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Abstract: Accurate estimates of sensible (H) and latent (LE) heat fluxes and actual evapotranspiration
(ET) are required for monitoring vegetation growth and improved agricultural water management.
A large aperture scintillometer (LAS) was used to provide these estimates with the objective of
quantifying the effects of surface heterogeneity due to soil moisture and vegetation growth variability.
The study was conducted over drip-irrigated vineyards located in a semi-arid region in Albacete,
Spain during summer 2007. Surface heterogeneity was characterized by integrating eddy covariance
(EC) observations of H, LE and ET; land surface temperature (LST) and normalized difference
vegetation index (NDVI) data from Landsat and MODIS sensors; LST from an infrared thermometer
(IRT); a data fusion model; and a two-source surface energy balance model. The EC observations
showed 16% lack of closure during unstable atmospheric conditions and was corrected using the
residual method. The comparison between the LAS and EC measurements of H, LE, and ET showed
root mean square difference (RMSD) of 25 W m−2, 19 W m−2, and 0.41 mm day−1, respectively.
LAS overestimated H and underestimated both LE and ET by 24 W m−2, 34 W m−2, and 0.36 mm
day−1, respectively. The effects of soil moisture on LAS measurement of H was evaluated using
the Bowen ratio, β. Discrepancies between HLAS and HEC were higher at β ≤ 0.5 but improved at
1 ≥ β > 0.5 and β > 1.0 with R2 of 0.76, 0.78, and 0.82, respectively. Variable vineyard growth affected
LAS performance as its footprints saw lower NDVILAS compared to that of the EC (NDVIEC) by
~0.022. Surface heterogeneity increased during wetter periods, as characterized by the LST–NDVI
space and temperature vegetation dryness index (TVDI). As TVDI increased (decreased) during drier
(wetter) conditions, the discrepancies between HLAS and HEC, as well as LELAS and LEEC Re decreased
(increased). Thresholds of TVDI of 0.3, 0.25, and 0.5 were identified, above which better agreements
between LAS and EC estimates of H, LE, and ET, respectively, were obtained. These findings highlight
the effectiveness and ability of LAS in monitoring vegetation growth over heterogonous areas with
variable soil moisture, its potential use in supporting irrigation scheduling and agricultural water
management over large regions.
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1. Introduction

The increased pressure on water resources availability and use in arid and semi-arid regions
has urged many agricultural water users to adopt water conservation practices, including drip
irrigation [1–4]. In Spain and generally in the European Union (EU), drip irrigation is supported
by many entities, strategies, and national plans, including the EU Water Framework Directive and
National Irrigation Plan [3,5,6]. One of Spain’s objectives of achieving water saving of 3000 Mm3/year
has led to an exponential increase in drip-irrigated areas that exceeded 450% between 1989–2007, with
another ~19% between 2007–2015 [3,7–9]. Currently, drip-irrigated areas account for ~49% of the total
irrigated areas (1.79 Mha) that are mostly (~37%) covered with vineyards [3].

Vineyards have the ability to adapt to semi-arid environments and are of economic and social
significance. Adoption of drip irrigation in vineyards can help in improving water management and
in addressing imposed (controlled) water stress conditions. However, drip irrigation can introduce
spatially variable soil moisture and vegetation growing conditions that add some challenges in
obtaining accurate measurements of sensible (H), latent (LE) heat fluxes and actual evapotranspiration
(ET).

Routine and accurate measurements of H, LE, and ET are required for an improved understanding
of vegetation growth and water use. Eddy covariance (EC) and scintillometer systems are among the best
methods that can provide such measurements, with both having pros and cons [10,11]. Some challenges
can arise with the use of EC systems because they are relatively expensive, labor-intensive, requiring
well-trained personnel, and provide local-scale observations [10,12]. Such local-scale observations do
not adequately represent the spatial variability of the underlying surface. In many cases, large-scale
observations over spatially heterogeneous surfaces are necessary. In these cases, a network of EC
systems has been successfully used, which, however, adds some feasibility and management challenges.

Alternatively, advances in the scintillation method made it possible to address some of these
challenges. Scintillometers can provide large-scale observations, require minimal data processing,
and, technically, are relatively easy to maintain compared with a network of EC systems [13–15].
Scintillometers provide path-averaged measurements of H over distances of about 500 m up to 10 km.
They can also provide area-averaged estimates of LE when combined with measurements of net
radiation (Rn) and soil heat fluxes (G) [15–17]. Such large-scale observations are needed to provide
more compatible observations for ground-truthing of remote sensing-based model estimates of H, LE,
and ET [15,18]. Hence, scintillometers have advantages over EC systems in providing routine, efficient,
and spatially representative large-scale observations that can enhance water managers’ abilities to
accurately monitor vegetation growth and water use [19].

Scintillometer observations are typically evaluated against those from EC systems.
These evaluations often show a wide range of discrepancies depending on the underlying surface
heterogeneity [14,15,17,20]. Some efforts have been made to identify the sources of these discrepancies,
but there is still a need for additional evaluations. One of the main reasons for these discrepancies is
attributed to differences in their represented spatial scales and surface heterogeneity.

The effects of some surface variables, including vegetation height, topography, and land cover
types, on scintillometer applications were partially considered [14–16,21]. However, the effects of
the most important variables—soil moisture and vegetation growth—have not been appropriately
addressed [14,20,22]. These two variables play key roles in surface energy balance processes.
Soil moisture affects partitioning of available energy (Rn − G) to H and LE. Vegetation growth
affects surface roughness and ET. Some studies have accounted for surface variability due only to soil
moisture, while the effects of vegetation growth on surface variability have been minimally considered
or ignored. These two variables have unique combined effects in characterizing surface heterogeneity,
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and hence, they need to be accounted for accordingly. For such, remote sensing can effectively and
appropriately characterize surface heterogeneity.

A review of recent scintillometer applications suggested that remote sensing has been minimally
utilized in addressing surface heterogeneity and its effects on scintillometry. For example, [20,22]
used only land surface temperature (LST) over surface-irrigated olive trees and natural vegetation
cover, respectively, to infer the effects of soil moisture variability on scintillometer-based estimates of
H. On the other hand, vegetation growth has been extensively monitored using normalized difference
vegetation index (NDVI) based on surface reflectance (i.e., optical remote sensing), as in [23–26].
However, the integration of surface variability, as characterized by using remote sensing-based indices
such as NDVI to explain the performance of scintillometers, has been insufficiently studied.

The combined use of LST and NDVI can provide complimentary information about surface
conditions [27]. Specifically, LST and NDVI can be graphically combined to form what is called
LST–NDVI space that mostly takes the shape of a triangle diagram [27,28]. This empirical triangle
concept was effectively used to describe and characterize the combined effects of soil moisture and
vegetation growth over most surfaces [27,28]. In an LST–NDVI space, drier (wetter) surface conditions
can be represented by lower (higher) NDVI, higher (lower) LST, and vice-versa that correspond
to sparsely or stressed (dense or unstressed) vegetated surfaces. An LST–NDVI space can also be
numerically represented in the form of a temperature vegetation dryness index (TVDI) that allows to
quantitatively characterize soil water stress, ET, and surface and root zone soil moisture [27–29].

Generally, scintillometer behavior relative to irrigation events has been previously qualitatively
evaluated, for example, in [16,20]. However, there is still a need to quantitatively characterize
the combined effects of soil moisture and vegetation growth variability to appropriately evaluate
surface heterogeneity due to irrigation practices (e.g., drip irrigation) and its effects on scintillometer
measurements. To address this need, this study uniquely introduced the combined use of TVDI
and scintillometry.

The goal of this study was to evaluate the effects of irrigation-induced surface heterogeneity
in terms of soil moisture and vegetation growth variability on large aperture scintillometer (LAS)
measurements of H, LE, and ET for efficient monitoring of crop water consumption and improved
irrigation water management. To achieve this goal, this study uniquely integrated an EC system,
thermal and optical remote sensing data, a data fusion model, and a surface energy balance model.
The objectives of the study were to: Compare EC measurements with LAS estimates; use the spatial
temporal adaptive reflectance fusion model (STARFM) to develop (i.e., fuse) a daily time series of
NDVI based on Landsat and MODIS images; estimates of Rn, G, H, and LE using the two-source
energy balance (TSEB) model; and characterize surface heterogeneity using LST–NDVI space and TVDI.
The study highlights the performance of LAS during different soil moisture conditions by providing
some explanations about when and why LAS and EC measurements can closely agree.

