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Abstract: Supervisory Control And Data Acquisition (SCADA) systems currently monitor and collect
a huge among of data from all kind of processes. Ideally, they must run without interruption, but in
practice, some data may be lost due to a sensor failure or a communication breakdown. When it
happens, given the nature of these failures, information is lost in bursts, that is, sets of consecutive
samples. When this occurs, it is necessary to fill out the gaps of the historical data with a reliable
data completion method. This paper presents an ad hoc method to complete the data lost by a
SCADA system in case of long bursts. The data correspond to levels of drinking water tanks of a
Water Network company which present fluctuation patterns on a daily and a weekly scale. In this
work, a new tensorization process and a novel completion algorithm mainly based on two tensor
decompositions are presented. Statistical tests are realised, which consist of applying the data
reconstruction algorithms, by deliberately removing bursts of data in verified historical databases,
to be able to evaluate the real effectiveness of the tested methods. For this application, the presented
approach outperforms the other techniques found in the literature.

Keywords: water networks; SCADA data; tensor completion; tensor decomposition

1. Introduction

Currently, the data collection has made a real breakthrough with the many varieties of sensors and
devices which have the possibility of transmitting information from anywhere. With the current
increase in data storage capacity, more data can be stored than can be processed. In practice,
when processing this amount of information, the problem of incomplete or missing data has to
be addressed. The management of data from water networks [1] or from hydrological resources [2–4]
is no exception. The problem of data loss is especially challenging when it occurs in long bursts of
consecutive values.

Aigues de Vic S. A. (AVSA) decided three years ago to renew its SCADA (Supervisory Control And
Data Acquisition) system because it was becoming obsolete. AVSA is the enterprise responsible for the
water supply of the city of Vic. The SCADA is a tool for the technicians of the Water Purification Plant
(WPP), where the Ter river water is purified, and for the operators of the Water Distribution System
(WDS). The old system is usefully to receive information from the sensors and to make decisions,
but not to remotely configure and control the devices. For example, in the case of a pumping system,
it is possible to see the pumps’ configuration. Still, if it is necessary to reduce the pumped water flow,
the operator must go where the pumps are located and do it manually.

Water 2020, 12, 80; doi:10.3390/w12010080 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-6582-4551
https://orcid.org/0000-0002-5091-2222
http://dx.doi.org/10.3390/w12010080
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/1/80?type=check_update&version=2


Water 2020, 12, 80 2 of 19

In the SCADA renewal process, great importance was given to preserving the data collected by
the equipment to be replaced. To avoid the loss of information accumulated by the old SCADA system
during the last four years, the data have to be imported from the old database to the new one. So,
during this procedure, the historical data series were verified with the aim to not import unusable data,
and some problems related to missing data were detected. This case of study comes from the data
collected by the level sensor of the deposit located in the main water reservoir of the city of Vic. It is
crucial to preserve these data since they can be used to find consumption patterns in the city of Vic and
then to build models that allow detecting anomalies in the operation of the water distribution network.
As drinking water is a scarce resource in many regions of the planet, the efficient management of water
becomes strategic. So, it is necessary to know the behaviour of distribution networks to improve their
operation and to build reliable models that support predictive maintenance and early fault detection
functionalities. This is why modern distribution networks monitor the status of hundreds of variables
through SCADA equipment. Technological improvements such as those we are proposing will be
implemented progressively and we hope that improvements in management will also be incremental.
At this point, and before exploiting this huge amount of data, its quality should be guaranteed. In this
sense, one of the problems encountered is the occasional loss of data due to sensors failures, sensor
re-calibrations or communication failures that take time to be repaired and therefore causes the loss of
entire bursts of data. Ensuring data integrity and being able to fill as credibly as possible data gaps is a
critical step to the later exploitation of these data and it is the first step in the processing chain so that
the errors made in this stage could be easily propagated towards the following ones. The aim of this
paper is to present an effective method of data completion.

Different estimators based on interpolation or in linear prediction techniques were used to restore
lost samples [5–7] with acceptable results, but in the case of large amounts of consecutive lost samples,
the performance of these estimators falls dramatically. However, this type of data loss is frequent as it
is caused by a communication failure between the Programmable Logic Controller (PLC) where the
sensor is connected, and the central SCADA server where the data is stored. The reason seems to be
that classical data estimation methods hardly exploit patterns that occur on a combination of time
scales, such as daily and weekly scales, as occurs in our case of study. In contrast, methods based on
tensor decomposition are capable of revealing these patterns when the data are properly ordered in a
multidimensional way [8–13].

In a previous study [14], an ad hoc method that combines a tensor decomposition and linear
prediction techniques was implemented. The method was specially adapted to work with the water
deposit level signals and to deal with long bursts of lost samples. That approach was compared with
other reconstruction methods based on tensor techniques found in the literature, providing better
results for these specific conditions. The work in [14] also presented a continuity correction method that
guaranteed the continuity of the signal of the data recovered. The method presented in this paper is
reminiscent of [14] in some aspects, but gives some novelties that significantly impact the performance,
improving it very considerably.

