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Abstract: East Asian regions in the North Pacific have recently experienced severe riverine
flood disasters. State-of-the-art neural networks are currently utilized as a quick-response flood model.
Neural networks typically require ample time in the training process because of the use of
numerous datasets. To reduce the computational costs, we introduced a transfer-learning approach to
a neural-network-based flood model. For a concept of transfer leaning, once the model is pretrained
in a source domain with large datasets, it can be reused in other target domains. After retraining
parts of the model with the target domain datasets, the training time can be reduced due to reuse.
A convolutional neural network (CNN) was employed because the CNN with transfer learning
has numerous successful applications in two-dimensional image classification. However, our flood
model predicts time-series variables (e.g., water level). The CNN with transfer learning requires
a conversion tool from time-series datasets to image datasets in preprocessing. First, the CNN
time-series classification was verified in the source domain with less than 10% errors for the variation
in water level. Second, the CNN with transfer learning in the target domain efficiently reduced the
training time by 1/5 of and a mean error difference by 15% of those obtained by the CNN without
transfer learning, respectively. Our method can provide another novel flood model in addition to
physical-based models.

Keywords: transfer learning; CNN; time-series datasets; flood prediction

1. Introduction

The East Asian regions along the North Pacific have recently experienced an increase in catastrophic
flood disasters due to larger and stronger typhoons. To reduce and mitigate flood disasters, artificial
neural network (ANN) models may be a beneficial tool for accurately and quickly forecasting riverine
flood events in localized areas [1], in addition to conventional physical models [2]. In Japan, areas
vulnerable to strong typhoons and heavy rainfall events have experienced severe riverine flood
disasters in the last 3–4 years [3]. An overflow-risk warning system that is based on real-time observed
data has been successfully working for most major rivers in Japan. However, a flood warning system
that can forecast with a quick response has not been practically implemented in specific locations
of rivers. If the specific time and location of inundation were forecasted by the flood warning system
before the inundation occurred, most people may have been able to evacuate these locations in past
flood disasters. Consequently, the number of victims may have been reduced. When a forecast flood
warning system is developed for practical use, an ANN model with deep learning is a candidate due
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to the model’s features. The ANN model is a data-driven model that does not need physical-based
parameter setups unlike physical models. For example, a rainfall-runoff model should be calibrated,
using numerous parameters that are based on complex physical laws in a target watershed [4]. Like the
rainfall-runoff model, the setup of a physical model requires heavy work. The ANN model can predict
a near-future trend that is based only on the learning of past data. ANN prediction usually has a low
computational cost, although the learning incurs high computational costs. The major beneficial uses
of the ANN-based flood model are related to a quick response to symptoms of a near-future flood
event and an easy run using only past data [5].

Numerous studies of ANN models have been performed for flood predictions [6]. ANN models
that adopt a deep learning approach have been recently employed in practical flood predictions [7].
As another type of ANN model, the long, short-term memory (LSTM) architecture [8,9] was utilized
for water-level predictions during flood events [10–12].

In most case studies, ANN models successfully predicted past flood events with numerous
datasets. In general, ANN models require high computational costs in the training process due to
large datasets. To reduce the high cost of computational runs, our study introduces a transfer-learning
approach [13]. The premise of the approach is that a model pretrained by large datasets in a source
domain can be reused in other target domains. After retraining the part of the pretrained model with
the datasets of the target domains, the retrained model can provide reasonable outputs with a low
computational cost.

Our focus on flood events is to predict time-series data, such as water levels. The LSTM architecture
implemented in an ANN model is the best tool for the treatment of time-series data. LSTM coupled
with transfer learning has been developed. Laptev et al. [14] reported that their multilayer LSTM with
transfer learning reduced errors more than LSTM without transfer learning in the long-term trends in
electric energy consumption in the U.S. However, LSTM generally has not been successful especially
for short-time, rapidly changing, and non-periodical data, such as data on flood wave. This finding
can be explained as follows: An unknown value at a subsequent time step is rarely predicted from the
present value because numerous temporal trends may exist [15].

A convolutional neural network (CNN) architecture [16] is primarily employed for
two-dimensional (2D)-spatial image classification. The implementation of CNN in an ANN model
achieved satisfactory performances with transfer learning in a variety of image analysis fields [17,18].
The ImageNet created by VGG16 [19], which uses 150 million images, is often employed to perform
image classification for a new image dataset. CNN with transfer learning is successful because a CNN
gradually structures from low-level visual features on a previous layer to semantic features that are
specific to a dataset on a deeper layer [20,21]. Therefore, we considered that a CNN with transfer
learning is more reliable and practical than a LSTM with transfer learning.

A technical challenge is to perform a conversion from time-series data to image data in an
ANN model. Several studies have reported how to map time-series trends in a 2D spatial image.
For example, stock market predictions in near-future trend employed the image of 31 stocks × 100 time
steps [22]. The precipitation predictions utilized an image of spatial information of climates in time
series, such as air temperatures at eight locations × eight time steps with a ten-minute interval [23].
If we apply these conversion techniques, the CNN coupled with a transfer-learning approach can
predict time-series data for flood events.