2. Data

2.1. Study Area

The experiment was carried out during the summer and fall of 2007 (1 August–31 October)
in Central Spain (39◦17′ N, 1◦59′ W, 700 m above mean sea level—MSL) in the Albacete province,
over drip-irrigated, row-oriented vineyards grown on vertical shoot positioned trellis [23]. H was
measured simultaneously using an EC system and a LAS BLS900 (Scintec AG, Rottenburg, Germany).
Other surface energy balance fluxes, including LE, Rn, and G, were also monitored throughout the
growing season.

The study area was about 18.5 ha planted with four different 7-year-old varieties of grapes.
The site was divided into 17 irrigation fields: The Cencibel variety was predominant, but Cabernet
Sauvignon, Shiraz, and Merlot were also cultivated in smaller proportions. During the field campaign,
other crops, including winter cereals and irrigated fruit trees, and a pine forest surrounded the
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site (Figure 1). The vineyards were pruned during the dormant and growing seasons to adjust the
vegetation development. No-tillage or cultivation was conducted during the growing season and the
application of herbicides prevented the growth of weeds. The vine spacing was 1.5 m and the row
spacing 3.0 m, which were oriented approximately in the north–south direction. The drip lines were
placed on the trellis below the plants, with drippers spaced 1.0 m apart. Vineyard production in 2007
was 14,000 kg ha−1, around 7 kg/tree, which was [23] similar to previous year yields, and no infection
or diseases were detected in the plants during the growing season.Water 2020, 12, x FOR PEER REVIEW 4 of 28 
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Figure 1. Aerial photograph of the study site with the 17 drip-irrigated vineyard fields, along with the
location of the large aperture scintillometer (LAS) transmitter and receiver and eddy covariance (EC)
tower. The numbers inside each polygon represent the field numbers. The LAS transmitter was located
in Field 9 and the receiver was located in Field 16. The EC tower was located within Field 7 along the
LAS path. The spaces between Fields 2 and 3, as well as other similar ones (~5–10 m), were for field
accessibility purposes.

Irrigation was performed according to local practices, with a general rule of applying 22 mm
of water to each field approximately every 12 days based on farmers’ reports. However, observed
irrigations over Field 7 showed that there is some variability in irrigation dates, with a total of
6 irrigations with 22 mm and a seventh one with about 11 mm, with an average of total applied
irrigation depth of 143 mm throughout the growing season. The irrigation schedule over the other
fields also showed similar variability (Appendix A—Figure A1). Unnecessary vegetation development
increases crop water consumption, reduces soil water storage, and increases irrigation requirements.
Therefore, the shoots were pruned in the experimental field around day of year (DOY) 187 and no new
leaves or stems were observed after that date. So, the fractional vegetation cover (Fc) remained stable
at 30%, as shown in Figure 2 [23]. The vegetation height at the beginning of the growing season was
70 cm and 164 cm by the end of the season, with an average width of foliage of 70 cm.
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Figure 2. A plot of vineyards fraction of cover (Fc), actual evapotranspiration (ET) based on EC
measurements, irrigation dates for Field 7, LAS measurements period, and Landsat overpass dates
with respect to day of year (DOY) for year 2007.

2.2. LAS Measurements

The Boundary Layer Scintillometer BLS900 model from Scintec AG Rotternburg, Germany was
used in this study. The LAS has an aperture diameter D = 0.15 and operates at a wavelength of
880 nm. Based on wind direction analysis, the LAS was deployed so that the wind passes dominantly
perpendicular through its beam. The distance between the LAS transmitter and receiver was 640 m
(Figure 1). The LAS path was relatively horizontal, as the transmitter and receiver were at 2.8 m and
3.5 m, respectively, above the ground. The measurement was sampled at 1 Hz and averaged over
1-min intervals. Air temperature (Ta) and atmospheric pressure (P) measurements were acquired using
separate sensors that were integrated with the LAS system.

2.3. EC Measurements

The EC system was installed in the central part of the plot (Figure 1). The EC system consisted of
a sonic anemometer CSAT-3 (Campbell Sci. Inst., Shepshed, Leicestershire LE12 9GX, UK), an infrared
gas analyzer LI-7500 open system (LI-COR Inc., Lincoln, NE, USA) that records at 10 Hz (0.1 s),
a humidity and temperature sensor HMP45C (Vaisala, Vantaa, Finland), and a datalogger CR5000,
in which air density correction and some statistics were computed. The data were incorporated into
high-frequency tables of fluxes every 30 min. The post-process was performed using the software
TK2 [30], which mainly corrects the effects of separation between sensors, frequency attenuations by
time averages, sensor length, and spurious values [23]. The sensors were located at 3 m above the
ground-oriented northwest in the direction of prevailing winds (Figure 1).

Rn (W m−2) was measured using a net radiometer CNR1 (Kipp & Zonen, Delft, The Netherlands),
located 4.5 m above ground. The row orientation of the vineyards’ trellis introduced sunlit and shading
patterns that can affect G. To account for this effect, G (W m−2) was measured at three positions spatially
representative of the vineyard soil (i.e., the area covered by plants, at 0.75 m and 1.5 m from the plant
row). G was calculated by correcting the heat fluxes measured by the flux plates by accounting for
the effects of soil moisture content [31]. In each of the three G measurement positions, a Heat Fux
Plate (HFP1) (Hukseflux, Delft, The Netherlands) was placed and buried at 8 cm deep along with two
chrome–constantan thermocouples (TCAV, Type E) at 2 and 4 cm depths, together with a volumetric
moisture reflectometer CS616 (Campbell Sci. Inst., Logan, UT, USA). A thermal infrared thermometer
(IRT) was used to measure canopy and soil surface temperatures. A set of three Everest IRT (Everest
Interscience Inc., Chino Hills, CA, USA) sensors accuracy of ±0.3 ◦C. One IRT sensor was pointed at the
vineyards to measure canopy temperature and the two other ones were pointed at sunlit and shaded
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soils to provide an average soil surface temperature. This set of canopy and soil temperatures were
used to estimate LST that was used to model surface energy balance fluxes, as described in Section 3.4.

Surface Energy Balance Lack of Closure

Lack of surface energy balance fluxes closure measured by EC systems is a known issue that
yet remains unresolved [32], and it appears in terms of discrepancies between turbulent heat fluxes
(H + LE) and available energy (Rn − G). The lack of closure in this study was evaluated using two
well-known methods—the Bowen ratio (BR) and the Residual (Re) [32,33]. Generally, the BR method
distributes the lack of closure between H and LE based on β (H/LE), and the Re method assumes
this error is due to an underestimation in LE (LE = Rn − G −H) [32]. The two methods (i.e., BR and
Re) were considered here because there is no consensus on a preferred one over the other. Lack of
surface energy balance closure was addressed using daytime 8:30 a.m.–4:30 p.m. data during unstable
atmospheric conditions.

2.4. Remote Sensing Data

2.4.1. Landsat Images

Four pairs of Landsat 5 images that consisted of LST and surface reflectance were used to
characterize surface heterogeneity over the study site during the measurement period. Top of the
atmosphere temperature images were atmospherically corrected to obtain at-surface LST using the
radiative transfer model MODTRAN 4 [34]. These images were acquired during clear sky conditions
on 4 and 27 August, and 5 and 28 September (Figure 2). Both datasets have a 30-m spatial resolution
that allowed to account for field scale variability. Surface reflectance in near-infrared (NIR) and red
bands were used to calculate NDVI as (NIR − Red)/(NIR + Red).