This method starts by filling the lost burst values to avoid missing elements before to tensorizing
the data. The main significant differences and contributions are introduced: (1), to fill empty values
the most straightforward interpolation is chosen, which we called ramp method, discarding other
computational more intense strategies as [5–7] or as the one used in [14], (2), a new way to organize
the tensor, called burst centered tensorization, is introduced, and (3), there is applied a two-step
reconstruction process by concatenating two tensor decompositions of different tensor cores. Each time
the data is reconstructed, the continuity correction method is carried out. The first tensor decomposition
has a very small-dimension core and obtains a rough approximation which is refined thought a second
reconstruction done by applying a tensor decomposition with a bigger core. Note that, although
several tensor decompositions exist, the two most extended and well-known are the Tucker [15–17]
and the CANDECOMP/PARAFAC (CP) [18,19] which are the two decompositions considered in this
work as well as in [14]. At this point, we could combine different types of tensor decompositions,
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the results obtained employing CP and Tucker are very close so, in order to maintain the text simplicity,
this study only considers these two. References [11–13,20] can provide the reader a quality introduction
to the tensor algebra.

For the type of signals treated, when data losses are distributed uniformly or even in short bursts
of less than 30–40 samples, all methods work more or less likewise. Above that length, tensor-based
methods, like the one we propose in this work, show better performance. In practice, it is observed
that the length of the bursts of data lost on a SCADA system communication cutting off can be much
longer of 40 samples. The present work obeys the need to improve the performance of the data
completion methods currently used. The main contribution of this research is to improve the data
reconstruction methodology developed in [14], whose results are taken as a reference since they were
better in comparison with the proven tensor methods that already exist in the literature.

We have focused on a type of signal obtained from a drinking water distribution network because
we have a large amount of data to quantify the quality of the solution provided and compare it with
other reference algorithms. Besides, the proposed algorithm can be used to complete data of other
types, but above all, to those data that are directly or indirectly related with the human activity and its
hourly, daily and weekly patterns. In addition, the sensor techniques allow to reveal and express in a
very compact way complicated relationships between modes of different dimensions, so that we think
that they can be also very useful for the development of models for early detection of failures in water
transport systems.

Henceforth, the work is organized as follows. In the Related previous work section we briefly
expose the algorithm developed in [14] on the objective that the reader can appreciate the differences
with the presented method. In the Materials and methods section the details for reproducing results
are explained. Aspects related to the database and its pre-processing are treated briefly because
they are the same as those carried out in [14]. The same is applied for tensor concepts or for the
explanation about the algorithm evaluation and their performance quantification. In order that
the article can be read in a simple way, in this section all the steps to complete the algorithm are
explained, whether they are contributions of this work, such as the burst centered tensorization, the signal
smoothing and the double tensor decomposition approach, whether they are contributions of [14] such as
the continuity correction. In the Results section, since the proposed method uses a combination of two
tensor decompositions, a study of the combination of decomposition sizes that provide better results
for both CP and Tucker models is performed. Then the algorithm is tested by parts applying each of
the proposed improvements, one by one, and then all together, in order to quantify their impact in the
whole algorithm. Finally, the most remarkable aspects will be summarized in the Conclusions section.

2. Related Previous Work

This section presents a summary of some previous work closely related to this approach. That
includes the explanation of a data-completion method that was designed to recover bursts of lost data.

Data-Completion Method Based on a Tensor Decomposition to Recover Bursts of Lost Data

The tensor method proposed in [14] to restore burst of lost data can be divided in four main
operations as it is shown in the diagram of the Figure 1. The first one consist on filling the lost data
because the next operations cannot work with empty data. To fill in the empty data is necessary to
use a value imputation method that can be more or less complicated. In [14] different options were
tested. The best performance was found with a linear predictor filter technique whose coefficients
were calculated according to Wiener’s theory of optimal filtering. This involved calculating several
autocorrelation coefficients and determining the size of a pair of FIR (Finite Impulse Response) filters.
A straightforward interpolation method had also been evaluated, which produced lower but acceptable
results which, in contrast, was computationally much easier. In [14] this imputation method is called
the ramp method, and as it is also used in the presented approach, it is described in the Section 3.3.2.
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The second operation is the tensorization of the data, which is the process of packaging
lower-dimensional data into a container, the tensor, with more dimensions than the original one.
This allows to find the relations between dimensions, which are difficult to perceive in more simple
structures. Because of a visual inspection of the data seems to reveal patterns on a daily and weekly
scale, in order to take advantage of these regularities, a 3-dimensional tensor was composed. The
proposal was to build a three-dimensional tensor χ ∈ RI1×I2×I3 in which, the first index indicates the
5-min day-intervals fixed by the sample frequency of the SCADA system, the second index indicates
the day of the week and, the third index depends on the number of weeks nw included in the tensor.
According to this, χ ∈ R288×7×nw . The proposed organization uses past and future data with respect to
the burst location in order to contribute with past and future information. The week where the burst is
located is placed in the central week index, and some weeks before and some weeks after are taken,
depending on the tensor size nw. Note that to always have a central week in the tensor nw must be
an odd value (3, 5, 7, ...). We refer to this tensorization as week-centered tensorization. As we can see, it
collects data corresponding to a whole number of weeks. The third operation consists of constructing
a simplified version of the tensor, named χ288×7×nw

(1) in Figure 1 by using a tensor decomposition. In
Figure 1a it was represented the Tucker decomposition in Figure 1b the CP. This operation reduces the
irregularities introduced by the linear estimator used in the first operation. The last operation is the
continuity correction, Section 3.3.4, used to guarantee the continuity of the signal in the extremes of
the restored burst. In Section 3.3.2 there is explained the ramp method. An overview of the main tensor
decompositions are presented in Sections 3.2 and 3.3.4 for the continuity correction process.