This paper proposes a new data-driven-based model for flood modeling. The model consists of a
CNN incorporated with transfer learning to efficiently and quickly predict time-series water levels in
flood events even in different domains after pretraining the CNN in a certain domain. First, we will
show the verification of the CNN-based flood model in large datasets obtained in a certain watershed.
Second, we will evaluate the performance of the CNN with a transfer-learning approach in a different
watershed. Last, we will evaluate the prediction accuracy for the number of retrainings of the CNN
with the transfer learning.
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2. Materials and Methods

2.1. Study Site

We selected two watersheds that do not have flood control facilities such as large dams and
ponds (Figure 1). The first watershed is a part of the Oyodo River watershed, which is located in
Southwest Japan. The watershed has an area of 861 km2, a main river with a length of 52 km that
flows to the Hiwatashi gauge station near Oyodo River Dam (31.7870◦ N, 131.2392◦ E) downstream,
and an elevation that ranges from 118 to 1350 m. The area often experiences heavy rainfall events
from the summer to early fall due to typhoons. This watershed is named “Domain A” in this study.
Another watershed is the Abashiri River watershed toward the northeast of Hokkaido. The watershed
has an area of 1380 km2, a main river with a length of 115 km that flows to the outlet in the North
Pacific, and an elevation that ranges from 0 to 978 m. Heavy rainfall events have seldom occurred due
to weak monsoon impacts and few occurrences of typhoon tracks and approaches. We refer to this
watershed as “Domain B”.

Figure 1. Maps of field sites: Domain A is part of the Oyodo River watershed, and Domain B is the
Abashiri River watershed.

2.2. Data Acquisition

The hourly datasets for rainfalls and water levels from 1992 to 2017 in Domain A and 2000 to
2019 in Domain B were obtained from the website of the hydrology and water-quality database [24],
managed by the Ministry of Land, Infrastructure, Transport, and Tourism in Japan (MLIT Japan) and
the meteorological database [25] that belongs to the Japan Meteorological Agency (JMA). The observed
datasets in Domain A were obtained from five gauge stations for water level and 11 gauge stations for
rainfall. Domain B had four water-level stations and nine rainfall stations. The downstream stations
where the model predicts water levels were Hiwatashi for Domain A and Hongou for Domain B
(Figure 1). We focused on the historical flood events at each domain. Each flood event has a 123-hour
duration, including the time of the flood maximum peak, three days before the peak, and two days
after the peak. One maximum peak during the duration of each flood event was identified when the
water level exceeded a certain criterion of water levels—approximately 45% to 60% of the highest
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peak of the observed datasets among all flood events. The quantity of data for each flood event is 123.
If multiple peaks exist locally in one flood event, note that only the highest peak is regarded as the
maximum value of the event. The datasets in Domain A and Domain B are listed in Tables 1 and 2,
respectively. The geographical and observational characteristics of both domains are shown in Table 3.

Table 1. Flood events in Domain A.

Event Name Start Time 1 End Time 1

Maximum Water
Level (m)

During Each
Event 2,3

Remarks

8/5/1992 8/5/1992 21:00 8/10/1992 23:00 4.56
7/29/1993 7/29/1993 20:00 8/3/1993 22:00 9.50 3rd position
8/7/1993 8/7/1993 2:00 8/12/1993 4:00 8.04

8/13/1993 8/31/1993 19:00 9/5/1993 21:00 6.99
6/10/1994 6/10/1994 20:00 6/15/1994 22:00 4.80
6/1/1995 6/1/1995 6:00 6/6/1995 8:00 4.66

6/22/1995 6/22/1995 15:00 6/27/1995 17:00 6.90
7/15/1996 7/15/1996 19:00 7/20/1996 21:00 6.84
8/11/1996 8/11/1996 23:00 8/17/1996 1:00 5.18
8/4/1997 8/4/1997 0:00 8/9/1997 2:00 5.05

7/24/1999 7/24/1999 0:00 7/29/1999 2:00 6.72
8/14/1999 8/14/1999 15:00 8/19/1999 17:00 6.03
9/11/1999 9/11/1999 20:00 9/16/1999 22:00 8.26
9/21/1999 9/21/1999 19:00 9/26/1999 21:00 5.42
5/31/2000 5/31/2000 14:00 6/5/2000 16:00 6.47
6/18/2001 6/18/2001 20:00 6/23/2001 22:00 5.30
8/5/2003 8/5/2003 10:00 8/10/2003 12:00 6.79
8/27/2004 8/27/2004 10:00 9/1/2004 12:00 9.80 2nd position

