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Abstract: In this study, Cu-BTC (copper(II) benzene-1,3,5-tricarboxylate) metal-organic frameworks
(MOFs) were incorporated into the structure of polysulfone (PSf) ultrafiltration (UF) membranes to
improve the membrane performance for landfill leachate treatment, whereby different concentrations
of Cu-BTC (0.5, 1, 1.5, 2 wt%) were added to the PSf casting solution. The successful incorporation of
Cu-BTC MOFs into the modified membranes was investigated by field emission scanning electron
microscopy (FE-SEM) and energy dispersive X-ray (EDX). The Cu-BTC-modified PSf membranes
showed higher performance in terms of flux and rejection, as compared to the neat PSf membrane.
For example, the pure water flux (PWF) of neat membrane increased from 111 to 194 L/m2h (LMH)
by loading 2 wt% Cu-BTC into the membrane structure, indicating 74% improvement in PWF.
Furthermore, the flux of this membrane during filtration of landfill leachate increased up to 15 LMH,
which indicated 50% improvement in permeability, as compared to the neat membrane. Finally,
the modified membranes showed reasonable antifouling and anti-biofouling properties than the
blank membrane.

Keywords: ultrafiltration; polysulfone membrane; MOFs; landfill leachate treatment

1. Introduction

Membrane process offers significant potential for separation and purification [1]. Compared
to conventional separation methods, membrane separation has significant advantages, such as
being energy saving, and having high purification, simplicity of operation, superior efficiency, low
operation cost, smaller footprint, better effluent quality and low secondary pollution [2–5]. Therefore,
effective separation can be achieved by the membrane process [6,7]. Ultrafiltration (UF), one of the
pressure-driven separation processes, has experienced rapid growth in recent decades in treatment of
water and wastewater [8–10]. The characteristics of UF membrane performance depend on different
factors, including the polymer, the solvent and the non-solvent types, and the composition of the
casting solution, etc., [11]. The UF membrane with high water permeability, high rejection capacity, and
suitable antifouling property, has been the goal of researchers in UF membrane separation processes [12].
Among various modification methods, such as the use of additives, chemical treatments, coatings
and grafting components, the usage of additives is the most common, easy and effective strategy for
improving these properties [13,14]. A variety of organic and inorganic materials such as TiO2 [15–17],
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SiO2 [18,19], GO [20,21], etc., have been added into casting solutions to improve the performance of
the UF membranes. The selection of additives is very important as the overall performance of the
modified membranes exactly rely on it.

Metal–organic frameworks (MOFs) are a group of crystalline porous materials made up of metal
ions with organic linkers via strong molecular bonds that have highly tunable structures, by applying
diverse metal centers or altering the organic ligand [22,23]. Applying MOFs have gained great academic
interest in water treatment technologies in recent years [22–24]. Compared with traditional inorganic
materials, MOFs have significant characteristics, such as high surface area and highly ordered pore
structure, high pore volume, abundant active sites that provide various specific applications [18,25].
Among all applications, MOF materials provide new opportunities in liquid and gas separation
processes. Using MOFs in membrane production for liquid separation and water treatment is still in its
emerging stage in comparison with its applications for gas separation [26]. MOFs-based membranes
have already shown some interesting results in the separation of heavy metal ions [27,28] and organic
pollutants [29] from aqueous phases and have attracted great attention in separation technologies.
MOFs are combined with membranes in various methods to modify their overall performance [30–32].
Among all these methods, the blending of a MOF into the casting solution has been mostly reported
on [24,33]. Prince et al. [34] fabricated a novel membrane with self-cleaning and anti-biofouling surface
by blending highly hydrophilic MOF in the polymer solution. The modified membrane indicated a
lower flux drop and lower contact angle relative to the control membrane. Arcadio Sotto et al. [35]
synthesized UF membranes using MOF and ZnO particles as fillers. MOF-PES membrane exhibited
higher pure water flux and BSA rejections than the ZnO-PES membrane. The addition of the fillers
would enhance the hydrophilic feature of the PES and PSf membranes, which would exhibit higher
water fluxes than the neat membrane. Therefore, there is a great potential for MOFs to replace with
traditional inorganic fillers to improve membrane performance [28]. In this work, the influence of
the MOF content on the morphology and performance of PSf UF membranes for landfill leachate
treatment has been studied. Performance of modified membranes was examined in terms of the water
flux, landfill leachate flux (LLF), chemical oxygen demand (COD) removal and natural organic matters
(NOM) removal of the landfill leachate. The fouling and bio-fouling potential of membranes were also
evaluated using sodium alginate as organic foulant agent, and Escherichia coli (E. coli) suspensions as
bio-foulant agent.

