightly and
the severely eroded soils.

Erosion
Degree

h
(kPa)

MR(cm3 cm−3) RMSE(cm3 cm−3) AIC(cm3 cm−3)

SSCBD SSCBDθ33θ1500 SSCBD SSCBDθ33θ1500 SSCBD SSCBDθ33θ1500

Lightly 0 −0.047 −0.056 0.092 0.092 −51.28 −51.15
30 0.034 0.023 0.057 0.026 −62.72 −81.60
50 0.061 0.037 0.075 0.040 −56.15 −71.29
100 0.087 0.049 0.093 0.050 −50.97 −65.72
300 0.111 0.063 0.114 0.064 −46.07 −60.00
500 0.111 0.062 0.114 0.062 −46.18 −60.55

1000 0.108 0.060 0.112 0.061 −46.57 −61.07
1500 0.100 0.053 0.103 0.053 −48.57 −64.30
All 0.071 0.036 0.097 0.059 −442.16 −537.10

Severely 0 −0.083 −0.079 0.111 0.109 −29.17 −29.53
30 −0.004 0.013 0.061 0.016 −38.78 −59.82
50 0.007 0.020 0.047 0.033 −42.78 −48.58
100 0.027 0.035 0.057 0.039 −39.80 −45.74
300 0.043 0.046 0.055 0.047 −40.45 −42.93
500 0.060 0.062 0.074 0.066 −35.66 −37.40

1000 0.043 0.043 0.052 0.045 −41.34 −43.76
1500 0.035 0.035 0.049 0.037 −42.31 −46.70
All 0.016 0.022 0.066 0.056 −341.45 −364.04

The results of Figure 5 show that the simulated water contents of the VG model using the Rosetta
model were lower than the measured water contents. This may relate to the relationship between
m and n described in Equation (2). To improve the accuracy of predicted soil water contents via the
Rosetta model, the relationships between m and n were adjusted in this study for using SSCBD and
SSCBDθ33θ1500, respectively. Since the measured soil water content θ was known, and parameters θr,
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θs, α and n could be obtained by the Rosetta model, new values of mnew could be calculated according
to Equation (1) instead of the derived m from the Equation (2). Through linear regression, relationships
between mnew and the Rosetta-generated n could be determined,

m∗new = 0.61
(
0.93−

1
n

)
, R2 = 0.65 (6)

m∗new = 0.72
(
0.99−

1
n

)
, R2 = 0.49 (7)

where Equation (6) was the modified relationship for SSCBD, and Equation (7) was for SSCBDθ33θ1500.
Statistical t-tests indicated that the difference between the new linear relations and Equation (2) were
significant at the p = 0.05 significance level.

Figure 6 showed that the adjustment of the relationship between m and n in the VG model will
improve the accuracy of soil water contents predicted using parameters generated by the Rosetta
model, except saturated water contents. Adding indexes of water contents at 33 and 1500 kPa suction
can effectively improve the simulated accuracy of soil water contents predicted using parameters
generated by the Rosetta model. Those results were further confirmed by the relatively low MR, RMSE
and AIC values obtained after correction, as shown in Table 7.

Figure 6. Comparison of the measured and simulated soil water contents after correction, using the
input of SSCBD and SSCBDθ33θ1500, respectively, for the lightly and severely eroded soils.

For lightly eroded soil, the water contents of fitting results of the model in low suctions were
higher than those measured after correction. Compared using SSCBDθ33θ1500, the effects of fitting
results when using SSCBD in saturated water contents were better. For severely eroded soil, the effects
of fitting results when using SSCBDθ33θ1500 were improved after correction, while there were no
significant improvements when using input sets of SSCBD. The water contents of fitting results of the
model in low suctions were higher than those measured after correction using SSCBDθ33θ1500, while
the fitting results when using SSCBD were all higher than measured.
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Table 7. MR, RMSE and AIC between simulated and measured soil water contents for the lightly and
the severely eroded soils after the correction.