10/17/2004 10/17/2004 9:00 10/22/2004 11:00 7.70
9/3/2005 9/3/2005 8:00 9/8/2005 10:00 10.65 highest peak
6/21/2006 6/21/2006 23:00 6/27/2006 1:00 4.99
7/19/2006 7/19/2006 11:00 7/24/2006 13:00 5.28
8/15/2006 8/15/2006 18:00 8/20/2006 20:00 5.20
7/8/2007 7/8/2007 21:00 7/13/2007 23:00 5.58
7/11/2007 7/11/2007 15:00 7/16/2007 17:00 7.11
9/28/2008 9/28/2008 16:00 10/3/2008 18:00 5.18
6/17/2010 6/17/2010 18:00 6/22/2010 20:00 6.30
6/30/2010 6/30/2010 7:00 7/5/2010 9:00 9.16
6/13/2011 6/13/2011 23:00 6/19/2011 1:00 4.84
6/18/2011 6/18/2011 0:00 6/23/2011 2:00 4.77
6/19/2012 6/19/2012 7:00 6/24/2012 9:00 5.13
6/25/2012 6/25/2012 7:00 6/30/2012 9:00 4.60
7/10/2012 7/10/2012 18:00 7/15/2012 20:00 5.86
6/25/2014 6/25/2014 10:00 6/30/2014 12:00 5.31
7/28/2014 7/28/2014 17:00 8/2/2014 19:00 6.61
8/6/2014 8/6/2014 8:00 8/11/2014 10:00 6.08
7/19/2015 7/19/2015 18:00 7/24/2015 20;00 5.05
8/22/2015 8/22/2015 18:00 8/27/2015 20:00 4.62
6/25/2016 6/25/2016 19:00 6/30/2016 21:00 6.09
7/6/2016 7/6/2016 3:00 7/11/2016 5:00 5.52
7/11/2016 7/11/2016 11:00 7/16/2016 13:00 6.21
9/17/2016 9/17/2016 5:00 9/22/2016 7:00 7.91
8/4/2017 8/4/2017 5:00 8/9/2017 7:00 5.13

1 Date and time is denoted as month/day/year hour:minute; 2 Maximum value at each event was observed at Hiwatashi
Station; 3 Risk levels for near flooding occurrence and flooding cautionary exceed 9.20 and 6.00 m, respectively.
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Table 2. Flood events in Domain B.

Event Name Start Time 1 End Time 1 Maximum Water Level
(m) During Each Event 2,3 Remarks

4/9/2000 4/9/2000 8:00 4/14/2000 10:00 3.81
9/9/2001 9/9/2001 18:00 9/14/2001 20:00 4.84 2nd position

9/30/2002 9/30/2002 2:00 10/5/2002 4:00 3.38
8/7/2003 8/7/2003 21:00 8/12/2003 23:00 4.28

4/18/2006 4/18/2006 22:00 4/24/2006 0:00 3.30
8/17/2006 8/17/2006 1:00 8/22/2006 3:00 4.04
10/6/2006 10/6/2006 2:00 10/11/2006 4:00 4.77 3rd position
10/7/2009 10/7/2009 5:00 10/12/2009 7:00 3.33
9/20/2011 9/20/2011 0:00 9/25/2011 2:00 3.20
4/5/2013 4/5/2013 7:00 4/10/2013 9:00 3.71

9/14/2013 9/14/2013 13:00 9/19/2013 15:00 4.33
10/6/2015 10/6/2015 9:00 10/11/2015 11:00 4.15
8/15/2016 8/15/2016 16:00 8/20/2016 18:00 4.17
8/19/2016 8/19/2016 4:00 8/24/2016 6:00 5.03 highest peak
8/28/2016 8/28/2016 21:00 9/2/2016 23:00 3.46
9/7/2016 9/7/2016 12:00 9/12/2016 14:00 4.15
8/7/2019 8/7/2019 0:00 8/12/2019 2:00 3.22 provisional value

1 Date and time is denoted as month/day/year hour:minute. 2 Maximum value at each event was observed at
Hongou Station. 3 Risk levels for near flooding occurrence and flooding cautionary exceed 5.30 and 3.20 m, respectively.

Table 3. Characteristics of the two domains.

Domain A Domain B

Number of events 43 17
Maximum water level (at prediction location) 10.65 m 5.03 m

Number of water level stations 5 4
Number of rainfall stations 11 9

Watershed area 861 km2 1319 km2

Prediction location Hiwatashi
(31.8599◦ N, 131.1135◦ E)

Hongou
(43.9096◦ N, 144.1385◦ E)

Main river name Oyodo River Abashiri River

2.3. ANN and CNN Features

An ANN model usually consists of three layers—input layer, hidden layer, and output layer—and
creates network with neurons. Note that the hidden layer often has multiple layers as a deep
learning approach. Each neuron has an activation function that filters input values x with weighted
coefficients w into an output value z. If a layer has n neurons, a certain neuron j in a subsequent
layer receives n input values. These inputs weighted by coefficients are integrated and added by
bias bj. The activation function f outputs zj from a neuron. These variables are defined in the following
equations. The structure of the ANN model is shown in Figure 2.

y j = b j +
n∑

i=1

wi, jxi, (1)

z j = f
(
y j

)
. (2)