Figure 1. Graphic representation of the tensor method operations with the optimised configuration
for our database in order to recover a burst of 200 lost samples when employing a tensor size of
288× 7× 7. (a) The Tucker model. (b) The CANonical DECOMPosition/PARAllel FACtorization
(CANDECOMP/PARAFAC or CP) model.

3. Materials and Methods

3.1. Used Database

The historical data used to perform the simulations are provided by Aigues de Vic S.A. (AVSA).
Their Supervisory Control And Data Acquisition (SCADA) system collect approximately 1300 different
signals. Specifically, the data used on the simulations is provided by a water level sensor located in the
deposit of Castell d’en Planes, which is the water reserve of the city of Vic. Data from this sensor were
collected from 1 October 2015 onwards. The data used for the simulations were verified, discarding
the weeks in which there is an excess of lost data because, in these weeks, the results of the algorithms
cannot be quantified by comparing them with the actual data.

3.2. Tucker and CP Tensor Decompositions

A tensor is a container that can arrange data in N-ways or dimensions. An N-way tensor of real
elements is denoted as χ ∈ RI1×I2×···×IN and its elements as: xi1,i2,...,iN . According this, an N × 1 vector
x is considered a tensor of order one, and an N ×M matrix X (or XN×M), a tensor of order two.



Water 2020, 12, 80 5 of 19

The procedure of reshaping a lower-dimensional original data organized in a vector or in a matrix
into a tensor is referred to as tensorization. The procedure of reshaping the elements of a tensor into
matrices or vectors is named matrization and vectorization, respectively.

Tensor decompositions are a very useful tool for revealing patterns between the dimensions in
which the data are organized. In particular, low order tensor decompositions provide a simplified
version of the data while making the relation between dimensions explicit.

In the case of the 3-dimensional tensor χI×J×K the approximations are given in the form of
a smaller tensor core GL×M×N , (where usually I > L, J > M, and K > N) and the L, J and K
eigenvectors of modes -1, -2, and -3. The eigenvectors of each mode are organized as column vectors
in their respective matrices AI×L, BJ×M, and CK×N . The size (L, M, N) of the core determines the level
of the decomposition.

Many known tensor decompositions exist but overall of them the most widely used are the
Tucker [15] and the CP [18] ones. These two are briefly presented below for the three-dimensional case.

In the 3-way Tucker model, the core is defined by parameters L, M, N, relative to the size of
the core GL×M×N of the decomposition and, the decomposition, is expressed as Tucker(L, M, N)
according to:

χI×J×K ≈ GL×M×N ×1 AI×L ×2 BJ×M ×3 CK×N , (1)

where the symbol ×i is the i-way product of a tensor by a matrix; such a tensor operation defined,
for instance, in [21]. The matrices of Equation (1) in terms of the column eigenvectors are: AI×L =

[a1 · · · aL], BJ×M = [b1 · · · bM] and CK×N = [c1 · · · cN ].
The 3-way CANDECOMP/PARAFAC (from CANonical DECOMPosition/PARAllel

FACtorization) model is commonly known as CP and can be seen as particular case of the
Tucker decomposition when the core GL×M×N is diagonal GD×D×D (L = M = N = D). Taking this
observation into account the CP decomposition can be written in the same terms as in the case of
Tucker decomposition, as follows:

χI×J×K ≈ GD×D×D ×1 AI×D ×2 BJ×D ×3 CK×D (2)

In the case of decomposition CP, all dimensions have the same number D of eigenvectors and it
depends on the only parameter D, so that it is referenced as CD(D). It is frequent to see the CD(D)
decomposition written in function of the elements λi of the GD×D×D diagonal such as:

χI×J×K ≈
D

∑
i=1

λiai ◦ bi ◦ ci, (3)

where the symbol ◦ stands for the outer product and the column vectors ai, bi and ci which are
related with the matrices of Equation (2) according to: AI×D = [a1 · · · aD], BJ×D = [b1 · · · bD] and
CK×D = [c1 · · · cD].

The algebra of tensors is explained in detail and often with the support of graphical illustrations
in [10–12,20]. Figure 2 shows a unified representation of both 3D tensor decompositions.

