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Abstract: This study focuses on the use of crayfish as bioindicators in the water treatment process
during operating conditions. The crayfish physiological responses to water disinfected with chlorine
dioxide (ClO2) was evaluated. Monitoring was conducted at the private commercial enterprise
Protivín Brewery in Czech Republic under standard operating conditions. This brewery has a water
treatment facility, where ClO2 is used for water purification. A total of 25 adult signal crayfish
(Pacifastacus leniusculus) were kept in separate flow-through aquaria receiving the purified water
with ClO2 concentrations ranging from 0.01 to 0.29 mg L−1. Diurnal rhythms of 32% of crayfish
was disturbed even at lower concentrations of ClO2 (0.01–0.2 mg L−1), while higher concentrations
(>0.2 mg L−1) affected all animals. A random decline and rise of heart rate was detected. In
addition, the frequent occurrence of higher levels of ClO2 significantly increased mortality. On
average, mortality of crayfish occurred three to four weeks after stocking into the experimental
system. Crayfish mortality is estimated to occur at concentrations exceeding 0.2 mg L−1 of ClO2. Our
results suggest that long-term exposure to ClO2 adversely affects crayfish physiology. In addition,
the results of this study could contribute to the use of crayfish as bioindicators in long-term water
quality monitoring under industrial conditions.

Keywords: cardiac activity; chlorine dioxide; disinfectant; mortality; noninvasive biomonitoring;
water quality

1. Introduction

Decapods, such as crayfish, are known to be sensitive to contamination in freshwater bodies.
Given their sensitivity to changes in water quality, these organisms are highly responsive to changes in
aquatic ecosystems [1–3]. Crayfish have been used as bioindicators both in the aquatic environment
and under laboratory conditions. They demonstrate an affinity for accumulating pollutants in their
tissues [1,4,5], and elicit a response to different substances [2,3,6]. Subsequently, there is a potential for
their use as bioindicators in practical monitoring under industrial conditions.

Given that crayfish are nocturnal, their heart rate and locomotor activity increase at night [7–9].
However, the crayfish heart rate can also be influenced by certain stimuli [7–9]. Several studies have
described the crayfish cardiac response to chemical stimuli, including chlorine organic compounds [3,10]
and chloride content in water [11].

While different compounds may be used for water purification, the most effective disinfectant is
chlorine dioxide [12]. It is a powerful oxidant among chlorine compounds and it is widely applied
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in surface water disinfection [13]. There are a few chemical reactions that produce chlorine dioxide
(ClO2), and one of them is the hydrochloric-acid-sodium-chlorite reaction [13]:

5NaClO2 + 4HCl = 4ClO2 + 5NaCl + 2H2O. (1)

Generally, ClO2 treatment concentrations may range from 0.07 to 2 mg L−1, which is sufficient for
water disinfection [14]. Chlorine dioxide can be effectively applied for iron and manganese oxidation
at temperatures as low as 2 ◦C and a pH of 5.5 [15]. Moreover, ClO2 is efficient at removing both
tastes and odors [12], and its threshold in this case could be as low as 0.2 mg L−1 [14]. During water
treatment ClO2 is reduced to its main decomposition product, chlorite (ClO2

−) [13,16]. Subsequently,
the levels of ClO2

− are directly dependent on the concentration of ClO2 used. Hence, it is important to
maintain ClO2 levels during water treatment, in order to prevent chlorite levels exceeding the WHO
guideline value [14].

Given that ClO2 is a widely used disinfectant, it is important to understand its effect on living
organisms. Currently, the effects of ClO2 on aquatic organisms remain poorly described and mainly
focus on teleost fish [17–19]. Further, one study describes ClO2 toxicity to zebra mussel Dreissena
polymorpha [20].

The present study investigated the efficacy of crayfish as bioindicators for monitoring ClO2 levels
during the water treatment process employed by a local brewery, focusing on the biological response
and lethal concentration of adult signal crayfish Pacifastacus leniusculus to long term ClO2 exposure.