A CNN is a type of ANN architecture with a deep-learning approach. We created a relatively
simple algorithm of a CNN based on past studies [16,23]. The variables in Equations (1) and (2) are
mapped to the 2D spatial image in the CNN, which consists of a convolution layer (convolution) and a
max-pooling layer (pooling). We consider that the input variable x has L × L 2D source pixels, which is
filtered with a H × H small window of convolution with a table of weighted values. The convolution
takes the same size of values from the source image, and then multiplies the weighted values of the
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H × H window to the filtered values of source pixels. The filtering is repeated over the source image
by shifting the window. Components of the input and filter are defined as xi,j (1 ≤ i ≤ L, 1 ≤ j ≤ L)
and wk,l,n (0 ≤ k ≤ H − 1, 0≤ l ≤ H − 1, 1 ≤ n ≤ N), respectively. This process is shown in Figure 3.
Note that a zero-padding technique was introduced to ensure that the size of input is equivalent to
that of the output. The xi,j is multiplied by wk,l,n while separately shifting a grid at (i,j) on the filtering.
This equation, including the convolution form and bias bn in the function, is expressed as follows:

yi, j,n =
H−1∑
k=0

H−1∑
l=0

wk,l,nx̂i+k, j+l + bn, (3)

zi, j,n = f
(
yi, j,n

)
. (4)

We use a rectified linear unit (ReLU) as the activation function (f ), which can select positive input
values due to an improvement in the conversion of a matrix, as expressed in the following equation.

f
(
yi, j,n

)
= max

(
yi, j,n, 0

)
. (5)

By filtering in the convolution, common features among images are extracted when the filter
pattern is similar to a portion of each image.

Figure 2. Structures of artificial neural network (ANN) model that show (a) data flows in the ANN
with deep learning (# = neuron) and (b) the inner structure of a neuron of jth with i-1th, ith, and i+1th
inputs with weighed coefficients.

Figure 3. Depiction of the convolution layer with a filter in convolutional neural network (CNN).
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The pooling does not have weighted coefficients and activation functions, is usually utilized to
produce 2D data, and is defined in the following equation:

zp,q = max
(
xi, j,k

)
, (i, j) ε Up,q , (6)

where Up,q is the square unit domain with the size R × R and (p,q) are the horizontal and
vertical components. Up,q is moved on a 2D image with a non-overlap approach. As horizontal and
vertical scales are shrunk 1/R times, the maximum value of xi,j,n in Up,q provides output with a data size
of 1/R2 times of the input 2D data. The features extracted by the convolution can satisfy the consistency
by means of the pooling even if the same features in reality are recognized as different features due to
searching errors. Our CNN algorithm had two convolution layers and two pooling layers.

By performing these processes, smaller-size 2D image data are generated and then passed to a
fully connected layer, which has the same function of Equations (1) and (2). These 2D image data
are converted into numerous 1D digital datasets that involve information about classification of the
original image. A softmax function is a normalized exponential function in Equation (7) that converts
outputs to probability quantities in the output layer. It evaluates the binary classification.

f
(
y j

)
= ey j /

m∑
r=1

eyr . (7)

However, our model prediction requires a specific magnitude of water level, instead of classification.
Therefore, we introduced the sigmoid function into the softmax position to assign the magnitude from
the normalized value (0 to 1) between the maximum value and the minimum value of the water levels.

2.4. Transfer Learning

We assume that two domains exist separately. When a model is trained in a certain (source)
domain with large datasets, it usually takes ample time to have an accurate prediction. If the model is
applied to another (target) domain without any connection with the source domain, training it causes
ample time. Transfer learning is one of the solution methods for improvement of the efficient prediction
(e.g., reduction of run time) in the target domain [13]. The transfer learning can reuse common
knowledge obtained from the source domain for the target domain. This overview sketch is shown in
Figure 4. The CNN coupled with a transfer-learning approach (CNN transfer learning) is a recently
successful method in image classification. As our model should perform time-series predictions, CNN
transfer learning was utilized in this study by means of a conversion tool between time-series data and
image data. First, the CNN was run in the source domain (Figure 5a). Second, parts of the hidden
layers of the CNN were fixed and reused in the target domain. Last, “the fully connected layer 1” and
“the fully connected layer 2” in the deep layers were retrained, using the datasets of the target domain
(Figure 5b).

2.5. Data Conversion from Time-Series to Image

To perform time-series predictions with the CNN, a conversion method between time-series data
and image data is necessary. As shown in Figure 6, our method was a simple way to arrange 16
variables (rainfall and water level) at all gauge stations from upstream to downstream on the vertical,
and to arrange the temporal variation of each variable on the horizontal. The digital values were
then converted to an image by using a black-and-white gradation that ranges from zero to one and is
normalized by the maximum and minimum values of all observed datasets of water level and rainfall.
The spacing between two values on the horizontal axis was one hour. The interval of the vertical axis
was one for simplicity.
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Figure 4. Simple overviews that show the model predictions with transfer learning (right) or without
(left) transfer learning in Domains A and Domain B. The transfer learning extracts the features as
common knowledge from Domain A and then applies common knowledge to predict in model B.

Figure 5. Data flows in procedures (a) CNN and (b) CNN with transfer learning.