2. Materials and Methods

2.1. Materials

Polysulfone (PSf, Mw = 35,000 g/mol, Solvay, Brussels, Belgium) as the base polymer, 1-Methyl-2-
pyrrolidone (NMP, 99.5%, Merck, Kenilworth, NJ, USA) as the solvent, Triton x-100 (Merck) as
surfactants and polyethyleneglycol (PEG, Mw = 600 Da, Merck) as the pore former were all combined
to prepare the casting solution. sodium dodecyl sulfate (SDS, Merck) used into coagulation bath.
Escherichia coli (E. coli, ATCC 1399), sodium alginate (Sigma-Aldrich, St. Louis, MS, USA), calcium
chloride (CaCl2, Merck), sodium chloride (NaCl, 99.5%, Merck), sodium bicarbonate (NaHCO3,
Merck), magnesium sulfate (MgSO4, Merck), ammonium chloride (NH4Cl, Merck), potassium
phosphate (KH2PO4, Merck), used to prepare wastewater effluents. N, N-dimethylformamide (DMF),
1,3,5-benzenetricarboxylic acid (H3BTC), copper(II) nitrate trihydrate and ethanol were obtained from
Merck, Germany and used for synthesizing the Cu–BTC (copper(II) benzene-1,3,5-tricarboxylate) MOF.
Landfill leachate samples with COD of 18,000 mg/L and pH of approximately 7 were provided from a
municipal leachate site at Ghaemshahr, Iran. The samples were kept at 4 ◦C to avoid property variation
of the initial leachate, while the COD of landfill leachate was diluted to 4000 mg/L before use.
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2.2. Synthesis of Cu-BTC MOF

Cu-BTC MOF was synthesized according to the method explained by the authors of [36]. Briefly,
1, 3, 5-benzenetricarboxylic acid (1 g, H3BTC) and copper(II) nitrate trihydrate (1.5 g) were dissolved
in 100 mL of dimethylformamide (DMF) as a solvent and the resulting mixture was placed in an
ultrasonic bath for 30 min. The mixture was placed in an oil bath under reflux conditions at 80 ◦C for
12 h to complete the reaction. Then, the mixture was cooled at room temperature and was washed
with a DMF solvent. Afterward, the precipitates (washed with water and ethanol with a volume ratio
of 1:1) were separated by centrifuge and dried in the oven at 80 ◦C for 8 h. To ensure the removal of
any moisture and solvent, the synthesized Cu-BTC was dried at 120 ◦C for 12 h.

2.3. Preparation of Cu-BTC/PSf Membrane

The PSf UF membranes were prepared by a phase-inversion method induced by immersion
precipitation. Firstly, different amounts of Cu-BTC (0.5, 1, 1.5, 2%) based on the weight of the solution
were dispersed in NMP and placed in an ultrasonic bath for 1 h to obtain a homogeneous suspension.
Next, 16 wt% PSf, 2 wt% PEG and 1 wt% Triton x-100 were added into the solution and stirred
overnight to obtain a homogeneous solution. Then, the mixture was sonicated again for 60 min
to completely eliminate the trapped air bubbles. The prepared solutions spread onto a polyester
non-woven fabric attached to a clean glass plate using a home-made knife with a thickness of 100 µm
and instantly immersed into a coagulation bath containing distilled water and 0.1 wt% SDS at room
temperature [37,38]. Finally, the synthesized membrane was washed repeatedly with fresh pure
water to eliminate the excess solvent and then dried at ambient temperature for 24 h. The prepared
membranes were named M-0.5, M-1, M-1.5, M-2 according to the weight of Cu-BTC loaded into the
casting solution.