Generally, over sparsely vegetated areas with dry soil surfaces, NDVI ranges between 0–1, with
low and high values correspond to bare soils and full cover dense canopies, respectively. It can reach
an asymptotic value of about 0.9 over most dense canopy covers. NDVI is not strongly sensitive and
indirectly related to soil moisture in the root zone. It is directly related to and can be used to describe
vegetation growth conditions and some plant biophysical properties over time. It provides a delayed
response in terms of vegetation growth due to water stress [28]. A well-watered transpiring vegetation
has higher NDVI values compared to water-stressed less transpiring one [27,35]. So, vineyard growth
can be detected with NDVI spatially and temporally. On the other hand, LST is more sensitive to soil
moisture and water-stressed conditions. As a biophysical response, a surface with well transpiring
vegetation has lower LST compared to one with water-stressed conditions [27,29,35,36]. The Landsat
data were used to develop the LST–NDVI space and TVDI.

2.4.2. MODIS Images

The study used a set of 56 images of MODIS NDVI for the period between 4 August and
28 September, 2007. MODIS data have a 250-m spatial resolution that does not allow to identify field
scale surface heterogeneity. Therefore, the data were used in combination with those from Landsat
5 based on a data fusion approach to develop statistically representative Landsat-like NDVI images.
This process allowed filling-in the gap between Landsat overpass dates using the spatial temporal
adaptive reflectance fusion model (STARFM)—a data fusion approach developed by [37]. A brief
description of STARFM is provided in Section 3.3. This NDVI time series helped in characterizing
vineyards growth spatial variability over time.

2.5. Root Zone Soil Moisture Content

Soil moisture content measurements were acquired in Field 7 between two rows adjacent to the
EC system at multiple layers below the surface at 10, 20, 30 40, 50, and 80 cm using an EnviroScan soil
water capacitance probe. Within the 3.0 m row spacing, two sets of probes were installed—adjacent to
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the vine and near the emitters at each row. Another two sets of probes were installed at 75 cm away
from each row and one set in the middle of the row (i.e., at 1.5 m from the row). The probes adjacent to,
and those at 75 cm from, the vine showed a consistent soil moisture response with the irrigation events.
The sensors that where located in the middle of the row, as well as those located at and below a depth
of 50 cm, did not show any relevant response. The probes at shallow depths showed some response
relative to significant rainfall events.

It should be noted that in this study, the probes were not calibrated to site-specific soil–water
physical properties, including the range of available soil moisture between field capacity and wilting
point. Measured soil hydrologic properties, including field capacity and permanent wilting point,
were 0.29 cm3 cm−3 and 0.14 cm3 cm−3, respectively. Detailed soil properties were provided by [23],
in which they conducted root zone water balance analysis to estimate ET. While the absolute accuracy
of these measurements was not necessarily needed in this study, the evolution of soil moisture response
to the irrigation events was certainly important and useful to explain the behavior of LAS and EC
measurements of H and LE.

3. Methods

3.1. Estimates of H Using LAS

A scintillometer is a device that operates at a near-infrared electromagnetic wave to measure
turbulent intensity fluctuations and present them in the form of a path-averaged structure parameter
of the refraction index of air, C2

n. To this purpose, an electromagnetic radiation is transmitted over a
(usually) horizontal path, and the corresponding intensity fluctuations are analyzed at the receiver.
Both temperature and humidity fluctuations, C2

T and C2
q , respectively, give rise to C2

n. The relationship
between C2

T and C2
n can be described by Equation (1) [13,38,39] as:

C2
T = C2

n

(
T2

a
γ·P

)2(
1 +

0.03
β

)−2

(1)

where C2
T and C2

n are in K2 m−2/3 and m−2/3, respectively, P the atmospheric pressure (Pa), γ the
refractive index coefficient for air (0.78 × 10−6 K Pa−1), and Ta the air temperature (◦K). Equation (1)
is a simplified version of Equation (A1) (Appendix B). In some cases, β can be obtained from the EC
flux measurements. In this study, and to obtain LAS estimates of H (HLAS) independent of β from EC
measurements, β was estimated iteratively using available (Rn − G) following the approach described
by [16,40]. With the application of the Monin–Obukhov similarity theory (MOST), C2

T can be related to

the temperature scale, T∗, by a universal function of stability parameter ξ =
(
ze f f − d

)
/L as:

C2
T·
(
ze f f − d

)2/3

T2
∗

= fT(ξ) (2)

where ze f f is the LAS effective height (m) and L is the Monin–Obukhov length. For unstable conditions
(L < 0) [40,41]:

fT = 4.9
[
1− 6.1

(ze f f − d

L

)]−2/3

(3)

The effective height, ze f f , takes into account the effects of stability conditions and slanted paths as

z−2/3
e f f · fT

(
ze f f /L

)
=

∫ u=1
u=0

(
1/z

2
3 (u)

)
fT(z(u)/L)G(u)du with G(u) is the bell-shaped weighting function

describing the contribution of C2
n to the total LAS signal at each point along the normalized path u [21],

and z(u) is the variable LAS beam height along the path (Figure 1). For slanted paths, z(u) can be
described relative to the maximum and minimum heights if the transmitter and/or the receiver zmax
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and zmin, respectively, as z(u) = zmin[1 + (zmax/(zmin − 1))·u]. The Monin–Obukhov length, L, can be
estimated as:

L =
Ta·u∗
k·g·T∗

(4)

with k = 0.4 is the von Karman constant, g the gravity (9.81 m·s−2), and the friction velocity, u∗, can be
estimated using the standard Businger–Dyer flux profile [42] as:

u∗ =
k·U

ln
(

ze f f − d
z0

)
−ψm

(
ze f f − d

L

)
+ψm

( z0
L

) (5)

where U is the wind speed, ψm the stability correction function for the momentum transfer was
calculated following [43,44] as ψm = 2ln[(1 + x)/2] + ln

[(
1 + x2

)
/2

]
− 2·arctan(x) + π/2 with x =[

1− 16
(
ze f f − d

)
/L

]1/4
, d is the displacement height, and z0 is the roughness length. Both d and z0 were

calculated as a function of crop height hc as d = (2/3)·hc and z0 = (1/3)·hc, respectively [45].
HLAS can be estimated as:

HLAS = ρ·cp·u∗·T∗ (6)

where ρ is the air density and cp is the specific heat of air at constant pressure.

3.2. LST–NDVI Space, TVDI, and Spatial Heterogeneity

The LST–NDVI space can uniquely describe soil moisture variability and vegetation conditions
over most surfaces [46]. As shown in Figure A2 (Appendix A), there is a negative correlation between
LST and NDVI. In other words, as LST increases (decreases), NDVI decreases (increases). A plot of
all pixel values of LST and NDVI for a given scene can reveal a triangle-shaped formulation with
upper and lower bounds representing dry and wet edges, respectively. Partially vegetated surfaces
fall in the space between these two edges. A set of isolines can be developed with varying slopes
(Appendix A—Figure A2) that describe soil moisture variability, H, and LE [27,28,46]. In some cases,
the LST–NDVI space is represented by a trapezoid to avoid some uncertainties that appear near the
lower right angle of the triangle as the isolines are set very close to each other [29]. The LST–NDVI space
has been used to qualitatively describe vegetation water stress and soil moisture variability [27,29,47,48].

Quantitatively, LST and NDVI can empirically be combined to TVDI that ranges between 0–1
for wettest to driest surfaces. The TVDI concept has been utilized to directly estimate surface and
root zone soil moisture content [28,46,49]. In this study, the TVDI was used as an indicator of surface
heterogeneity due to soil moisture, and to partially explain the corresponding behavior of LAS
measurements. The TVDI can be estimated as:

TVDI =
LST − LSTmin

LSTmax − LSTmin
(7)

where LSTmin is the minimum LST and LSTmax the maximum LST that can be estimated as a function
of NDVI as LSTmax = a + b·NVDI, where a and b are linear regression coefficients of the dry edge
limit line. Based on the isolines, TVDI is simply the ratio between A to B (Appendix A—Figure A2).
Two sets of TVDI were calculated, one was based on LST and NDVI from the four Landsat images.
The second set was based on LST from the IRT and the NDVI from STARFM over Field 7. A consistent
set of LST from the IRT and NDVI from STARFM was identified based on the time of the day that
would correspond to Landsat typical overpass of 12:40 p.m. The TVDI was developed using LST–Ta to
account for the effects of air temperature, as recommended by [28], and the corresponding dry edge
line was developed following (Figure A1) [27,28,46].
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3.3. Data Fusion

The STARFM is a data fusion approach that was developed to blend daily MODIS with the
16-day Landsat reflectance data. Using statistical methods, STARFM combines spectral similarities in
Landsat and MODIS image pairs with temporal changes from the 250-m MODIS data to fill-in the
gap between Landsat overpass dates to provide a consistent time series of Landsat-like data at 30-m
spatial resolution. The STARFM has been used in many agricultural water management applications.
It has been successfully applied with the TSEB model to provide field scale gap-filled time series
of ET [50–53]. In this analysis, four pairs of Landsat and MODIS were used to develop statistically
Landsat-like NDVI images from MODIS. This NDVI time series allowed to characterize vineyard
growth variability within each field and within the LAS and EC footprints.