Figure 2. Diagram of the tensor decompositions used. (a) Tucker (b) CANDECOMP/PARAFAC (CP).
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3.3. Double Decomposition Approach

In this section the proposed data completion method that achieves better results on the data
reconstruction that the previous one developed in [14]. Figure 3 is used to clarify the explanation by
showing the different parts as blocks. As was already mentioned, only the two more widely known
tensor decomposition models have been considered, these being the Tucker and the CP. Thus the
configuration of both decomposition algorithms have been analyzed with the aim of taking the biggest
advantage possible from each one.

The first step consists of applying the Smoothing process described in the Section 3.3.1, which
contributes to make the tensor decomposition a bit more effective. The tensor decomposition produces
a continuous response. The sensor, however, measures the level as a percentage with resolution of 1%,
providing a discrete signal of the deposit capacity. When the signal levels oscillate around the point of
quantification, oscillations occur between adjacent discrete values. The Smoothing process is applied on
the received data and corrects this effect.

The second step consists of applying an imputation method to fill the missing data. The ramp
method is the selected one, which draws a line to join the known extreme values that delimit the burst
as explained in Section 3.3.2. It is a very rough approximation, but does not need any configuration,
which brings simplicity to the algorithm.

Once the data have no empty values, and the positions of lost burst values have been saved, the
burst centered tensorization explained in Section 3.3.3 is applied. That is a new tensorization that places
the original burst positions just in the central positions of the tensor. Note that this new tensorization
does not modify the dimensions of the resulting tensor that remain 288× 7× nw because they have
relation with the hourly, daily and weekly patterns. Figure 3 considers the best algorithm configuration
for nw = 7 when the tensor decompositions are (a) Tucker and (b) CP. Once the data in x has no empty
values, and the positions of lost burst values have been saved, the burst centered tensorization explained
in Section 3.3.3 is applied. The tensor obtained is χ288×7×nw . To remember, its first dimension indexes
the SCADA measurements taken in 24 h every 5-min, its second dimension indexes the 7 days to
complete a week, and its third dimension indexes the number nw of weeks considered (which is an
odd number: 3 or 7 in the tests realized). Figure 3 shows the best algorithm configuration for the
particular case of nw = 7 when the tensor decomposition considered are: (a) Tucker and (b) CP. In both
cases, after been applied the first three blocks corresponding to the operations: smoothing, ramp method
and burst centered tensorization, we have the tensor χ288×7×nw .

The next step takes χ288×7×nw as input and gives the reconstruction χ288×7×nw
(1) as output. That

reconstruction is performed following the decomposition of Tucker(4,6,1) in (a) and CP(1) in (b).
At that point, the samples of χ288×7×nw

(1) occupying the positions of the lost data burst are extracted,
and a continuity correction performed with the original data is applied according to the details of
Section 3.3.4. Then we put the corrected data in original tensor χ288×7×nw in substitution of the values
provided by the ramp method. The resulting tensor after this step is χ,288×7×nw

(1) .

Following the processing chain, the tensor χ,288×7×nw
(1) is taken and modeled using a decomposition

of Tucker(4,7,7) in (a) and, CP(15) in (b), to obtain χ288×7×nw
(2) . Again, the set of samples of χ288×7×nw

(2)
located in the positions of the lost burst are taken to apply the continuity correction with the original
data. The data obtained is used to complete the burst of missing data.

The Tucker(4,6,1) and Tucker(4,7,7) decomposition shown in Figure 3a correspond to the values
that optimize in our database the recovery of a burst of 200 lost samples when employing the
tensorization of size 288× 7× 7 and the Tucker decomposition is used. The decomposition CP(1)
and CP(15) shown in Figure 3b optimize the recovery of a burst of 200 lost samples using the same
tensorization of size 288× 7× 7 and the CP decomposition. The results are a statistical measure obtained
after running 1000 simulations.
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Figure 3. Graphic representation of the operations that compound the double tensor decomposition
algorithm with the size of the decompositions optimised to recover bursts of 200 lost samples when
employing a tensor size of 288× 7× 7. (a) when using the Tucker model. (b) when using the CP model.

3.3.1. Signal Smoothing

The ad hoc smoothing algorithm adopted is developed considering the sensor way of working.
The samples are processed in groups with the same integer value, and taking into account whether
the signal is increasing, decreasing or is in a relative minimum or maximum. The blocks of samples
of identical integer value A are processed keeping in mind the values of the contiguous blocks. The
procedure is effortless. There are more elaborate filtering methods but those introduce delays in the
signal, and thus of that this straightforward solution has been chosen instead. If the block corresponds
to a signal increment, a line with a positive slope is built with extreme values A − 0.5 and A + 0.5.
If the block corresponds to a signal decrement, a line with a negative slope is built similarly. If it is
detected that it is a local maximum or minimum, the block is replaced by a triangular shape with the
corresponding orientation. Figure 4 shows the smoothing performed through an example.

Figure 4. Smoothing process applied to the level sensor signal before the data tensorization.
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3.3.2. The Ramp Method

The ramp method consists of filling the lost data by drawing a line between the last known sample
before the lost burst starting, xn, and the first known sample after the lost burst ending, xn+B+1, where
B is the length of the data burst lost in number of samples. So that, considering a lost burst of B
samples and the index i going from 1 to B, to use a constant increment (or decrement), m, and fill the
entire lost burst, xn+i must be:

xn+i = xn + m · i for m =
xn − xn+B+1

B + 1
. (4)

Figure 5 shows the performance of the ramp method.