The image in the CNN has to correspond to a value of the water level in the time progress
when train and prediction are conducted in the CNN. A 16 × 16 image was selected from the 2D
image of a flood event due to the limited number of variables. A square image is used as input data.
The information from the input data was associated with a 1 × 1 image (i.e., value) of the output data
at the predicted point. We assumed that the flood-related information in a square image generates
the value of the predicted point in the next time step (i.e., in an hour). Note that the predicted point
indicates a location where water levels are predicted. This treatment was separately repeated in time
progress as shifted from the head of the 2D image to the tail. Drawing information is shown in Figure 7.
This data treatment was also employed when the LSTM predicts the value in advance using current
and 15 past data values provided from 16 variables. The LSTM searches the relationship among plural
line-based data; however, the CNN finds spatial patterns among 2D images.
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Figure 6. Sample data conversion from time-series data to image data.

Figure 7. Sketch that shows the creation of a dataset from a 2D image to one value at the predicted point.

The number of variables (i.e., four for water-level gauges and nine for rain gauges) in Domain B
differs from that of Domain A. To make the image size of Domain B equivalent to that of Domain A,
as shown in Figure 6, the image size has been expanded from 123× 13 to 123× 16, using the interpolation
that maintains high-resolution images with the Lanczos algorithm [26].

2.6. Computational Setups in CNN and CNN Transfer Learning

Four cases were selected to evaluate the errors between predicted outputs and observed outputs
in Domain A, using the CNN, and those in Domain B, using CNN transfer learning. These cases
involved datasets that had the first-to third-position highest peaks in each domain (top three datasets)
and two datasets with midlevel peaks, which were chosen among the other events in each domain.
The four cases of the top three datasets and one midlevel-peak dataset were used as the datasets
of the test process. Note that another midlevel-peak data set remains in the validation data set
to evaluate at least one midlevel-peak dataset during the validation process. First, the CNN was
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trained with the training datasets, excluding the top three datasets and two moderate-peak datasets.
Second, the trained CNN was checked to see whether a loss function shows overfitting, using validation
datasets, including the top three datasets and the two datasets with moderate peaks as a representative
of most datasets. This validation is usually performed to conduct a no-bias evaluation of a model.
Last, a test was performed using one of the top three datasets or the moderate-peak dataset. In general,
these procedures are usually utilized in machine learning [27,28]. In Domain A, we chose 38 events for
training, four events for validation, and one event for testing (Table 4). Domain B had 12 events for
training, four events for validation, and one event for testing (Table 5).

Table 4. Source datasets for training, validation, and testing in Domain A.

Source Case Training Datasets Validation
Datasets Test Dataset

A1

8/5/1992, 8/31/1993, 6/10/1994, 6/1/1995, 6/22/1995, 7/15/1996,
8/11/1996, 8/4/1997, 7/24/1999, 9/11/1999, 9/21/1999, 5/31/2000,
5/31/2000, 6/18/2001, 8/5/2003, 10/17/2004, 6/21/2006, 7/19/2006,
8/15/2006, 7/8/2007, 7/11/2007, 9/28/2008, 6/17/2010, 6/30/2010,
6/13/2011, 6/19/2012, 6/25/2012, 7/10/2012, 6/25/2014, 7/28/2014,
8/6/2014, 7/19/2015, 8/22/2015, 6/25/2016, 7/6/2016, 7/11/2016,

9/17/2016, 8/4/2017

8/7/1993,
8/14/1999,
8/27/2004,
9/3/2005

7/29/1993

A2

7/29/1993,
8/7/1993,

8/14/1999,
9/3/2005

8/27/2004

A3

7/29/1993,
8/7/1993,

8/14/1999,
8/27/2004

9/3/2005

A4

7/29/1993,
8/7/1993,

8/27/2004,
9/3/2005

8/14/1999

Table 5. Target datasets for training, validation, and testing in Domain B.

Source Case Training Datasets Verification
Datasets Test Dataset

B1

9/30/2002, 8/7/2003, 4/18/2006, 8/17/2006, 10/7/2009, 4/5/2013,
9/14/2013, 10/6/2015, 8/15/2016, 8/28/2016, 9/7/2016, 8/7/2019

4/9/2000,
9/9/2001,

10/6/2006,
9/20/2011

8/19/2016

B2

4/9/2000,
10/6/2006,
9/20/2011,
8/19/2016

9/9/2001

B3

4/9/2000,
9/9/2001,

9/20/2011,
8/19/2016

10/6/2006

B4

4/9/2000,
9/9/2001,

10/6/2006,
8/19/2016

9/20/2011

The programs for the flood models (CNN and CNN transfer learning) were created by Python
(version 3.6.4) [29], incorporated with Keras libraries [30] on the Window-OS PC that has the Intel(R)
Core(TM) i7-4770K CPU @ 3.50GHz. The setups of several parameters, such as batch size, epoch
number, and activation functions, are shown in Table 6.
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Table 6. Setups of CNN parameters and functions.