2. Materials and Methods

2.1. Monitoring Process

Monitoring was conducted from February to August 2017 under the running conditions of
the private enterprise, Protivín Brewery, Protivín, Czech Republic. This practical investigation was
operational with crayfish since April 2016 and data tracking commenced from February 2017. The
brewery has a water-treatment facility, where ClO2 is used for water purification. ClO2 was produced
by the hydrochloric-acid-sodium-chlorite reaction. In this reaction ClO2 yields and conversion
had different values, where maximum yield is 100% and maximum conversion is 80%, which is
sufficient for water treatment [13]. Water ClO2 concentrations were measured daily. All crayfish were
exposed to ClO2 during monitoring. Due to the operating conditions of the enterprise, the use of an
uncontaminated control group was not possible. However, previous studies have clearly described the
typical dynamics of the heart rate of crayfish [8,21].

2.2. Monitoring System

This study made use of the noninvasive crayfish cardiac activity monitoring (NICCAM) system
described by Pautsina et al. [22]. This NICCAM system consists of a multichannel 14 bit analog-to-digital
converter (ADC) with USB interface, personal computer with software for data processing and infrared
(IR) optical sensors.

This system could monitor, record, and analyze crayfish cardiac activity, expressed as heart rate,
and store the text files digitally. The software graphical user interface displayed raw cardiac activity
signals of five crayfish simultaneously.

The sensors were fixed with non-toxic two-component epoxy adhesive on the dorsal side of each
crayfish carapace above the heart at the locality where the strongest heart rate was detected. Glue
hardened in approximately 15 min. The attached sensor still allowed crayfish to move freely around
the aquarium. The monitored cardiac activity signals of the crayfish were recorded and displayed
on the software’s graphical user interface in real-time. Data about cardiac activity were continuously
logged onto a personal computer and then processed using MS Excel for further analyzing based on
created diagrams. Given that a single crayfish successful molted during the monitoring period, its
pre-ecdysis period was also analyzed.
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2.3. Experimental Animals

Adult signal crayfish P. leniusculus were obtained from ponds near Velké Meziříčí (49.3788544 N,
16.0825961 E) in the Vysočina Region, Czech Republic. Non-native crayfish species were used given
the protected status of indigenous species and the regulations against their manipulation. The present
study was carried out under the practical running conditions of the brewery, which mitigated risks
associated with escape and species introduction and permitted the use of the non-native crayfish.

Before commencing the experiment, crayfish were acclimated for two weeks to the laboratory
conditions of the Faculty of Fisheries and Protection of Waters, University of South Bohemia in České
Budějovice, Vodňany, Czech Republic. Crayfish were individually kept in recirculating aquarium
systems. Feeding and water changes were provided twice per week. No mortality was observed
during the acclimation period.

Before monitoring commenced, the crayfish (with attached sensors) were acclimatized to lower
temperatures in incubators (thermostatic cabinets Liebherr FK 5440, Liebherr-Hausgeräte Ochsenhausen
GmbH, Ochsenhausen, Germany), where the temperature was decreased by 1 ◦C each following
day. When acclimated temperature reached 10 ◦C, crayfish were transported in thermo-boxes in a
small amount of water from the laboratory to the brewery by car (approximately 10 km). Before the
experiment, crayfish were visually examined for absence of diseases and their biometrical measurements
collected: Carapace length (mean ± SD): 43.8 ± 0.77 mm; total length: 90.13 ± 1.6 mm; and total weight:
33.68 ± 2.03 g. Weight and length was measured with digital calipers (Schut Geometrical Metrology,
Groningen, The Netherlands) and an electronic balance (Kern & Sohn GmbH, Balingen, Germany). Both
sexes of crayfish were used based on the previous study [23] which found no substantial differences
between their reactions to stimuli. Only crayfish with intact appendages (antennae, chelae, and
walking legs) were used in the experiment. During the experiment, crayfish were kept in separate
10 L flow-through aquariums, each receiving ClO2-treated water with temperature of 10 ± 0.5 ◦C
and pH 8.3 ± 0.5, under constant photoperiod 12:12 light-dark cycle. Each aquarium was provided
with an artificial shelter (halved ceramic flower pot). A hole made on the upper surface of the shelter
permitted recording of cardiac activity, even when crayfish (with the attached sensors) were inside
the shelter. The experimental system could hold ten crayfish simultaneously. Five crayfish received
a heart rate monitor each, while the other five crayfish were kept as reserves. In case of molting or
mortality, an individual was replaced by one of the reserves. Thus, twenty-five animals were used in
total throughout the monitoring period. Animals were fed daily with commercial food pellets (Sera
GmbH; Heinsberg, Germany), and remains and feces were removed via daily syphoning.