Figure 5. The ramp method. The red line shows the burst of the simulated lost data. The blue line
corresponds to the data reconstruction of the linear method called the ramp method. The soft blue line
shows the linear method result and the strong blue line shows the final signal reconstruction, which is
adapted to the sensor resolution of 1%.

3.3.3. Burst Centered Tensorization

In the data completion methods that use tensor techniques, as far as we know, the way to organize
the data into a tensor does not take into account the position of the lost data. In this work, a burst
centered tensorization method is proposed, where the data selected to fill the tensor depends on the burst
location. Figure 6 shows this process. In Figure 6a, the dark blue window shows the selection of
data as was proposed in [14], in a typical way and with the data presented in a uni-dimensional view.
Through the dark blue window it can be seen how the burst is not exactly located in the center of the
selected data, which would mean being in the center of the dark blue window, even if the week where
the burst is located is selected as the central week. This happens because the burst is hardly located in
the middle of a week, which only happens if the burst is located exactly in the center of Thursday. The
burst centered tensorization forces the burst to be located in the center of the data selected. The cyan
window in Figure 6a shows this new data selection, where the burst is placed exactly on the center
of the window. Figure 6b–d show the tensorized data by the typical way. The Figure 6e–g show the
tensorized data from the burst centered tensorization method, which placed the burst in the core of the
tensor (in the center of the central day of the week, which is located in the middle of the tensor). As
explained in [14], lost data bursts never exceed the day, meaning that their length, B, is always less
than 288 samples and that the burst can be located in the center of a day. Thus, given a B burst in a
tensor χI×J×K, the burst samples are placed at J = 4, K = 0.5(W + 1) with initial position Ii = 0.5(288
− B) according to and indexation χIi :Ii+B−1×4×0.5(W+1). Note that the daily cycles of the burst centered
tensorization rarely start at 00:00 and the weeks do not start on Mondays, as occurred in [14], however
there are always the same number of samples before and after the lost burst, which hardly happens
with the previous tensorization method.
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Figure 6. Example of the data tensorization of a 3 week tensor with 200 samples of data burst lost. In
figure (a) the green line shows the original data and the red line shows the lost burst. The strong
blue window shows the data introduced in the non burst-centered tensor and the soft blue one shows
the data introduced in burst-centered tensor, which forces the burst to be on the center of the window.
Figures (b–d) show the three weeks of the non burst-centered tensor and the location of the burst, which
is located on the central week but not on the center of this week. The figures (e–g) show the 3 weeks
of the burst-centered tensor and the new location of the burst in the core of the tensor, which is in the
middle of the central week.

3.3.4. The Continuity Correction

This procedure was developed in order to maintain the continuity of the estimate provided by
a tensor decomposition in its vector form x̂ and the known values of x at the edges of the burst.
As consistently observed previously, the samples in the burst positions after a low-rank tensor
reconstruction follow the original signal pretty well but with significant discontinuities in the extremes.
Considering x0 to be the last original known sample before the burst and x̂0 the sample from the tensor
reconstruction in that position, we define the initial burst offset as O0 = x0 − x̂0. Similarly, for a lost
burst of length B, the final burst offset can be defined as: OB+1 = xB+1 − x̂B+1. The corrected offset
estimates x̃i are computed as follows:

x̃i = x̂i +
(B− i)O0 + (i− 1)OB+1

B− 1
i = 1, · · · , B. (5)

Figure 7 shows graphically the continuity correction applied.

3.4. Algorithm Performance Evaluation

To test all the methods on the same conditions, firstly one thousand different starting positions
are randomly selected from the 77 weeks of historical data previously verified. These set of starting
positions determine the groups of consecutive samples which are deleted to simulate the burst of
missing data. The strategy, the data set, the block of 77 consecutive weeks, and the burst lengths
B were the same as used in [14] in order to compare the evolution of the algorithm performances.
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When an algorithm replenishes the missing burst, the Mean Square Error (MSE) per sample with the
original data is computed. The same algorithm processes those one thousand different randomly
selected cases and the MSE per sample is taken as the parameter to evaluate its performance. Before
calculating the MSE, the reconstructed signal is adapted to the sensor resolution of 1% by rounding
the values with decimals to the nearest integer the values with decimals. Then, considering x̂i to be the
samples provided by a completion algorithm and xi to be the true values that had been eliminated in
the verified data set to simulate a lost burst of length B, the MSE per sample is computed as:

MSE =
1
B

B

∑
i=1

√
(xi − x̂i)2 (6)

Figure 7. Un example of the continuity correction method. The green line is the original data, xi. The
red line shows the 200 samples burst of simulated lost data. The Tucker decomposition (1,1,1) is used.
The orange line is the result of the tensor process with this configuration, x̂i. The blue arrows indicate
the initial and the final offsets, O0 and OB+1. The soft blue line shows the effect of the continuity
correction, x̃i and the strong blue line indicates the final signal reconstruction, which is adapted to the
sensor resolution of 1%.