Parameters Values/Function Remarks

Convolutional layer Filter size 3 × 3

Filter number 5

Pooling layer Filter size 2 × 2

Fully connected layer 1 Neuron number 16

Fully connected layer 2 Neuron number 1

Learning process

Batch size 100

Epoch number 100

Learning rate 0.001

Optimizer Adam

Activation function 1 to 3 ReLU See Figure 5a

Activation function 4 Sigmoid/softmax See Figure 5a

Loss function Mean square error = 1
N1

∑N1
i=1(Vci −Voi)

2
ci = model prediction, oi =

observed data, N1 = the
number of data

Error evaluation
Root mean square error (RMSE) =√

1
N1

∑N1
i=1(Vci −Voi)

2 Same as above

3. Results

We verified a typical classification by using the CNN as a preliminary examination, which is
often used for image analyses based on “true or false” binary classification. The classification in this
study was defined as upward or downward trends of water levels. The results showed a satisfactory
accuracy rate of 88.8–93.5% for the cases from A1 to A4 (A1–A4) in the selected datasets of Domain A.
However, the errors were caused by small up-and-down oscillations that primarily occurred during an
early rising phase of a waveform. By this verification of the binary classification, our CNN can capture
the upward and downward trends of flood waves. A detailed explanation is shown in Appendix A.

We also evaluated an effect of a pixel-size difference between an original image (123 × 13 pixels)
and a resized image (123 × 16 pixels) in Domain B on CNN predictions of water levels. Predicted
waveforms of the resized image in test datasets of the cases from B1 to B4 (B1–B4) were similar to
those of the original image in another preliminary examination. However, the RMSEs obtained by the
resized image are moderately reduced from those by the original image. Therefore, we assumed that
the effect of the pixel-size difference could be limited to dramatically modify the CNN predictions of
water levels. A detailed explanation is shown in Appendix B.

3.1. Verification of CNN Prediction With Source Datasets

The CNN predicted the water levels of A1–A4 in Domain A after training the CNN among
38 flood events. To use the validation datasets for each case, including the top three datasets that
have higher peaks of floods, the RMSEs ranged from 0.14 to 0.73 m, which corresponds to 2.6–6.9%
of the variation between the minimum value and maximum value among the validation datasets.
These errors can be acceptable because the top three datasets were excluded in the training process.
In the test process for A1–A4, the CNN had an acceptable performance with a less than 10% relative
error (Figure 8 and Table 7), although the higher peak of each A1–A3 prediction did not follow the
observed peak. For example, the A3 prediction to capture the highest peak (3 September 2005) of flood
wave shows that the RMSE was 0.73 and the relative error was 6.9%, although the peak height could
not be captured by an approximately 20% difference (Figure 8c). For the dataset with the moderate
peak of the flood wave (14 August 1999), the CNN in A4 predicted a considerably better shape of the
water level, whose relative error was only 2.6% to the total variation in the water level during the 14
August 1999 event (Figure 8d). These results indicate that the moderate peak flood of A4 was typical
for prepared datasets in the training process. Capturing a higher peak of each dataset of A1–A3 caused
poor prediction due to exclusion of the A1–A3 datasets in the training process.
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Figure 8. Comparisons between observed data (obs.) and prediction (pred.) in four test datasets of
water level (m) versus time (hour) in domain: (a) third highest flood event, (b) second highest flood
event, (c) highest flood event, and (d) moderate peak flood event.

Table 7. Error evaluation of the CNN in Domain A.

Case RMSE (m) Relative Error (%) 1

A1 0.464 6.45
A2 0.370 3.79
A3 0.734 6.93
A4 0.136 2.58

1 Relative error was the RMSE divided by the variation between minimum water level and maximum water level in
each test dataset.

3.2. Verification of CNN Transfer Learning with Target Datasets in Domain B

After the verification of the CNN via the training, validation, and testing processes in Domain A,
the transfer learning on the fully connected layers 1 and 2 was conducted in Domain B. The number
of retrainings can be an important factor for improving the prediction of the CNN transfer learning.
We evaluated how RMSEs are reduced based on the number of retrainings. Figure 9 shows the RMSEs
for all cases (B1–B4), which are calculated by the observed and predicted water levels with respect to
the number of retrainings. The number zero in the horizontal axis means that the CNN was employed
without any retrainings in Domain B. As the number of trainings increased, the RMSEs for B1–B4 were
reduced. The retraining converged approximately by approximately 20 times.

Figure 10 shows the comparison between the predicted water level and the observed water
level in a time series during flood events in the test datasets of B1–B4 after the 20-time retrainings.
These wave shapes tend to rise earlier than the observed wave that actually increased before the peaks.
The predicted wave curves had small oscillations or non-smoothness.

In addition, the RMSEs of B1–B4 in the test datasets indicates 0.06–0.15 m, which corresponds to a
variation from 3.3% to 4.3% between the minimum value and maximum value of the water level of
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each dataset (Table 8). The RMSEs are approximately equivalent to or reduced by at most 20% from
those (0.06–0.20 m) of the CNN prediction with 100 trainings in Domain B, without transfer learning
and with resized 123 × 16 pixels (Table 8). The retraining time of the CNN transfer learning was
considerably shorter due to retraining the part of the CNN structure compared with the computational
cost of the CNN without transfer learning. During the check process of the validation datasets after the
20-time retrainings, the RMSEs of B1–B4 ranged from 0.10 to 0.12 m, which corresponds to reasonable
values from 2.6 to 3.2% for the variation between the minimum value and maximum value of the water
level for each dataset.