2.4. Characterization of Cu-BTC MOF and Membrane

To investigate the morphologies of Cu-BTC particles, FE-SEM images were taken at a working
voltage of 5 kV. An X-ray diffraction (XRD, Philips, Amsterdam, The Netherlands) pattern of the
Cu-BTC was recorded at 298 K with Cu-Ka radiation of wavelength λ = 1.54056◦A K for 2θ angles in
the range of 5–30◦ to further analyze the crystallinity of the MOFs. Fourier transform infrared (FTIR)
spectroscopy was obtained using a FTIR spectrometer (Thermo Fisher Avatar, Waltham, MA, USA)
to investigate functional groups of the Cu-BTC particles. The spectra were recorded in the 4000–400
cm−1 wavenumber with an average of 32 scans and at a resolution of 4 cm−1. The top surface and
cross-section morphologies of fabricated membranes were detected using an FE-SEM (Philips-XL30,
Amsterdam, The Netherlands). All membrane samples were submerged in liquid nitrogen for a period
of time and then fractured and dried at room temperature. The fractured samples were covered
with a layer of gold in order to provide electric conductivity. Also, EDX analysis was applied to
prove the existence and dispersion of Cu-BTC particles in the prepared membranes. Atomic force
microscopy (AFM) images were provided using nanosurf AFM (Easyscan2 Flex) to characterize the
surface morphologies and also to evaluate the roughness parameters of the membranes. The roughness
parameters were informed in terms of the mean roughness (Sa), the root mean square roughness (Sq)
and the average of the height difference between five-points of the highest peaks and lowest valleys
(Sz). The surface hydrophilicity of the synthesized membranes was determined with a goniometer
(OCA 15 plus, Dataphysics) according to the sessile drop method. The contact angle measured from
five different areas of each sample and the mean value was reported. The porosity (ε%) of prepared
membranes were calculated by the gravimetric analyses using Equation (1) [39]:

ε (%) =
(mwet −mdry)/ρw(

mwet −mdry

)
/ρw + (mdry/ρP)

× 100 (1)
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where mwet and mdry are the masses of the wet and dry membranes, respectively; ρw is the water
density, ρp is the polymer density.

2.5. Membrane Performance Evaluation

The pure water flux, landfill leachate flux, and rejection of the membranes were evaluated via
a cross-flow membrane module. The effective surface area of the membranes was 22 cm2 and the
operating pressure of 3 bar was applied. The experiments were performed in a continuous mode at
room temperature; the permeate was measured and the concentrate stream was returned to the feed
tank. For all cases, the membrane flux and landfill leachate flux were calculated using Equation (2):

J =
V

A× ∆T
(2)

where V is the permeate volume (L), A is the operational membrane area (m2), and t is the filtration
time (h). The separation performance of each membrane was evaluated in terms of COD and NOM
rejection using Equation (3):

R (%) =

(
1−

Cp

CF

)
× 100 (3)

where Cp and CF were the contents of the permeation and feed solutions, respectively. The value of
COD was determined using a spectrophotometer (Aqualytic, AL-125, ASTM D1252) and the NOM
were obtained using a UV-Vis spectrophotometer (Chrom Tech, CT-2200) at 254 nm wavelength.

2.6. Evaluation of Antifouling and Anti-Biofouling Properties

Antifouling experiments were evaluated as follows: The membranes were initially compacted
using distillated water for 2 h at a pressure of 3 bar to achieve a constant flux. The PWF (Jpw,1) was
measured for 30 min, and then LLF (Jlfl) was measured for 2 h (the data was recorded at the interval of
10 min). The fouled membranes were washed with distilled water for 30 min at room temperature.
At the end, the PWF was measured again for 30 min as the (Jpw,2). The flux recovery ratio (FRR),
reversible fouling ratio (Rr), total fouling ratio (Rt), and irreversible fouling ratio (Rir) were calculated
with Equations (4)–(7):

FRR(%) =
Jpw,2

Jpw,1
× 100 (4)

Rr(%) =
Jpw,2 − Jlfl

Jpw,1
× 100 (5)

Rir(%) =
Jpw,1 − Jpw,2

Jpw,1
× 100 (6)

Rt(%) =
Jpw,1 − Jlfl

Jpw,1
× 100 (7)

Furthermore, the antifouling and biofouling properties of the membrane were also evaluated
through the cross-flow system with 24 h filtration using sodium alginate and E. coli suspensions
as fouling agents. The pH value of the experiment was kept constant in the range of neutral pH
(~7). To further evaluate the membrane antifouling properties, a synthesized feed containing 0.2 mM
NaHCO3, 0.3 mM CaCl2, 0.4 mM NaCl, and 250 mg/L sodium alginate dissolved in distilled water was
applied. For the biofouling experiment, synthetic wastewater comprised of 0.61 mM MgSO4, 0.5 mM
NaHCO3, 0.45 mM KH2PO4, 0.93 mM NH4Cl, 0.5 mM CaCl2, 9.20 mM NaCl and a sufficient amount
of bacteria culture at a concentration of ~107 CFU/L was used [40,41]. After the experiments were
completed, the membranes were washed under the same conditions as above, and the pure water flux
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was measured again to achieve the flux recovery ratio after 24 h filtration. All sections of the filtration
set up were washed with alcohol before beginning the biofouling experiment.