4. Results

In the first part of this section, the study conducted to find the orders of the two decompositions
that optimise the MSE per sample is shown. This exploration is performed by completing bursts of
known length that have been randomly deleted from the reference database. A test of 1000 simulations
is done with 100, and 200 lost samples and using a three and a seven weeks tensors. The results are
given in terms of the MSE per sample, according to the exposed methodology.

4.1. Optimal Tensor Decompositions

The same procedure is followed for both CP and Tucker decomposition. The dimensions of the
first core (corresponding to the first decomposition) are optimized by executing the first five steps of
the algorithm with different sizes of cores and selecting the size that provides the best results in terms
of MSE per sample. The complete algorithm is then executed by fixing the first decomposition (with
the dimensions found in the first phase of the experiment) and testing different sizes of cores for the
second decomposition, thus selecting the one that provides the best results.

4.1.1. CP Case

Since the CP decomposition only depends on one parameter the optimization is simpler than for
the case of the Tucker decomposition that depends on three parameters. Still, due to the computational
cost of the statistical experiments, the process of searching for the best combination of decomposition
size has been approximated in two steps.
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The Figure 8 shows the results for the optimal CP decompositions configuration when the length
of the bursts are 100 and 200 and for tensorizations of 3 and 7 weeks of data. Four cases result from the
combination of burst lengths (B) and tensor sizes (wn).

Figure 8. Test of double decomposition configuration for the CP model. Each pair of graphics show the
result for different conditions of burst length and size of the tensor. (a,c,e,g) show the MSE obtained
applying only the first decomposition procedure until the bloc number five of the whole algorithm, for
different core configurations. (b,d,f,h) show the MSE of the double decomposition method, the complete
algorithm, for different core configurations on the second decomposition, and using the best core
configuration obtained for the first decomposition which is CP(1).

To correctly interpret the figure we must bear in mind that the subplots aligned in the left column
of Figure 8b show the result of processing only the firsts five blocs of the algorithm described in
Figure 3 after computing the MSE of the burst estimated and the parameter D, of CP(D), is swept
in a range of values going from 1 to 15. So that, the values obtained in the positions of the burst
to be estimated -in this algorithm step- are compared with those of the original burst (which has
been eliminated for the experiment) by computing the MSE per sample. The subplots aligned in
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the right column of Figure 8 are obtained by applying all the steps of the algorithm described in
Figure 3b when the first decomposition is CP(1) and a swept of D going from 1 to 15 is explored for
the second decomposition. In all the subplots the minimum MSE obtained is highlighted in red and
the configurations that generate values very close to the minimum are highlighted in green.

As important aspects to emphasize, notice that in all the tested conditions of B and wn, the best
decomposition core for the first decomposition is the lowest one, CP(1). Notice also that, in all cases,
the second decomposition improves the performance of the algorithms and further reduces the MSE
error per sample. If we look at the second decomposition dimensions we see that the performance
of the algorithm usually improves when D is higher although the MSE tend to stabilize. In this case,
there is no better value for all B and wn combinations but choosing a high value, for example, D =
15, we will always get results very close to the optimum. Therefore, for the CP method, the choice
of the first decomposition core is very robust, and it has to be the lowest one. Then, for the second
stage a higher decomposition core has to be selected, taking into account that there is a wide margin of
acceptable configurations (values highlighted in green) because when the minimum is reached, the
choice of an even higher decomposition core gives a very similar MSE.

4.1.2. Tucker Case

Determining the size of the two decompositions that minimize the MSE per sample, when using
Tucker decomposition, is computationally expensive and difficult to visualize. This is because there are
more parameters than in the CP model to configure the decomposition core. The number of parameters
depends on the tensor structure, and in the 3-dimensions tensorization of our problem, implies having
three parameters.

In this case, we proceed in a similar way to the previous case; first, we adjust the first
decomposition. We evaluate the MSE obtained in the first five steps (blocks) of the algorithm in
Figure 3a for a given range of i, j, k corresponding to the decomposition TK(i,j,k). We will obtain a
three-dimensional tensor with the MSE values. The i, j, k values that produce the lowest MSE determine
the dimension of the first decomposition. Once determined the order of the first decomposition, we
recalculate the MSE, now with the complete algorithm, sweeping the same range of values i, j, k for
the second decomposition. We will obtain another three-dimensional tensor with the MSE values and
we select the i, j, k that produce the minimum MSE.

The experiments carried out include the cases of the burst length 100 and 200 and the tensorizations
χ288×7×3 and χ288×7×7, like in the CP case. Figures 9 and 10 show the results for the bursts of 100 and
200 missing samples respectively. Each of these figures shows a graphical representation of the MSE
values (which are ordered in a 3-way tensor) for the first and the second Tucker decompositions. For
each figure, the first column of graphs represents the results corresponding to the first decomposition.
The graphs of the second column show the MSE corresponding to the second decomposition after
selecting the combination that gives the lowest value for the first one. In all cases, the red dot represents
the configuration with the lowest MSE value and the green points are those configurations with values
very close to the minimum. It is noted that the red dots are within the clusters of green points which
represent quasi-optimal solutions. This means that there is a whole set of different solutions that
behave in a very similar way to the optimal set.