Figure 9. Error evaluation of the number of retrainings using CNN transfer learning.

Figure 10. Comparisons between observed data (obs.) and prediction (pred.) in four test datasets for
water level (m) versus time (hour) in Domain B, using CNN transfer learning with 20-time retrainings:
(a) highest flood event, (b) second highest flood event, (c) third highest flood event, and (d) moderate
peak flood event.
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Table 8. Error evaluation of the CNN transfer learning with 20-time retrainings in Domain B.

Case RMSE (m) Relative Error (%) 1 Reference: RMSE (m) of CNN Without
Transfer Learning and With Resized Image

B1 0.118 4.24 0.144
B2 0.153 4.30 0.200
B3 0.125 3.52 0.155
B4 0.064 3.34 0.064

1 Relative error was the same as that in Table 7.

4. Discussion

The time-series water-level predictions of A1–A4 using the CNN in Domain A showed acceptable
agreement with the observed data, although the higher peaks of each of A1–A3 were poorly captured.
Comparisons with other neural networks, such as the fully connected deep neural network (FCDNN) [7]
and recurrent neural network (RNN) [31] indicated that our CNN prediction was poorer than the
performance of these models. For example, Hitokoto and Sakuraba [7] reported that their FCDNN
provided better predictions of water levels for the top-four largest flood events from 1990 to 2014 in the
same watershed. The RMSE in an hour prediction of water level was 0.12 m, which is approximately
1/3 of the mean RMSE of our CNN prediction, due to the use of two different verification methods.
The RMSEs of the FCDNN were calculated by the leave-one-out cross-validation method [32], in which
three of the top four largest flood events were included as training datasets for each prediction.
Our CNN excluded the top three datasets in the training process. Therefore, the accuracy of the CNN
may not be worse than that of the FCDNN.

In addition to the flood prediction, the time-series predictions in other fields have been performed
utilizing the CNN. Temporal predictions of the precipitation occurrence, as performed by the CNN,
showed that the accuracy exceeded 90% in the first lead time based on the quadrant classification,
which is based on the combination of yes and no occurrences in prediction and observation [23].
Another example of stock market prediction by the CNN that reported 50% accuracy was achieved in
the upward or downward trend of 31 stocks [22]. Although the backgrounds and computational setups
of these studies completely differ from those of our study, the preliminary numerical examination of
the CNN predictions based on binary classification (i.e., upward or downward value of water level)
achieved approximately 90% accuracy. Therefore, our temporal prediction by the CNN can produce
high accuracy.

Our method uses the CNN coupled with a transfer-learning approach in time-series predictions. It
may be original based on the literature review for machine-learning-based flood models in the latest two
decades [33]. The results of the CNN transfer learning after 20-time retrainings show that the RMSEs
were less than 5% of each variation in water level in the test dataset in Domain B. These errors are
slightly reduced from those of the CNN in Domain A. However, some specific differences exist between
the predicted water levels and the observed water levels in Domain B, which were not observed in the
CNN predictions in Domain A. For example, the predicted flood peaks were slightly underestimated by
only 5%–10% of the variation of observed water levels in B1–B3 (Figure 10). The slight underestimation
of wave peaks in B1–B3 may be caused by the genetic tendency of the CNN trained in Domain A. This
finding may be attributed to the notion that the CNN was substantially fitted to the flood waveforms
that have steeper slopes of peaks.

Quantitative improvement in the CNN transfer learning appeared in the reduction of
computational costs. The CNN transfer learning’s RMSEs are slightly reduced from those of the CNN
without transfer learning (i.e., a single use of CNN) in Domain B (Table 8). The former had 20-time
retrainings of “the fully connected layer 1” and “the fully connected layer 2” of the CNN, which means
that the number of parameters of the training process was also reduced (Figure 5b). The latter required
full training by 100 times (i.e., epochs = 100) through all layers of the CNN (Figure 5a). Based on
our computer resources, the computational cost was reduced to approximately 18% compared with
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the CNN without transfer learning. Thus, the beneficial aspect from the results of the CNN transfer
learning reveal that the computational costs were substantially more reduced than the CNN without
transfer learning once the CNN is well verified in Domain A (source domain). The CNN has to first
perform the pretraining. The CNN can be applied to other domains once the CNN is pretrained.