3.4. The TSEB Model

The thermal based two-source energy balance (TSEB) model [54,55] was used to provide
independent estimates of H, LE, and Rn − G to evaluate HLAS. The TSEB model was applied
using two different datasets—Landsat images and IRT point-based observations of LST. The TSEB
model was chosen in this analysis due to its ability to provide accurate estimates of H and LE over
a wide range of heterogeneous surfaces (e.g., row cropped fields) compared to other similar type of
models. The TSEB model was successfully applied over heterogeneity surfaces similar to this site,
including vineyard fields in California [35,50,56–58]. Based on a two-source concept, the TSEB model
applies the surface energy balance equation over surface components (i.e., canopy and bare soil)
separately and combines the fluxes at an air–canopy interface. The main assumption of the model is
that LST can be decomposed based on the fraction of cover (fc) [55] as:

TR =
[

fc·T4
c + (1− fc)·T4

s

]1/4
(8)

with TR is the LST or sometimes referred to as radiometric surface temperature, and Tc and Ts are
canopy and bare soil temperatures (◦K). The fraction of cover fc viewed at nadir can be estimated as
fc = 1 − e−(0.5·LAI), where LAI is the leaf area index. A brief description of the TSEB model and its
application over canopy and soil components is provided in Appendix C [54].

3.5. Footprint Model

The source areas (i.e., flux footprints) of the EC and LAS systems captured associated surface
heterogeneity that contributed to measured fluxes. Flux footprints of each system partially integrated
a number of fields or sub-fields (Figure 1). A footprint analysis was carried out to estimate these
source areas for each system. The size and extent of a footprint depend on many factors, including
measurement height, atmospheric stability, wind speed and direction, and aerodynamic roughness
length. The EC system footprints were estimated using the footprint model by [59,60]. For the LAS
footprints, [59,60] model was combined with a superposition approach, as described in [14,15,20].
More details about the footprint analysis are provided in Appendix D.

4. Results

4.1. Observed Surface Energy Balance Closure

Observed HEC + LEEC showed a closure ratio (CR) of 84% of Rn − G (Figure 3). In other words,
an underestimation of 16% in available energy was either unmeasured or unexplained, with a root
mean square difference (RMSD) and R2 of 54 W m−2 and 0.69, respectively. Adjusted sensible heat
flux using the BR method (HEC β) showed a mean value of 111 W m−2 (standard deviation (SD) of
56 W m−2), with a 15% increase compared to that of raw HEC of 95 W m−2 (SD of 46 W m−2). Similarly,
adjusted latent heat flux using the Re (LEEC Re) and BR (LEEC β) methods resulted in mean values of
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176 (SD of 89 W m−2) and 159 W m−2 (SD of 78 W m−2), with about 30% and 15% increase, respectively,
compared to that of LEEC of 138 W m−2 (SD of 68 W m−2).
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Figure 3. EC surface energy balance lack of closure based on a comparison between turbulence fluxes
(LE + H) and available energy (Rn − G). RMSD, root mean square difference.

4.2. Comparison between HLAS and HEC

The mean and SD statistics of LAS and EC measurements of H, HLAS, and HEC and HEC β,
respectively, showed that the mean of HLAS of 118 W m−2 (SD of 52 W m−2) was ~26% higher than
that of HEC of 94 W m−2 (SD of 56 W m−2) and 6% higher than that of HEC β of 111 W m−2 (SD of
46 W m−2). These statistics indicate that regardless of the method used to address lack of closure,
HLAS overestimated those obtained by the EC system. In other words, this result suggests that the flux
footprint “seen” by the LAS experienced higher H with relatively drier surface conditions compared to
that “seen” by the EC, as explained in more details in Section 5.

The comparison between HLAS and HEC showed some discrepancies, as indicated by an RMSD of
25 W m−2 (R2 of 0.77) with a narrow dispersion around the 1:1 line within a 95% confidence interval
(Table 1 and Figure 4). A slightly lower agreement was observed between HLAS and HEC β, with
an RMSD of 28 W m−2 (R2 of 0.72) and a wider dispersion around the 1:1 line. Also, the slope of
the regression lines of 0.99 and 0.79 indicate a better agreement between HLAS and HEC compared
to HLAS and HEC β, respectively. These comparisons indicate that the use of the Re method in this
study to address lack of closure provided a better agreement compared to the BR method. Therefore,
the analysis was completed using the Re method.
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Table 1. Summary of sensible heat flux comparison and regression statistic.

Equation Slope a Intercept b
(W m−2)

RMSD
(W m−2)

R2 MBD *
(W m−2)

No. Data
Points

HLAS = a·HEC + b 0.99 25 25 0.77 24 1244
HLAS = a·HEC β + b 0.79 31 28 0.72 7 1244

* Mean bias difference (MBD).

4.3. HLAS, Soil Moisture, and Vegetation Spatial Variability

4.3.1. HLAS and β

The effects of soil moisture temporal variability on HLAS were evaluated using β. Generally, higher
soil moisture content can lead to an increase in LE (and ET), decrease in H, and, consequently, lower β
values [35]. In this study, β values were divided into three categories, including β ≤ 0.5, 1 ≥ β > 0.5,
and β > 1. The first two categories generally indicate that LE (and ET) > H. The third β category
indicates that H > LE. A comparison between HLAS and HEC for each β category is shown in Figure 5.
The data in the third β category suggest that the site experienced relatively drier conditions compared
to the other two categories. At β ≤ 0.5, HLAS overestimated HEC by a mean bias difference (MBD) of
34 W m−2. At 1 ≥ β > 0.5, the MBD decreased to 27 W m−2, and at β > 1, HLAS underestimated HEC by
an MBD of −14 W m−2. In other words, as β increased (i.e., drier surface conditions became dominant),
the agreement between HLAS and HEC improved as the MBD consistently decreased. Also, R2 of 0.76,
0.78, and 0.82 for β < 0.5, 1 ≥ β > 0.5, and β > 1, respectively, show consistently improved agreement
between HLAS and HEC as β increased.

Water 2020, 12, x FOR PEER REVIEW 11 of 28 

 

4.3. HLAS, Soil Moisture, and Vegetation Spatial Variability 

4.3.1. HLAS and β 

The effects of soil moisture temporal variability on HLAS were evaluated using β. Generally, 
higher soil moisture content can lead to an increase in LE (and ET), decrease in H, and, consequently, 
lower β values [35]. In this study, β values were divided into three categories, including β ≤ 0.5, 1 ≥ β 
> 0.5, and β > 1. The first two categories generally indicate that LE (and ET) > H. The third β category 
indicates that H > LE. A comparison between HLAS and HEC for each β category is shown in Figure 5. 
The data in the third β category suggest that the site experienced relatively drier conditions compared 
to the other two categories. At β ≤ 0.5, HLAS overestimated HEC by a mean bias difference (MBD) of 34 
W m−2. At 1 ≥ β > 0.5, the MBD decreased to 27 W m−2, and at β > 1, HLAS underestimated HEC by an 
MBD of −14 W m−2. In other words, as β increased (i.e., drier surface conditions became dominant), 
the agreement between HLAS and HEC improved as the MBD consistently decreased. Also, R2 of 0.76, 
0.78, and 0.82 for β < 0.5, 1 ≥ β > 0.5, and β > 1, respectively, show consistently improved agreement 
between HLAS and HEC as β increased. 