In general, the best option is to select the minimum possible value on the parameter related to
the number of weeks for the first decomposition and the maximum for the second one. The other two
parameters seem to have more variability, but in general, the parameter relative to the weekday must
be high, near the maximum, and the parameter relative to the day hour must be a little lower than it.
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Figure 9. Test of the double decomposition configuration with the Tucker(TK) model and a burst of 100
samples. (a,c) show the MSE of the first decomposition procedure for different core configurations.
(b,d) show the MSE of the second decomposition for different core configurations and using the best
core configuration obtained on (a) or (c) in the first decomposition, respectively.
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Figure 10. Test of the double decomposition configuration with the Tucker model and a burst of 200
samples. (a,c) show the MSE of the first decomposition procedure for different core configurations.
(b,d) show the MSE of the second decomposition for different core configurations and using the best
core configuration obtained on (a) or (c) in the first decomposition, respectively.
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4.2. Quantification of the Different Innovations in the Performance of the Double Decomposition Algorithm

The data completion algorithms proposed in this article have been represented in Figure 3 through
a set of blocks. Each of these blocks provides an improvement in the final performance of the algorithm.
In this section we compare the effect that a given block has on the final performance and, above all,
with the result obtained in [14] that already improved the methods found in the literature when those
methods were applied in the problem of recovering data lost in bursts for the context of the problem
we are dealing with.

So that, to quantify the effect of the different blocks, the MSE provided by the best configuration
of the algorithm proposed in [14], which could be compared with a single tensor decomposition block
of our algorithm, is taken as a reference. Therefore, on the base algorithm, different blocks (different
improvements) are incorporated, first separately and then combined. The same 1000 simulations are
done to see the effect of each block combination. The results are shown in in Figure 11. The best results
seem to be achieved with the rearrangement of the tensor using the burst centered tensorization, which
is the best improvement if it is applied alone. Applying only the smoothing process provides a little
improvement on any case, not very high but constant for all the tensor and burst sizes checked.

Figure 11. MSE of the proposed improvements. All of them are tested with 100 and 200 samples of data
burst lost and with 3 and 7 weeks of tensorized data. The orange line indicates the best result obtained
in [14]. The Smooth is the result of applying only the smooth process to the signal before tensorizing it.
The burst centered tensorization is the result of the rearrangement of the tensor according to the burst
location. The Double decom is the result of applying the decomposition two times, with G4×6×1 and
G4×7×7 for Tucker, and G1×1×1 and G15×15×15 for CP. The DS-Bc is the result of combining the data
smoothing and the burst centered tensorization without using the double decomposition. The All with CP
and the All with TK are the results of applying all the proposed algorithm with the CP and the Tucker
models respectively.

A curious result of the double decomposition is that it seems to have, proportionally, a more positive
effect when it is used in combination with the other options. This can be seen by comparing the MSE
reduction obtained by applying only the double decomposition compared to using a combination of
smoothing and burst centered tensorization or using all the improvements, especially with the Tucker
model results. With any size of tensor and burst, the effect of each option is complementary to the
others, which means that applying all of the improvements together provides a considerable positive
impact in comparison to not using any of them in all the cases. Note that using different tensor sizes or
to restoring bursts of different lengths results in a different optimal configuration of the decomposition
core, although with similar characteristics (See Figures 9 and 10).
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The study carried out on the optimization of the size of decompositions allows us to find the
configuration that produces the minimum MSE value that our algorithm will make on our database for
a certain combination of B and wn values. The results remain very similar when parameters that have
been optimal in one configuration of B and wn are used in another. Table 1 also shows the consistency
of algorithm results with changes in the size of the decomposition, even when combining the CP and
Tucker models as well. We verify that the MSE obtained are very close to the expected optimal ones.

We emphasise that when the algorithm uses Tucker models, better results are obtained than with
CD models. However, the measurable advantage in terms of MSE is minimal so that the use of CD is
still reasonable because it is easier to interpret and robust to configure.

In this table, one can get an idea of the differences that the proposed algorithm obtain in terms of
MSE when the sizes and types of tensor decompositions are combined and/or different tensorizations
sizes are used. Above all, it is interesting to compare the difference achieved with respect to the best
values obtained in [14], which in all cases are very significant.

Table 1. MSE of the different tested methods. The results of 100 and 200 lost samples, B, are shown
working with a 3 and 7 weeks of tensor size, nw. “The best configurations in [14]” show the minimum
MSE obtained for the algorithm presented in [14], with the CP and the Tucker models. “The best
configurations for the proposed algorithm” show the minimum MSE obtained for different pairs of
decompositions. In these cases, only the core of the first decomposition is fixed, and it is shown the
minimum MSE obtained with the best core for the second decomposition.