A few studies of time-series prediction have been performed by using the LSTM, with a
transfer-learning approach. For example, Laptev et al. [14] successfully reduced the prediction
errors in the target dataset of time-series electricity loads obtained from the US electric company,
using transfer learning with multiple layers of the LSTM. For error evaluation, they reported that
the symmetric mean absolute percentage error (SMAPE) in small-size datasets (till the maximum of
20% of the total datasets) in the target domain was improved by approximately 1/3 of the SMAPE for
the total datasets. Their LSTM was likely to improve the accuracy even in small-size datasets with
transfer learning. Although comparing our results is difficult due to different-types of datasets and
different methods of error evaluation, the accuracy improvement in a target domain (Domain B) using
transfer learning could be achieved with approximately 15% reduction in a mean error difference
between the CNN with transfer learning and that without transfer learning in the first trial of our
study. Note that the mean error difference is defined in the following equation:

Mean error difference =
1

n1

n1∑
i

(RMSETL,i −RMSENONTL,i)/RMSENONTL,i, (8)

where TL is with transfer learning, and NONTL is without transfer learning.
The CNN transfer learning in Domain B can be necessary to further reduce the RMSEs compared

with those from a single use of the CNN without the transfer-learning approach. The RMSEs of
CNN transfer learning can be smaller because the transfer-learning approach in this study was simple
(i.e., retrainings only of the fully connected layers 1 and 2). In general, if some deeper layers close to
the end of the CNN is retrained, the transfer learning can be more effective for improving predictions
(e.g., Wang et al. [34]). For example, we may perfume the sensitivity tests of retraining the layers, such
as the max-pooling 2 and the fully connected layers 1 and 2 (Figure 5a). Therefore, the next step of our
study can perform the retrainings of additional layers in the CNN in Domain B.

5. Conclusions

We created a new model that consists of the CNN with a transfer-learning approach and a
conversion tool between the image dataset and time-series dataset. The model can predict time-series
floods in an hour in the target domain (Domain B) after pretraining the CNN with numerous datasets
in the source domain (Domain A). As the first trial of a proposed method with this model, we note the
following findings:

1. CNN binary classification of upward/downward trends of water levels provided highly accurate
predictions for a preliminary examination.

2. CNN with time-series predictions in Domain A had less than 10% errors in the total variation of
water levels in each test dataset.

3. CNN with transfer learning in Domain B reduced the RMSEs as the number of retrainings was
increased, and the RMSEs after 20-time retrainings were slightly reduced from those of the CNN
without transfer learning in Domain B with a substantially reduced computational cost.

Due to the method of the beginning stage, our future works require some extensions of the
CNN-based flood modeling with the transfer-learning approach as follows:

• Lead time in the prediction should be extended from an hour to three to six hours based on the
time lags for the watersheds.

• The best retraining process in deep layers should be investigated.
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Appendix A

A typical binary classification of “true or false” in image analyses was conducted using the CNN
in part of the datasets in Domain A. Upward and downward classification was setup to verify the CNN
prediction in a simple examination with the softmax function (Figure 5a). The datasets that involve
higher peaks over the risk level for flooding cautionary were employed based on A1–A4 (Table 4),
because these wave shapes have relatively prominent peaks. As observed in the true lines of Figure A1,
the upward (i.e., 1) trend or downward (i.e., zero) trend was defined when the water level at the next
time-step increases and decreases from that in the present time. The accuracies for four cases are
88.8–93.5% (Table A1), although the predictions for some continuously flat and small oscillated parts in
the observed water levels were inaccurate (Figure A1).

Figure A1. Comparisons between actual values (true) and predictions (pred.) in four cases in upward
or downward trend of water level versus time. Green curves indicate observed water levels. The cases
in Domain A correspond to (a) the third highest flood event, (b) the second highest flood event, (c) the
highest flood event, and (d) the moderate peak flood event.
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Table A1. CNN verification among cases in binary classification.

Case Accuracy Rate (%)

1 92.5
2 93.5
3 88.8
4 93.5

Appendix B

Resizing pixels in the 2D image of Domain B may affect image classification using CNN.
We compared CNN predictions with an original image (123 × 13 pixels) and those with a resized image
(123 × 16 pixels). Figure A2 shows water levels in four test datasets in comparison among observed
data, prediction with the original image, and prediction with the resized image. The two waveforms by
the CNN predictions are similar in each B1–B4. As shown in Table A2, the RMSEs between observed
data and predictions in the testing of B1–B4 with the original image are from 0.19 to 0.22. In contrast,
the RMSEs with the resized image are 0.06 to 0.20. The resized image caused the reduction of the
RMSEs with the original image that ranges from 4.5% to 38%. This suggests that an extended image
may provide better predictions on CNN time classifications possibly due to a gain of more information
by larger-size pixels.

Figure A2. Comparisons among observed data (obs.), prediction with original image (pred.),
and prediction with resized image (resize) in four test datasets for water level (m) versus time
(hour) in Domain B, using CNN without transfer learning: (a) highest flood event, (b) second highest
flood event, (c) third highest flood event, and (d) moderate peak flood event.
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Table A2. Error evaluation of CNN between an original image and a resized image in Domain B.

Case
RMSE (m) of CNN with an Original

Image (123 × 13 Pixels): RMSEOrg

RMSE (m) of CNN with a Resized
Image (123 × 16 pixels): RMSERes

Reduced Rate of RMSE (%) 1

B1 0.198 0.144 27.5
B2 0.224 0.200 11.0
B3 0.163 0.155 4.5
B4 0.104 0.064 38.0

1 Reduced rate was defined as (RMSEOrg − RMSERes)/RMSEOrg × 100.
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