 
Figure 5. Comparison between HLAS and HEC at different β categories, with of β ≤ 0.5 (top), 1.0 ≥ β > 
0.5 (middle), and β > 1.0 (bottom). 

4.3.2. LST–NDVI Space and Spatial Heterogeneity 

This section first shows an evaluation of LST, NDVI, and an LST–NDVI space based on the four 
Landsat images. Second, the LST–NDVI space was then used to develop a TVDI relationship based 
on the Landsat data. Third, a TVDI time series was developed based on a relatively longer dataset of 

0

50

100

150

200

250

300

H
LA

S(W
 m

–2
)

0.5

MBD = 34 W m–2
RMSD = 23 W m–2
R2 = 0.76

0

50

100

150

200

250

300

H
LA

S(W
 m

–2
)

1.0 > 0.5

MBD = 27 W m–2
RMSD = 22 W m–2
R2 = 0.78

0 50 100 150 200 250 300

HEC(W m–2)

0

50

100

150

200

250

300

H
LA

S(W
 m

–2
)

> 1.0

MBD = 10 W m–2
RMSD = 23 W m–2
R2 = 0.82

Figure 5. Comparison between HLAS and HEC at different β categories, with of β ≤ 0.5 (top),
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4.3.2. LST–NDVI Space and Spatial Heterogeneity

This section first shows an evaluation of LST, NDVI, and an LST–NDVI space based on the four
Landsat images. Second, the LST–NDVI space was then used to develop a TVDI relationship based on
the Landsat data. Third, a TVDI time series was developed based on a relatively longer dataset of LST
from the IRT and NDVI from STARFM. Fourth, the TVDI time series was used as a surrogate for soil
moisture to evaluate the HLAS and LELAS.

NDVI Variability

The average NDVI over each field for all four Landsat images was calculated and is shown in
Figure 6. The NDVI indicates that each field experienced relatively variable growing conditions.
For example, the average NDVI of all dates over Fields 2, 6, and 9 consistently show lower NDVI of 0.32,
0.30, and 0.31, compared to those over Fields 7 and 8 of 0.36 and 0.39, respectively. The corresponding
average NDVI that represented, or “as seen” by, the LAS and EC footprints is shown on the x-axis in
Figure 6 as points 18 and 19, and referred to herein as NDVILAS and NDVIEC, respectively. The NDVI
that represented (or as seen by) the EC system was estimated by overlying (superimposing) the EC
footprints over the NDVI images. Using the footprint values (which are in dimensionless units),
a weighted sum of NDVI values within the footprint boundaries was calculated to estimate NDVIEC

for each image data and time. A similar process regarding the calculation of NDVILAS was followed.
The results show that both NDVILAS and NDVIEC of 0.35 and 0.37, respectively, were relatively
higher than those of over Fields 2, 6, and 9. This pair of four NDVI values shows that NDVILAS was
consistently, but slightly, lower than NDVIEC (Figure 6).
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Figure 6. Normalized difference vegetation index (NDVI) (top row) and land surface temperature (LST)
(middle row) based on Landsat Images along with plots of a spatial distribution of NDVI (bottom left)
and LST (bottom right) of all fields.

A time series of footprint-integrated pairs of NDVILAS and NDVIEC was developed using the
STARFM-based NDVI maps (Figure 7). Images with cloudy sky conditions were excluded (11 images
out of 54). The results show that NDVILAS and NDVIEC were closely correlated (R2 = 0.90), and the
average NDVILAS was ~0.022 lower than NDVIEC.
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Figure 7. Scatter plots of (a) NDVILAS and NDVIEC, and (b) NDVILAS − NDVIEC compared to
HLAS − HEC.

LST–NDVI Space

Using the triangle concept (Figure A2), regression lines (or isolines) were developed to represent
the data for each of the four Landsat image dates (Figure 8). The negative slope shown by all regression
lines indicates that during each day, as LST increased, NDVI decreased. The standard deviation of
NDVI (σNDVI) for each day (or isoline) varied from low to high, from 0.019, 0.020, 0.021, and 0.033 from
the upper- to the lower-most isoline, respectively. The σNDVI suggests that there was a relatively larger
spatial vineyard growth variability during wetter conditions (i.e., lower-most isoline) compared to
drier ones. The mean LST (µLST) varied from high to low from the upper- to the lower-most isoline
from 315.9, 313.2, 307.9, and 302.2 ◦K, respectively. The µLST also indicates that the surface exhibited
higher LST (i.e., warmer) during drier conditions compared to wetter ones (i.e., cooler). This qualitative
evaluation of LST–NDVI space was necessary to develop a TVDI time series based on the IRT data.
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Figure 8. Plot of LST–NDVI space, along with isolines for each Landsat overpass date.

4.3.3. HLAS and TVDI

Estimates of TVDI

As an initial evaluation, the obtained TVDI, which ranged from 0–1, was plotted against HEC (not
shown) to make sure that it followed the known behavior, as described by [27,28,46,49]. A positive
correlation between TVDI and HEC was obtained. The lowest average TVDI (about 0.20) was on
28 September and corresponded to the lowest average LST (~302.2 ◦K). The observed behavior of the
TVDI in this study agreed with the fact that higher TVDI corresponds to drier conditions [28,46,49],
higher LST − Ta [29], and higher H [28,29].
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Estimates of HTSEB

The TSEB model was used to estimate HTSEB and (Rn − G)TSEB that can be used to evaluate
both HLAS–HEC and HLAS–HTSEB against TVDI and to calculate LELAS, respectively. The TSEB model
was applied using two LST datasets from the Landsat images and the IRT. Estimates of H based on
the Landsat data (or remote sensing) (HTSEB RS) and those based on the IRT (HTSEB IRT) are shown
in Figure 9. Two different comparisons were conducted—HEC against HTSEB IRT and HLAS against
HTSEB IRT. The comparison between HEC and HTSEB IRT showed an RMSD and R2 of 35 W m−2 and
0.71, respectively, with a narrow scatter distribution around the 1:1 line. Slightly lower agreement
was obtained between HLAS and HTSEB IRT, with an RMSD and R2 of 51 W m−2 and 0.64, respectively.
One of the main reasons for the increased discrepancies between HLAS and HTSEB IRT was attributed to
differences in the spatial representation of HTSEB IRT (at a point) to that of HLAS. Estimates of HTSEB RS

did not have enough data points that could be meaningfully evaluated. However, a visual inspection
of Figure 9 showed that the footprint-integrated HEC and HLAS were closely correlated with HTSEB RS.
Overall, these TSEB model results are consistent with previous studies [14,35,50,56,61,62] and allowed
the use of HTSEB IRT to characterize surface conditions.
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Figure 9. Maps of the two-source energy balance (TSEB) model estimates of HTSEB (top row) and LETSEB

(second row) based on Landsat, comparison between EC Re measurements and TSEB IRT estimates of
Rn, G, H, and LE (third row left), scatter plot of HLAS and HTSEB IRT (third row right), comparison of
footprint integrated LETSEB RS, LEEC Re, and LELAS (bottom left), comparison of HTSEB RS, HEC, and
HLAS (bottom right).
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HLAS and TVDI

Estimates of HLAS, HEC, and HTSEB IRT can be considered independent of each other—a condition
that allowed to adequately evaluate soil moisture and vegetation growth variability, as characterized
by the TVDI. The comparisons between HLAS − HEC and HLAS − HTSEB IRT against TVDI are shown in
Figure 10. The results show a negative correlation (R2 = 0.55) between HLAS − HEC and TVDI, which
indicates that as the discrepancies between HLAS and HEC decreased, the TVDI increased. A relatively
higher correlation (R2 = 0.66) was obtained between HLAS −HTSEB IRT and TVDI based on a smaller
sample size. This comparison also provides a similar indication of decreased discrepancies between
HLAS and HTSEB IRT with increased TVDI. In other words, both comparisons indicate that the agreement
between HLAS and both HEC and HTSEB IRT improved during higher TVDI or specifically drier surface
conditions. This consistent behavior of HLAS and TVDI suggests that TVDI can effectively be used to
evaluate the effects of surface heterogeneity due to irrigation on LAS performance.
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Figure 10. Comparison between the error in H (HLAS − HEC) and temperature vegetation dryness
index (TVDI).