Erosion
Degree

h
(kPa)

MR(cm3 cm−3) RMSE(cm3 cm−3) AIC(cm3 cm−3)

SSCBD SSCBDθ33θ1500 SSCBD SSCBDθ33θ1500 SSCBD SSCBDθ33θ1500

Lightly 0 −0.047 −0.056 0.092 0.092 −51.28 −51.15
30 −0.044 −0.021 0.069 0.029 −58.06 −78.74
50 −0.029 −0.011 0.059 0.024 −61.98 −83.42
100 −0.013 −0.002 0.043 0.014 −69.68 −96.94
300 0.009 0.010 0.037 0.019 −73.20 −89.46
500 0.012 0.009 0.035 0.016 −74.13 −92.54

1000 0.015 0.008 0.038 0.019 −72.32 −88.75
1500 0.011 0.002 0.032 0.012 −76.52 −100.95
All −0.011 −0.008 0.054 0.038 −553.04 −623.97

Severely 0 −0.083 −0.080 0.111 0.109 −29.15 −29.51
30 −0.096 −0.019 0.115 0.024 −28.54 −53.60
50 −0.097 −0.014 0.109 0.028 −29.49 −51.00
100 −0.089 −0.001 0.103 0.019 −30.36 −57.43
300 −0.080 0.012 0.087 0.016 −32.99 −59.76
500 −0.062 0.029 0.076 0.037 −35.16 −46.80

1000 −0.078 0.013 0.083 0.018 −33.77 −58.02
1500 −0.083 0.006 0.090 0.013 −32.49 −64.07
All −0.084 −0.007 0.098 0.044 −291.41 −393.04

3.2.3. Model Validation

After modification, the model validation samples showed that adding the soil suction of 33 kPa
and 1500 kPa corresponding to soil water contents could effectively reduce the MR, RMSE and AIC
between the simulated water content values of the model and the measured values, except for severely
eroded soil at 0 kPa (Table 8). The effects of the fitting results of lightly eroded soil, in terms of soil
water contents, were better than those of severely eroded soil.

Table 8. MR, RMSE and AIC between simulated and measured soil water contents in model validation
for the lightly and the severely eroded soil.

Erosion
Degree

h
(kPa)

MR(cm3 cm−3) RMSE(cm3 cm−3) AIC(cm3 cm−3)

SSCBD SSCBDθ33θ1500 SSCBD SSCBDθ33θ1500 SSCBD SSCBDθ33θ1500

Lightly 0 −0.056 −0.025 0.071 0.050 −68.06 −77.90
30 −0.016 −0.009 0.039 0.021 −84.98 −102.55
50 −0.018 −0.012 0.038 0.022 −85.36 −101.25
100 −0.016 −0.011 0.035 0.022 −88.01 −100.60
300 −0.015 −0.012 0.029 0.019 −93.12 −105.14
500 −0.011 −0.008 0.022 0.014 −100.85 −113.56

1000 0.000 0.001 0.019 0.013 −105.08 −116.68
1500 0.014 0.014 0.028 0.019 −94.09 −105.62
All −0.015 −0.008 0.038 0.025 −725.15 −821.56

Severely 0 0.003 0.040 0.031 0.050 −35.77 −35.88
30 −0.034 0.005 0.092 0.018 −27.37 −50.30
50 −0.048 −0.009 0.113 0.033 −24.48 −41.66
100 −0.044 −0.004 0.092 0.013 −27.43 −54.28
300 −0.049 −0.007 0.095 0.028 −26.90 −44.17
500 −0.056 −0.013 0.104 0.031 −25.75 −42.51

1000 −0.049 −0.005 0.092 0.023 −27.44 −47.02
1500 −0.035 0.010 0.075 0.021 −30.33 −48.17
All −0.039 0.002 0.090 0.029 −264.05 −389.69

For lightly eroded soil, the water contents of the fitting results for the model in low to medium
suctions were higher than the measured contents, and the model was not good at fitting the suction at
0 kPa. For severely eroded soil, the water contents of the fitting results were higher than measured,
except at 0 kPa using SSCBD and from 50 kPa to 1000 kPa using SSCBDθ33θ1500. Using SSCBD,
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the model only fitted better at 0 kPa. Using SSCBDθ33θ1500, the model was not good at fitting the
suction at 0 kPa.

Figure 7a showed that the simulated water contents’ accuracy, excluding the samples with
sand content less than 80%, was higher than the simulated accuracy with all samples. In addition,
the difference between the two lines and the 1:1 line were significant at the p = 0.05 significance level.
The difference between the line using SSCBDθ33θ1500 and the 1:1 line was not significant at the p = 0.05
significance level (Figure 7b). When it comes to using input of SSCBD, the simulated values have
relatively higher precision for soil sand contents of less than 80%. When it comes to using the input of
SSCBDθ33θ1500, all sample points were applied.