2.4. Statistical Analysis

The data recorded from treated crayfish was divided between three groups in accordance with the
day of exposure to maximum ClO2 concentration (Cmax; ClO2 > 0.2 mg L−1): Group one got Cmax on
day 4 ± 2; Group two on day 13 ± 1; and Group three was exposed to Cmax on day 38 ± 6 after stocking
to experimental aquarium system (Table 1). The data was grouped for subsequent analysis.

Table 1. Crayfish division based on the day of exposure to maximum concentration of ClO2 (Cmax); life
duration after Cmax treatment over the entire exposure period; and N—Number of crayfish in each
group. Data presented as means ± SD.

Crayfish
Group N Cmax of

ClO2, mg L−1
Ordinal Day, When

Cmax Occurred
Exposure Period

Before Mortality, Days
Life Duration After

Cmax Treatment, Days

1 13 0.21 ± 0.04 4 ± 2 13 ± 8 9 ± 7
2 6 0.26 ± 0.02 13 ± 1 29 ± 8 16 ± 8
3 6 0.29 ± 0.01 38 ± 6 43 ± 7 5 ± 2

Shapiro-Wilk’s test was used to assess the normality of residuals. Data were transformed when
necessary to meet the assumptions of normality and equal variance. Differences in life duration after
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ClO2 Cmax exposure between tested groups were estimated by one-way analysis of variance (ANOVA)
and subsequent post hoc Tukey’s test (Statistica 13, StatSoft, Inc., Tulsa, OK, USA). Data are presented
as means ± standard deviation (SD). The level of significance was set at p < 0.05.

3. Results

3.1. Ecdysis Period

While five unsuccessful moltings resulted in crayfish mortality, a single molting proved successful.
The highest heart rate was recorded 4 h before the molting, ranging between 39 and 60 beats per minute
(bpm), with a peak of 72 bpm (Figure 1). Heart rate declined 35 min before molting with a few “leaps”.
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Figure 1. Heart rate of crayfish P. leniusculus four and half hours before molting. The fluctuating line
shows heart rate, beats per minute (bpm).

3.2. Diurnal Rhythm

Crayfish were exposed to ClO2 concentrations ranging from 0.01 to 0.29 mg L−1. These
concentrations varied every day (Figure 2). Following monitoring, the data was divided according
to the number of high concentrations of ClO2. During the first three months (February–April), high
ClO2 (0.2–0.29 mg L−1) concentrations were recorded 4.6 times less than during the next four months
(May–August), when high concentrations occurred more often.
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) indicate crayfish mortalities; the fluctuating line indicates levels of ClO2 concentration;
the solid horizontal line indicates level of ClO2 concentration 0.2 mg L−1; the punctuated vertical line
divides exposure period in two parts: First period (89 days), when high ClO2 concentrations (up to
0.2 mg L−1) were found five times and four crayfish died; and the second period (113 days), when high
ClO2 concentrations occurred 23 times and 21 crayfish died.