3. Results and Discussion

3.1. Characterization of the Synthetized MOFs

Figure 1 shows the FE-SEM micrographs, FTIR and XRD results of the synthesized Cu-BTC.
The FE-SEM images (Figure 1a,b) exhibited the octahedral structure of Cu-BTC with the particle size in
the range of 100–500 nm.

FTIR analysis was conducted to determine the functional groups in synthesized Cu-BTC. As shown
in Figure 1c, the FTIR results are consistent with the results of Cu-BTC reported in the literature [42–44].
The wide peak around 3400 cm−1 is ascribed to the stretching vibration of OH, and shows that the
Cu-BTC contained water molecules [43]. The peaks at 1628 and 1568 cm−1 are attributed to asymmetric
stretching vibrations of the carboxylate ligands in BTC, and the peaks at 1443 and 1373 cm−1 are
related to symmetric stretching vibrations of carboxylate ligands [43]. Also, the peak at 1443 cm−1 is
recognized for the C–C band in the aromatic ring [43]. The peaks at 727 and 482 cm−1 are assigned to
the vibration of C–H and Cu–O, respectively [43].

XRD analysis was carried out to evaluate the crystallinity of the Cu-BTCs and the obtained result is
provided in the Figure 1d. As shown in this figure, the XRD spectrum is consistent with data reported
for Cu-BTC in the literature [36,45,46]. The results indicated sharp peaks at 6.88◦, 9.73◦, 11.93◦ and
13.83◦ that reflect (200), (220), (222) and (400) crystal planes of Cu–BTC, respectively.
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3.2. Morphological Investigations of Membranes

The cross-section and top surface FESEM images of the neat, M-1.5 and M-2 membranes are
shown in Figure 2. All of the membranes showed a common asymmetric structure, comprised of a thin
dense layer at the top, which is responsible for selectivity and a porous and finger-like sub-layer at
the bottom, that acts as mechanical support. As can be seen, the addition of the MOF has an effect on
both the surface and the sublayer, for example, the finger-like pores of modified membranes are longer
and wider than the neat membrane. The good affinity of Cu-BTC particles to water media [48,49]
changes the kinetic and thermodynamic features of the coagulation process and speed up the exchange
rate between solvent and non-solvent during the precipitation process [50,51]. Consequently, a thin
skin layer at the top and porous sub-layer at the bottom with longer and wide finger-like pores were
created, due to the hydrophilicity and good dispersion of Cu-BTC [52]. The high affinity of MOF
particles to the water bath during phase inversion led to a particle transfer to the membrane top layer
and assembled in the water–polymer interface to reduce the interfacial energy [49]. MOF particles can
obviously be seen in the surface of M-2 membrane (bright point in Figure 2f).
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EDX analysis was determined to show the element composition of the M-2 membrane. The results
are reported in Figure 2g. EDX analysis indicated the presence of carbon (C), oxygen (O), copper (Cu)
and sulfur (S). During the phase inversion, some part of the Cu-BTC can enter into the coagulation
bath, due to its hydrophilicity and the existence of the carboxylic acid group in the Cu-BTC structure,
which can create some cavities in the membrane structure, but the results of the EDX analysis proved
that Cu-BTC particles were well embedded in the membrane matrix.