4.4. Estimates of LE and ET

4.4.1. Estimates of LELAS

LELAS was estimated as the residual of the energy balance equation as LELAS = Rn − G −HLAS.
Estimates of (Rn−G)TSEB IRT based on the TSEB and IRT data (Section 3.4) were used to obtain relatively
independent LELAS compared to LEEC Re. Estimates of (Rn − G)TSEB IRT resulted in an RMSD and R2 of
34 W m−2 and 0.93, respectively, with an underestimation indicated by an MBD of −30 W m−2 when
compared with (Rn − G)EC (Figure 11). Two different estimates of LELAS were obtained: LELAS TSEB IRT

based on (Rn − G)TSEB IRT and LELAS EC based on (Rn − G)EC. LELAS TSEB IRT and LELAS EC were
evaluated against LEEC Re and LETSEB IRT, respectively (Figure 11). These comparisons show that
both estimates of LELAS TSEB IRT and LELAS EC consistently underestimated LEEC Re and LETSEB IRT,
respectively. The comparison between LELAS EC and LE TSEB IRT showed a reasonable distribution
around the 1:1 line, with an RMSD and R2 of 39 W m−2 and 0.71, respectively, and underestimation
indicated by an MBD of −20 W m−2. The comparison between LELAS TSEB IRT and LEEC Re showed a
narrower distribution around the 1:1 line, with an RMSD and R2 of 30 W m−2 and 0.82, respectively,
and underestimation indicated by an MBD of −59 W m−2 (Figure 11).

4.4.2. LELAS and TVDI

The differences LELAS TSEB IRT − LEEC Re and LELAS EC − LETSEB IRT were compared with TVDI
to evaluate the effects of soil moisture and vegetation growth variability on LELAS. The obtained
results show that both differences were negatively correlated with TVDI with first comparison (i.e.,
LELAS TSEB IRT − LEEC Re versus TVDI) resulted in R2 = 0.72, and the second one (i.e., LELAS EC −
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LETSEB IRT versus TVDI) indicated an R2 = 0.57. These negative correlations suggest that as the two
differences increased, the TVDI decreased (as soil moisture increased). These comparisons were based
on a much smaller sample sizes due to the need of using consistent datasets of LELAS TSEB IRT, LEEC Re,
LELAS EC, and LETSEB IRT. Therefore, they were used to qualitatively evaluate LELAS and TVDI behavior.
LELAS EC was used to provide a quantitative evaluation of TVDI, as discussed in Section 5.7.
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Figure 11. Comparisons between (a) LELAS TSEB IRT and LEEC Re, (b) LELAS EC and LETSEB IRT,
(c) (Rn − G)TSEB IRT versus (Rn − G)EC, and (d) ETLAS and ETEC Re.

4.4.3. Estimates of ET

Estimates of ETLAS and ETEC Re based on LELAS and LEEC Re, respectively (Figure 11), show a
good agreement, with an RMSD of 0.41 mm day−1. An underestimation of ETLAS to ETEC Re was
noticed with an MBD of −0.36 mm day−1. This result was consistent with that obtained in Section 4.3,
which indicated an overestimation of HLAS to HEC and, consequently, an underestimation of LELAS to
LEEC Re. The obtained mean values for ETLAS and ETEC Re were 2.1 and 2.5 mm day−1, respectively.
A better LAS performance was visually observed at ETLAS ≤ 2 mm day−1 with increased discrepancies
above this value.

5. Discussion

5.1. Lack of Closure

Observed lack of closure of EC measurements was within the typical acceptable range of
15–20% over agricultural areas [12,32,40,56]. Closure ratios (CRs) of 0.84 and 0.86 were reported
over heterogonous vineyards in California [56] and homogeneous rainfed soybean in Iowa [63–65].
Also, the lack of closure in this study had minimal effects on the discrepancies between HLAS and
HEC. Generally, lack of closure is partly attributed to mismatch in spatial scale of measurements
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(i.e., Rn − G versus H + LE) and the underlying surface heterogeneity [12,32,65,66]. As indicated
by [22], a combination of CR ≤ 0.80 and surface heterogeneity can increase these discrepancies.
This combination highlighted the need to evaluate the effects of surface heterogeneity on LAS in
this study.

5.2. HLAS and HEC

The obtained RMSD between HLAS and HEC was within acceptable levels of accuracy.
Reported typical levels of accuracy of H measurements for LAS and EC were within 30 W m−2 [40]
and 50 W m−2 [12,67,68], respectively. Also, [20] indicated that acceptable differences between HLAS

and HEC were within 50 W m−2. [20] compared HLAS against HEC over flood-irrigated olive orchards
and obtained an RMSD of 36, 29, and 63 W m−2 before, after, and during irrigation events, respectively,
assuming heterogeneous soil moisture during irrigation and homogeneous otherwise. Also, [16]
obtained an RMSD of 63 W m−2 over drip-irrigated orange orchards.

Previous studies evaluated LAS performance mainly relative to three factors: Vegetation cover
uniformity, placement of EC and LAS considering their footprints, and soil moisture effects on surface
heterogeneity [16,20,22,69]. In this study, the first two factors had relatively minimal effects compared
to the latter. The site had homogenous cover dominantly vegetated with one vineyard variety with
a constant hc and Fc during the measurement period [23]. A footprint analysis showed that the
EC footprints lied mostly within Field 7 (and Field 3), and that of the LAS partially integrated nine
fields, including Fields 2, 3, 4, 5, 6, 7, 8, 13, and 15. Field 7 accounted for 27% of the LAS footprints
(Figure 12). The EC footprints accounted for ~20% of, and most importantly lied entirely within, that
of the LAS—such setup is considered the most ideal placement of LAS and EC systems to obtain
comparable measurements [22,69]. Thus, this evaluation suggests that surface heterogeneity due to
soil moisture and vegetation growth (i.e., vigor and greenness) variability can mainly explain the
discrepancies between HLAS of HEC.
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5.3. HLAS and β

Considering soil moisture effects, the use of β in Equation (1) can also partly explain some of the
discrepancies between HLAS and HEC based on the humidity correction factor and the corresponding
assumptions. The humidity correction factor [(1 + 0.03/β)−2] partly affects the accuracy of C2

T and
HLAS [38,39]. The humidity correction factor is less than 10% for of β ≥ 0.6 [21]. Thus, it has minimal
effects on HLAS accuracy at larger β and no need to use it at β > 1 [14,21,40]. On the other hand,
the uncertainty in HLAS can reach up to 15% and 48% at β = 0.3 and β < 0.3, respectively [40]. In other
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words, decreased uncertainty in HLAS during drier conditions (i.e., H > LE and β > 1) can lead to
improved agreement with HEC compared to periods with increased soil moisture (H < LE and β < 1).

Moreover, regardless of the correction factor, its assumptions can still lead to increased
discrepancies during wet conditions. The obtained results indicated that even when accounting
for this factor, the discrepancies between HLAS and HEC at β ≤ 0.5 increased. Equation (1) is a simplified
form of Equation (A1) (Appendix B) that relates C2

n, C2
T, and C2

q [39], assuming that the correlation
between T and q, Rtq = +1. This assumption removes the direct dependency of C2

n on C2
q , and hence

reduces its contribution to [(1 + 0.03/β)−2]. Many studies argued the applicability of this assumption
over a wide range of moisture conditions. In some cases, Rtq < 1, especially during periods with
increased soil moisture content [20,38,70]. [20] found that Rtq ≤ 0.75, during which Rwt and Rwq did
not follow each other, resulting in ~4% overestimation by HLAS over flood-irrigated olive orchards.
Unfortunately, in this study, there were no data to evaluate the Rtq, but the study by [20] was used as a
guidance, as they indicated that Rtq ≈ 0.6 for β ≤ 0.5.