MSE per Sample B = 100 B = 100 B = 200 B = 200
nw = 3 nw = 7 nw = 3 nw = 7

The best configurations in [14]
optimal CP 0.87 0.80 1.70 1.58
optimal TK 0.77 0.71 1.43 1.28

The best configurations for the proposed algorithm
1st decom: CP(1), 2nd decom: optimal CP 0.55 0.54 1.05 1.03

1st decom: TK(6,3,1), 2nd decom: optimal CP 0.57 0.52 1.14 1.02
1st decom: TK(8,5,1), 2nd decom: optimal CP 0.57 0.53 1.14 1.03
1st decom: TK(1,5,1), 2nd decom: optimal CP 0.55 0.53 1.06 1.02
1st decom: TK(4,6,1), 2nd decom: optimal CP 0.56 0.53 1.06 1.02

1st decom: CP(1), 2nd decom: optimal TK 0.54 0.52 1.04 1.00
1st decom: TK(6,3,1), 2nd decom: optimal TK 0.55 0.51 1.11 0.98
1st decom: TK(8,5,1), 2nd decom: optimal TK 0.54 0.50 1.11 0.97
1st decom: TK(1,5,1), 2nd decom: optimal TK 0.53 0.52 1.04 1.00
1st decom: TK(4,6,1), 2nd decom: optimal TK 0.55 0.50 1.11 0.97

5. Conclusions

Completing data lost in bursts remains a difficult challenge and is where most data completion
methods fail. However, data being lost in bursts is quite common. It is often associated with the
failure of a component involved in capturing or transmitting the data. In the contribution of [14] it
is presented an ad hoc data completion method to recover data lost in bursts that outperforms the
methods available in the literature for the proposed application. This work significantly improves the
method in [14], which is taken as a reference for the new algorithm evaluation and for comparison
purposes. The incorporated novelties are a smoothing process, a new tensorization we have called burst
centered tensorization, and the application of two tensor decomposition, one after the other using two
different cores.

It is difficult to evaluate a data completion method in a practical framework. To do this in this
article an experiment was carried out using only verified sets of samples from the historical data of the
level sensor, avoiding to use on the experiments the weeks where there were real lost samples. The set
of verified data is used, randomly erasing a burst of data and later applying the data reconstruction
(completion) method. The error of the reconstruction method can be calculated because the original
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data is known. To compare statistically the tested methods the same 1000 simulated lost bursts are
restored with each of them. Then the MSE per sample, which is the mean of the error generated with
this 1000 simulations, is calculated for each method. By this way the results of the tested methods can
be compared in the same conditions.

It is important to emphasize that comparing the MSEs obtained in the same database and the
same distribution and lengths of lost frames, the proposed method reduces the MSE between 24%
and 40%, the best results obtained in [14]. Note in Figure 11 that the MSE corresponding to a burst
of 100 samples falls from 0.71, the best result obtained in [14], to 0.50, the best result obtained with
the new methodology. That means a reduction of the MSE approximately of the 39.5%. And in the
case of the burst of 200 samples the MSE falls from 1.28 to 0.97 which is approximately a 24.2% of
reduction. Note that the best results in [14] were obtained using an imputation method based on two
linear predictors that are difficult to adjust since they require to estimate the length of two FIR filters
and, besides, it must be continuously adapted. Introducing a double tensor decomposition in the
proposed method gives stability and robustness. From the studies carried out, we see that the first
tensor decomposition must have a small core that keeps only the most relevant interactions between
modes, while the second decomposition must have a larger core to capture the interactions between
modes in greater detail. A signal reconstruction example of this procedure is shown in Figure 12 using
G4×6×1 and G4×7×7, the best core configurations for the double decomposition according to the tests
for the Tucker model in the case of a 200 samples of burst length.

Figure 12. Example of the reconstruction methodology with double decomposition. The green line
shows the original data and the red line the burst of lost samples. The orange line is the linear estimation
with the ramp method. The purple line is the result of the first tensorization procedure with Tucker using
G4×6×1. The blue line shows the result of the second tensorization procedure with G4×7×7.

The rest of the results are quite expected. If we use more data for the restoration, i.e., when we use
seven-week rather than three-week tensors, we obtain lower MSE in the tests, although the percentage
reductions are small and tend to stabilise with the increment of new data. It is also expected that when
lost bursts are long, 200 samples in our experiments, the tests will provide higher MSE than when
shorter bursts of 100 samples. The experiments also indicate that it makes more sense to use 7-week
rather than 3-week tensorizations when the lost bursts are long (200 samples) since the differential
obtained in terms of MSE is more significant than in the case of shorter bursts (100 samples), which
could seem very small.

As also pointed in the introduction, the presented algorithm can be exportable to complete data
of other types of problems, especially to those that the data capture patterns related to human activity
because in these cases, there are interactions at different time levels, be it timetable, daily, weekly,
seasonal, etc. The gas or electricity networks also fall into this category. However, it must keep in
mind that when the algorithm will be used in another context it will probably be necessary to calculate
the optimal dimensions of the decompositions. Finally, before developing models to monitor plants,
enabling predictive maintenance or discovering failures at a very early stage, it is necessary to have
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reliable data. Tensor algebra is a helpful tool in completing data and for sure it will also be very useful
in the development of predictive maintenance models.
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