3.3. Hydrophilicity, Porosity, and Roughness of Membranes

The surface contact angles of the neat and Cu-BTCs membranes are expressed in Figure 3a. In order
to minimize the experimental errors, mean data from three tests were reported. It is well known that
there is a reverse correlation between the contact angle and surface wettability or hydrophilicity of
membranes [53,54]. As can be seen in Figure 3a, the surface contact angle of the membrane decreased
by the addition of Cu-BTC, leading to improvement of the surface hydrophilicity of these modified
membranes. Accordingly, the membrane surface contact angle decreased from 65.4◦ to 56.7◦ by the
addition of 0.5 wt% MOF in the casting solution. This might be due to the existence of hydrophilic
groups (carboxylic acid) of the Cu-BTC in the membrane surface.
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According to the results of porosity evaluation (Figure 3b), the overall porosity was improved
with the loading of the MOF up to 2 wt%. The porosity increment can be attributed to the influence of
the MOF on the phase inversion process, which leads to the formation of a highly porous membrane.
Moreover, the remaining porous Cu MOFs in the structure of the membranes would be another reason
to increase the overall porosity of the membranes. The surface AFM images of the membranes and their
roughness obtained from AFM are provided in Figure 3c–e and Table 1. As can be seen, the membrane
surface roughness decreased slightly by the addition of the MOF in the polymer solution, probably
due to the rapid solvent and non-solvent exchange rate during the phase inversion process [55].
The increase in roughness from the M-1.5 to the M-2 membrane may be due to the accumulation of
some Cu-BTC particles on the surface of the M-2 membrane [49].
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Table 1. Surface roughness parameters of the neat, M-1.5 and M-2 membranes.

Membrane Sa (nm) Sq (nm) Sz (nm)

neat 27.58 ± 2 33.76 ± 1.6 217.2 ± 5
M-1.5 13.85 ± 1.4 17.89 ± 1.2 123.36 ± 4
M-2 24.86 ± 1.8 30.49 ± 1.4 206 ± 5

3.4. Membrane Performance

In order to investigate the effect of Cu-BTC on the membrane performance, pure water flux (PWF),
landfill leachate flux (LLF), COD and NOM removals were evaluated and the results are shown in
Figure 4a,b. All tests were repeated three times and the mean data reported. It can be found that the
PWF and LLF of the modified membranes were improved by MOF loading. Adding the hydrophilic
MOF to the casting solution would increase the rate of water penetration into the polymer solution
during the phase inversion process. Conversely, the existence of the MOF reduces the thermodynamic
stability of the casting solution, interrupts the polymer chains and decreases the interaction between
the solvent and the polymer chains, resulting in an increase in the solvent exhaust. Both of these
phenomena increase the exchange rate between the solvent and non-solvent, precipitation takes place
faster and therefore leads to a more porous structure membrane [56]. Also, the hydrophilic surface
of the membrane and highly porous structure of Cu-BTC may absorb water molecules and create an
additional crossing path for water through the membrane [57]. All of these causes higher PWF for MOF
modified membranes than the neat membrane (Figure 4a). As can be seen, the M-2 membrane showed
approximately 70% increase in PWF and 50% increase in LLF, as compared to the neat membrane
(Figure 4a,b).
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The rapid decline of the landfill leachate flux in the first stage is due to the pore blockage by the
foulant, and in the second stage it is due to the deposit of the cake layer on the surface [58]. Thus,
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a decrease of flux can be attributed to the accumulation of foulants on the surface and pores and finally,
the flux reached a steady constant during filtration.

The compatibility of the fillers and polymer is an effective parameter in the selectivity of the
membrane [55]. Due to the presence of organic linkers in the MOF structure, they show a good
tendency to adhere to the polymer and result in preventing the formation of non-selective voids in the
membrane structure. Accordingly, MOF modified membranes showed better rejection than the neat
membrane. As can be seen in Figure 4a, the rejection results from LLF experiments showed that the
neat membrane reduces the COD only to 24%, but with the addition of 0.5 wt% Cu-BTC, the COD
removal enhanced about 66% (from 24% to 40%) of the neat membrane. Additionally, the formation of
smaller pore sizes in the presence of MOF during the phase inversion process is another reason for
better rejection of the modified membrane.