The violation of this assumption, which led to overestimation of HLAS to HEC, is typical during
transitions from dry to wet periods, and largest during low H values that occur during nearly neutral
unstable conditions (i.e., low β values), as indicated by [71]. During such periods, the near surface
layer (i.e., internal adapted layer) is not fully developed compared to very unstable conditions (i.e.,
during high β values). In this study, a better agreement between HLAS and HEC was clearly obtained
during drier conditions (i.e., at β > 1) and a reasonable one was obtained at 1 ≥ β > 0.5. These results
are consistent with previous findings by [20,40,70,71]

5.4. NDVI Variability

The NDVI provided a good indication of how healthy and variable the vineyards were growing
spatially and temporally. All vineyard fields showed a consistent NDVI spatial variability over time.
Such consistent NDVI behavior over time was indicative of soil temporal variability. NDVI spatial
variability indicated that each vineyard field experienced physiologically variable growth compared
to other fields. Spatially variable soil properties can partly explain this variable growth, since all
fields were dominantly planted with one variety and there was no reported water or nutrient stress
conditions. The soils in the study site were classified as Inceptisoil with a sand, clay, gravel texture [23].
These types of soils are known for their variable productivity, including texture and water-holding
capacity. A similar behavior was observed over vineyards grown in California, US in fields with
variable soil physical properties that caused variable growing conditions and lower yields [56].

Based on NDVI, the vineyards within the EC footprints showed relatively better growth compared
to that within the LAS. This can partially explain the overestimation of HLAS to HEC and it is also
consistent with the basic concepts of near surface flux exchange [55,72,73]. An evaluation of NDVILAS

− NDVIEC against HLAS − HEC showed that HLAS − HEC slightly increased as NDVILAS − NDVIEC

decreased (Figure 7b) with a low correlation (R2 = 0.17). This low correlation was partly because
the study was conducted during vineyard full cover period with relatively constant Fc and minimal
variation in NDVI (Figure 2). A more effective approach in these cases is to monitor vineyards
throughout the growing season. NDVILAS − NDVIEC decreased as HLAS − HEC increased during
relatively wet periods (increased moisture content). The typical acceptable error between HLAS and
HEC of ~50 W m−2 [20,40] corresponded to NDVILAS − NDVIEC of ~0.018. The average of NDVILAS −

NDVIEC of 0.022 can partly explain the overestimation of HLAS to HEC of MBE of 24 W m−2 (Table 1).

5.5. LST–NDVI Space and Soil Moisture

The LST–NDVI space offered an elaborate characterization of surface heterogeneity, as it combines
soil moisture and vegetation growth variability based on LST and NDVI, respectively. The results
indicated that during any day, some fields experienced higher LST (i.e., drier conditions) and lower
NDVI compared to others. Lower σNDVI during drier conditions suggested relatively more spatial
variability (i.e., relatively heterogeneous) compared to higher σNDVI during wetter conditions (i.e.,
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relatively homogeneous). Also, higher µLST consistently corresponded with higher σNDVI during
drier conditions. The µLST for each isoline (or day) was used to explain and identify the status of
the soil moisture of the root zone. The upper- and lower-most isolines can represent the driest and
wettest edges of the triangle [27,28,46,49]. The µLST was compared with a normalized soil moisture
content in Field 7 to evaluate its temporal variability. A normalized soil moisture (NSM) content
was calculated as NSM = [(SM− SMmin)/(SMmax − SMmin)], where SM is the half-hour volumetric
soil moisture content, and SMmax and SMmin are the maximum and minimum soil moisture contents.
The soil moisture status was the lowest at the upper-most isoline during 4 August (16%), followed by
27 August (56%), 5 September (60%), and 28 September (70%) (Figure A3). The 4 August was about
four days before irrigation, 27 August was three days after irrigation, and 5 and 28 September were
just one to two days after irrigation (Figure A3).

This elaborate characterization can provide a more effective and practical approach to address
some challenges in monitoring LAS performance over heterogeneous areas. Some studies characterized
homogenous surface conditions based on before and after irrigation events, during which HLAS and
HEC closely agreed compared to during irrigation [20,74]. However, over large areas, challenges
can arise in identifying such periods due to lack of irrigation, reporting or subjectively identifying
periods before and after irrigation which can lead to misleading indications. This qualitative evaluation
highlighted the advantage of using the LST–NDVI space to account for soil moisture and vegetation
growth variability and its appropriateness to evaluate HLAS. A quantitative evaluation of HLAS based
on LST–NDVI space and TVDI can further provide a more effective approach.

5.6. HLAS and TVDI

The obtained results are consistent with the empirical triangle concept, as they showed increased
TVDI that coincided with higher H during drier surface conditions (i.e., lower surface and root zone soil
moisture content) [27–29,49,75–78]. Also, improved agreement between HLAS and HEC was obtained
during higher TVDI during relatively drier conditions. These results suggested that HLAS − HEC

increased during relatively wet periods as TVDI decreased (i.e., higher soil moisture contents and
LE). To provide a more effective way to evaluate HLAS, a TVDI threshold of 0.30 was identified, above
which HLAS − HEC fell within an acceptable level of accuracy of 50 W m−2.

Figure 10 provides significantly useful information for practical applications. For example,
thresholds of TVDI can be developed and combined with the large-scale estimates of HLAS and LELAS

to manage irrigation more accurately. This analysis indicated that regardless of knowing the irrigation
schedule, the TVDI was able to appropriately characterize surface conditions and LAS performance
during varying soil moisture content compared to using LST or NDVI individually, as used in previous
studies [20,22,74]. While these results are promising, it was important to note that adding more LST
images and soil moisture measurements can provide more spatially representative TVDI.

5.7. Estimates of LELAS and ET

The resultes indicated that (Rn − G)TSEB IRT consistently underestimated (Rn − G)EC. This can
partly be attributed to spatial scale mismatch between the IRT and EC systems’ footrpints of 2–3 m
point-based and a few hundered meters, respectively. Consequently, these descrepancies affected
LELAS TSEB IRT, LELAS EC, and the agreement between LAS and EC estimates. An improved agreement
between LELAS and LEEC can be obtained when using (Rn − G)EC compared to using (Rn − G)
independent from EC measurements, as indicated by some previous studies. For example, (Rn − G)IRT

data were used to estimate LELAS over flood-irrigated winter wheat, olive yard, and drip-irrigated
orange orchards that resulted in an RMSD of 49, 56, and 62 (with R2 of 0.74, 0.71, and 0.68), respectively,
when compared with LEEC [16]. In another study by Hoedjes et al. [79], (Rn − G)EC data were used
simultaneously to address lack of energy balance closure and calculate LELAS over wheat, and resulted
in an R2 of 0.97 when compared with LEEC. However, using (Rn − G)EC in this manner does not
provide fully independent LELAS and LEEC. Though, such use was not uncommon, especially in cases
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with data limitations [79]. Also, previous inter-comparison studies of independent measurements of Rn
− G showed increased correlation (R2 > 0.95), with discrepancies mainly attributed to instrumentation
error [80,81]. By following this approach in this study, an improved agreement between LELAS EC and
LEEC Re was obtained with RMSD, R2, and MBD of 19 W m−2, 0.93, and −34 W m−2, respectively.

On the other hand, it was also noticed that the discrepancies in both comparisons (i.e., LELAS TSEB IRT

vs. LEEC Re and LELAS EC vs. LETSEB IRT) decreased (increased) as LE decreased (increased) during drier
(wetter) conditions. The correlation between LELAS TSEB IRT − LEEC Re and TVDI, as well as LELAS EC −

LETSEB IRT and TVDI, suggested that both LELAS TSEB IRT − LEEC Re and LELAS EC − LETSEB IRT increased
during relatively higher soil moisture conditions, as characterized by decreased TVDI and increased
LE [27,28,46,49]. This behavior of LELAS versus TVDI is consistent with the obtained results (Section 4.3)
when comparing HLAS discrepancies with TVDI.

The observed TVDI behavior in response to soil moisture variation suggested its ability to provide
practical means to evaluate LELAS and to manage irrigation over large areas. In this study, periods with
relatively higher LE occurred within ~5 days after significant wetting events (i.e., irrigation or rain).
This number of days varied from one field to another, and hence, its use was challenging, not practical,
and subjective. For such, the TVDI was compared with LELAS EC − LEEC to develop a threshold
to evaluate LELAS performance. The datasets of LELAS TSEB IRT − LEEC Re and LELAS EC − LETSEB IRT

were not considered in this case because of the limited data points. A threshold of TVDI = 0.25 was
identified, above which a higher agreement between LELAS and LEEC Re was obtained, which can vary
with the use of a larger dataset.