Figure 7. Comparison of the measured and simulated soil water contents using the input of SSCBD (a)
and SSCBDθ33θ1500 (b), respectively. * means there were significant differences at p = 0.05 between the
1:1 line and the fitting line with the t-test.

4. Discussion

4.1. The Difference in Model Parameters

The soil water characteristic curve was found to be highly related to soil physical
characteristics [58,59], which were affected by soil erosion degrees [17]. Previous research has shown
that there were differences between soil moisture characteristic curves obtained from farmland, sand
dune and meadow soil [60]. Bai [61] found that there was a negative correlation between soil’s
available water and sand content, whereas there was a significantly positive correlation between soil’s
available water and soil bulk density, sand content, clay content and organic matter content. As a result,
the ability of soil water holding decreases after soil has eroded [62,63]. Therefore, the value of θs of the
lightly eroded soil is higher than the severely eroded soil. The parameter of α is related to the inverse
of the air entry suction. The higher the value is, the better the aeration of soil is. However, severe
erosion will destroy the soil structure [60]. Therefore, the α of the lightly eroded soil is better than the
severely eroded soil. In addition, the scale parameters α obtained using two input sets were significant
at the p = 0.05 significance level for the same erosion degree. Results achieved here were similar to the
previous research [11] in that the correlation for α increased considerably when one or two retention
points were added to the predictors.

The simulated water contents of the VG model using the Rosetta model were lower than the
measured contents. This may relate to the relationship between m and n described in Equation (2).
The equation was established by Mualem model [7,64] and selected the value of m = 0.5 as a constant.
However, some researchers found that for a given soil, the VG model performed most accurately when
m was considered as an unknown parameter instead of a constant [65]. Kosugi [66] found that m



Water 2020, 12, 2678 13 of 16

(0 < m < 1) was also related to the width of the pore radius distribution. Results showed that the m
values calculated according to Equation (2) were overestimated. An overestimation of m was noted by
Schapp’s and Ghanbarian‘s results in [11] and [56].

4.2. Performance of Model

The effect of fitting results of lightly eroded soil in soil water contents was better than in severely
eroded soil. The results achieved here are consistent with previous research in that the VG model is
more suitable for sticky soil rather than sandy soil [67]. The effect of fitting results of the model in
medium to high suctions was better. The results achieved here were similar to previous research that
the soil water characteristic curve is closely related to soil texture, and the distribution of macropores
has an effect on water holding capability under lower suction for soil [17,58].

The input of SSCBDθ33θ1500 predicted better results of the soil water contents compared with
SSCBD. The results achieved here were similar to previous research [11] in that the RMSE values
decreased for water retention when more predictors were used, and the estimations by model e are
much better than the estimations by model c in Table 3. The simulated water contents of the VG model
using the Rosetta model were higher than the measured contents after correction. This means that the
water content overestimates values by the Rosetta model, which were inconsistent with Schapp’s [11]
and Liu’s [68] results. The reason may be that the relationship between m and n was modified in this
study. Although the range of applications for model using SSCBD was studied in this article, more
research is needed to test whether the content of sand, silt and clay is suitable for the VG model in
northeastern China using SSCBDθ33θ1500.

We can use the result of the model for the SWCC in this study to predict the soil water in the
cropland in the black soil region. Then, the results could be used to compare the soil conservation
measures for increasing the efficiency of water use in the future.

5. Conclusions

The applicability of the VG model for different eroded soils was explored and compared.
The following results were achieved,

(1) Parameters θs and α of the VG model were influenced by soil erosion degrees. The θs and θr had
no significant differences but the opposite was true for the α and n under the two input sets at the
p = 0.05 significance level.

(2) Using model e in Table 3 could improve the model fitting accuracy. The lightly eroded soil leads
to better simulation quality than severely eroded soil using the VG model, except for the saturated
water content. After modifying the relationships between m and n, the accuracy of the VG model
was improved; the model fitting was better at 0 kPa using SSCBD for severely eroded soil.

(3) With input SSCBD, the VG model performed well when the sand content was smaller than 80%.
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