3.5. Membrane Antifouling Performance

For the evaluation of antifouling properties of modified membranes, the flux recovery ratio (FRR),
reversible resistance (Rr) and irreversible resistance (Rir) were measured and displayed in Figure 4c.
The fouled membranes were washed only with pure water for 30 min after the landfill leachate filtration
was completed. As shown in Figure 4c, the addition of 2 wt% MOF led to an improvement in the
FRR, from 69% of the neat membrane to more than 90% of the modified membrane, showing weak
adsorption between the foulant of the feed solution and the surface of the modified membranes.
Moreover, by increasing the Cu-BTC content, the irreversible fouling of the modified membranes
decreases. Figure 4c shows a 26% decrease (from 30% to 4%) for the M-2 membrane. It can be found
that Cu-BTC improved the cleanability of the modified membranes.The existence of hydrophilic groups
on the surface and pores of MOF membranes formed hydrated layers on the surface and decreased the
hydrophobic interaction among the membrane surface and organic foulants [59]. Moreover, according
to the AFM results, the smoother surface may have a good effect in developing antifouling properties
of the membrane surface, because of the smaller surface area in contact with the foulants [60].

To further evaluate the antifouling properties of membranes, the organic fouling and bio-fouling
behavior of neat membrane and 2 wt% MOF modified membrane were evaluated with sodium alginate
and E. coli suspensions, respectively, as shown in Figure 5. The reported data are the average of
two runs. The results from filtration of sodium alginate solution confirmed that the MOF modified
membrane (M-2) demonstrated better antifouling properties than the neat membrane. This membrane
showed a flux decline of approximately 42%, while the neat membrane indicated a high flux decline of
approximately 75% after 24 h filtration. The results indicate that the membrane with Cu-BTC had a
suitable flux recovery ratio, with a lower water flux reduction, due to its higher surface hydrophilicity.
For long-term experiments, the flux recovery ratios were 67% and 90% for the neat and M-2 membranes,
respectively, indicating good antifouling properties for the MOF modified membranes.

Similar results were also observed in the filtration of the E. coli suspension. The M-2 membrane
showed a flux decline of approximately 40%, while the neat membrane indicated a high flux decline of
approximately 70% after 24 h filtration, again. The MOF membrane exhibited improved anti-biofouling
properties, due to its higher surface wettability and strong antibacterial properties of Cu-BTC reported
in our previous research [40]. The flux recovery ratios were 52% and 88% for the neat and M-2
membranes, respectively.

Copper has been identified as having antimicrobial properties [61] and is used in different
forms (nanoparticle, ion, etc.) for modification of the membrane,in order to improve its antibacterial
properties [62–64]. The properties of Cu-BTC MOF against bacteria come from Cu ions in their structure
that are attached to the organic linker with chemical bonds [65]. A sustained antibacterial activity can
be provided by Cu-BTC MOFs, namely the reservoir of copper (Cu2+) ions [66]. The main antibacterial
mechanism of the MOFs is the long-lasting metal ion release [67]. The metal active sites in the MOFs
are uniformity distributed and the mechanism of metal release does not change through degradation of
the material. Additionally, the organic linker applied for fabrication of the framework might itself have
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antimicrobial activity and hence, a synergistic effect may be achieved [49]. The proposed antibacterial
mechanism includes cell wall rupture and plasma membrane deterioration through contact with
the Cu2+ metal sites, which can oxidize organic species. The equal distribution of metal ions in the
MOF structure prevents metal agglomeration and blocking the active sites of copper [66]. Also, good
compatibility of the organic linker in the MOF structure with polymer makes good dispersion of
MOF in the membrane matrix and prevent formation voids between two phases. All of these factors
make for better anti-biofouling properties of the MOF membrane against a bacteria solution, than the
neat membrane.
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4. Conclusions

In this study, Cu-BTC MOFs were first synthesized through ultrasonic followed by the reflux
method and then used as an additive to modify the polysulfone ultrafiltration membrane through
phase inversion technique. The existence of the Cu-BTC MOF in the structure of prepared membranes
is confirmed by EDX analysis. The modified membranes showed a lower contact angle than the neat
membrane, demonstrating the more hydrophilic surface because of the existence of carboxyl groups
on the surface. Furthermore, modified membranes showed improved pure water and landfill leachate
flux without reducing the rejection due to a more porous structure. The highest water flux of 194 LMH
was observed for the M-2 membrane, which also showed 50% higher landfill leachate flux compared
to the neat membrane. Moreover, by addition of only 0.5 wt% Cu-BTC into the casting solution, the
COD rejection increased up to 66%, as compared to the neat membrane. Additionally the antifouling
and anti-biofouling behavior of the membranes were investigated using sodium alginate and E. coli
suspensions as fouling agents, and the obtained results indicated better antifouling and anti-biofouling
properties for Cu-MOFs modified membranes.
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