Measured ETEC Re values throughout the growing season were ≤4 mm day−1 with ≤2 mm day−1

observed during periods with low soil moisture content or near the end of the season (Figure 2).
Smaller discrepancies between ETLAS and ETEC Re appeared during these periods and increased right
after irrigation or significant rain events when ETEC was around or >3 mm day−1. In other words,
during relatively drier conditions, the LAS and EC systems showed better agreement in ET estimates.

The difference between of ETLAS and ETEC Re estimates was within 16%, which is within reported
levels of accuracies. The study by [82] compared ETLAS with those from a remote sensing-based model
called SEBAL over a mixed vegetation cover and obtained an error of 17%. Other studies compared
ETEC with TSEB model estimates and reported an RMSD within 0.6 mm day−1 over agricultural
sites with similar heterogeneity to this study [35,50,56]. On the other hand, suggested acceptable
accuracies of ET measurements from LAS and EC were mostly within 10–15%, but in some cases, can
reach up to 30% [10,11]. The difference ETLAS − ETEC Re increased as TVDI decreased during wet
conditions. A TVDI threshold of ~0.5 was identified, below which ETLAS − ETEC Re exceeded 15%.
Additional analysis with larger dataset will need to be conducted in the future to further support
this finding.

6. Conclusions

This study evaluated the effects of surface heterogeneity on LAS performance due to soil moisture
and vegetation growth variability caused by irrigation practices. LAS observations and estimates of
H, LE, and ET were obtained over row drip-irrigated vineyards during 1 August–31 October 2007
in Albacete, Spain. The study used a suite of methods that included EC observations of H, LE, and
ET; LST and NDVI from Landsat and MODIS sensors; additional LST from an IRT; a data fusion
model to develop a time series of NDVI; and a surface energy balance model to estimate H and LE.
The EC observations showed a lack of closure of 16% during unstable atmospheric conditions and
was corrected using the Residual method. Good agreements were obtained between LAS and EC
estimates of H, LE, and ET with an RMSD of 25 W m−2, 19 W m−2, 0.41 mm day−1, respectively.
LAS overestimated H and underestimated both LE and ET by 24 W m−2, 34 W m−2, and 0.36 mm
day−1, respectively.

The effects of soil moisture on HLAS was evaluated using the Bowen ratio, β. Higher discrepancies
between HLAS and HEC were obtained at β ≤ 0.5, but improved agreement was shown at 1 ≥ β > 0.5
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and β > 1.0, with an R2 of 0.76, 0.78, and 0.82, respectively. Variable vineyard growth affected LAS and
EC performance. The LAS footprints “saw” lower vineyard growth compared to that of the EC, as
NDVILAS underestimated NDVIEC by ~0.022, which corresponded to an overestimation of HLAS to
HEC by ~24 W m−2.

The effects of surface heterogeneity on LAS performance due to the combined effects of soil
moisture and vegetation growth variability were appropriately characterized using the LST–NDVI
space and TVDI. Surface heterogeneity increased during wetter conditions, as indicated by the standard
deviation of NDVI and mean LST. Based on its assumptions, LAS accuracy increased during drier
conditions, and hence, resulted in improved LAS and EC agreements. The TVDI increased (decreased)
during drier (wetter) conditions as the discrepancies between HLAS and HEC, as well as LELAS and
LEEC Re decreased (increased). Thresholds of TVDI of 0.3, 0.25, and 0.5 were identified, above which
improved agreement was obtained between LAS and EC estimates of H, LE, and ET, respectively.
These thresholds can vary with the use of more LST–NDVI datasets and they are also region-dependent.

These findings can have important practical use, as they suggest the effectiveness and ability of LAS
in monitoring vegetation growth over heterogonous areas with variable soil moisture. The combined
use of LAS with LST–NDVI space and TVDI can support irrigation scheduling and agricultural water
management over large regions.
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Figure A1. A description of the vineyard fields drip irrigation schedule. The blue color represents
the rainfall events. The light grey color differentiates between the months of August and September.
The dark grey color represents the irrigation events over the individual fields.
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where AT and Aq are coefficients that can be calculated as a function of atmospheric pressure
(p), air temperature (T), humidity (q), and optical wavelength as AT = −0.78·(p/T) × 10−6 and
Aq = −57.22·q × 10−6, cp is the specific heat at constant pressure. [38] found that during certain

conditions, the factor in front of β−1 (i.e.,
(
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)
) equals 0.031 and Equation (A1) is simplified to

Equation (1), as shown in Section 3.1 above.
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Appendix C

Appendix C.1. TSEB Model Description

The surface energy balance equations over canopy and bare soil components can be described as:

Rn = H + LE + G (A2)

Rnc = Hc + LEc + G (A3)

Rns = Hs + LEs + G (A4)

where subscripts s and c refer to soil and canopy components. The sensible heat flux can be estimated as:

Hc = ρcp
Tc − Tac

rx
(A5)

Hs = ρcp
Ts − Tac

rs
(A6)

H = Hc + Hs = ρcp
Tac − Ta

ra
(A7)

where Tac is the air temperature at an air–canopy interface, ρ the air density taken as 1.24 (kg m−3), cp

the specific heat of air taken as 1005 (J kg−1 K−1), rx the total boundary layer resistance of the complete
canopy leaves, rs the resistance to heat flow in the boundary layer immediately above the soil surface,
and ra is the aerodynamic resistance to heat transfer. The latent heat flux for each component can be
estimated as:

LEs = Rns −G−Hs (A8)

LEc = αPT fg
∆

∆ + γ
Rnc (A9)

where G can be estimated as 0.30 of Rns, αPT is the Priestly–Taylor constant taken as 1.26, fg the
fraction of leaf area index (LAI) that is green, ∆ the slope of the saturation vapor pressure versus
temperature curve, and γ the psychrometric constant. The initial value of αPT = 1.26 is used for
well-water unstressed vegetation, which can further be adjusted by following an iterative process to
account for stressed vegetation. More details about the TSEB model and the methods followed to
estimate the different variables can be found in many applications [35,50,56,62].

Appendix D

Appendix D.1. Footprint Analysis

The footprint function f represents the contribution per unit surface flux of each unit element in
the upwind surface area to a measured vertical flux. This function relates the vertical flux, F(x, y, zm),
measured at height zm to the spatial distribution of surface emission fluxes F(x’, y’, z = 0):

F(x, y, zm) =

+∞∫
−∞

x∫
∞

F(x′, y′, z = 0) f (x− x′, y− y′, zm)dx′dy′ (A10)

where x and y are the upwind and crosswind distances (m), respectively, from the point of measurements.
The model assumes that the turbulent flux field is horizontally homogeneous, and therefore the footprint
depends only on the separation between the measurement point and the site of the elemental emission
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flux. The separation in the wind direction is (x−x’) and that in the crosswind direction is (y−y’). In this
analysis, the three-dimensional footprint function for scalar fluxes was calculated as:

FP(x, y, zm) =
f−y(x, zm)

σy
√

2π
exp

−1
2

(
y
σy

)2 (A11)

where σy is the standard deviation of the lateral spread which can be estimated as a function of the
plume travel time x/U and the standard deviation of the lateral wind fluctuations σv as σy = σv

x
U with

U is the advection speed. The footprint function can be calculated as:

f−y(x, zm) =
dz
dx

zm

z2

U(zm)

U(cz)
A· exp

[
−

(zm

bz

)r]
(A12)

where z is the mean plume height for diffusion from a surface source (m), zm is the measurement
height, u(z) is the mean wind profile variables A, b and c are functions of the gamma function (Γ),
and r is the Gaussian plume model shape parameter. The diffusion in the lateral direction is assumed
Gaussian [59].

To obtain the three-dimensional footprint function for the LAS, Equation (A12) was combined
with the spatial weighting function of the scintillometer [14,15,20]. The LAS path was thought to
consist of a series of single observation points, which, for each a single source area, was calculated
using Equation (A11). Each of these source areas was then multiplied by the LAS weighting function,
G (u). The summation of all individual points was normalized by the total of the source areas, which
then yielded the LAS weighted footprint.
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