The heart rate daily cycle of 32% of crayfish was already disturbed at a lower level of ClO2

concentration (less than 0.2 mg L−1). A prevalence of disrupted heart rate was observed, with chaotic
increases and decreases regardless of the time of day. There was no statistical difference between day
and night cardiac activities within the tested groups (Table 2) as well as between groups (day: F(2,22)
= 0.80780, p = 0.45863 and night: F(2,22) = 1.5974, p = 0.22503). The diurnal rhythm was disrupted,
and cardiac rhythmicity was lost. This was expressed in different heart rate fluctuations of animals
exposed to the same concentrations of ClO2 (Figure 3).
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Table 2. Average heart rate expressed as beats per minute of all monitored crayfish from the three
groups during the ClO2 exposure period. Mean ± SD.

Crayfish
Group

Day Heart
Rate, bpm Max Min Night Heart

Rate, bpm Max Min Day Versus Night
Heart Rate, p-Value

1 53 ± 14 109 25 52 ± 14 117 20 0.54
2 50 ± 13 89 20 52 ± 13 91 26 0.37
3 47 ± 14 92 20 48 ± 15 92 23 0.68
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line indicates heart rate in beats per minute (bpm), while the two vertical lines distinguish night-
and day-time.

3.3. Mortality

High ClO2 concentrations (0.2–0.29 mg L−1) disturbed the diurnal rhythm of all individuals,
inducing loss of rhythmicity and subsequent mortality (Figure 4). Mortality increased along with
more frequent occurrences of high ClO2 concentrations. During the first period (89 days), where high
ClO2 concentrations (higher than 0.2 mg L−1) were recorded five times, four crayfish died. During the
second 113-day period, where high ClO2 concentrations occurred 23 times, 21 crayfish died. Thus, in
the first period mortalities occurred 5.3 times less than in the second one. No individual survived the
experiment (Figure 4).
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Life Duration after Exposure to Cmax

Life duration after exposure to Cmax for each crayfish was determined (Table 1). There was a
significant difference (p < 0.05) in life duration between groups. Crayfish from Group two generally
lived twice as long (16 ± 8 days) as crayfish from Groups one and three (9 ± 7 and 5 ± 2 days,
respectively) after exposure to Cmax (Figure 5).
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4. Discussion

In the present study, the effect of long-term exposure of signal crayfish to different levels of ClO2

has been investigated and assessed through the observation of heart rate, diurnal rhythm and mortality.
A single recorded molting was preceded by rapid heart rate fluctuations. The increase in heart

rate was observed four hours before the molting, up to 60 bpm with the peak of 72 bpm, and the
heart rate decline was detected 35 min before molting (Figure 1). Kuramoto [24] described the cardiac
changes of untreated spiny lobster Panulirus japonicus before the molting and noted that the heart rate
rose and fell during molting of lobster similarly to that of crayfish. The heart rate of an unaffected
lobster increased 1–2 h before ecdysis to a peak of 80–120 bpm and declined about 15 min before the
beginning of molting. Thus, the changes in the heart rate of unstimulated spiny lobster and the ClO2

exposed signal crayfish were similar in the premolting period.
Unsuccessful molting was also observed to result in death. In Kuklina et al. [3], chloramine-T

exposed narrow-clawed crayfish Astacus leptodactylus, suffered from lack of energy when exposed
to physical stress. Energetic deficiency can be a potential reason for unsuccessful molting in our
study, where ClO2 exposure depleted crayfish energy stores and prohibited molting, resulting in
their mortality.

Owing to their nocturnal nature, the narrow-clawed crayfish A. leptodactylus heart rate is higher at
night than during the day, even at temperatures below 14 ◦C [8]. The present study showed an impact
of ClO2 on crayfish heart rate and nocturnal behavior. A disturbance of the circadian cardiac rhythm
was observed in all individuals, expressed as a random decline and rise of heart rate, regardless of the
time of day. The typical increased nocturnal heart rate was not noticed at the lowest ClO2 concentration
in 32% of the crayfish, while in the high concentrations it was completely disrupted for all animals. As
soon as the diurnal rhythm was disturbed, the circadian rhythmicity was lost, demonstrating impaired
cardiac function and leading to crayfish mortality (Figure 3). A similar observation was described
in Kuznetsova et al. [21] where highly concentrated hydroquinone solution (1 g L−1) disrupted A.
leptodactylus circadian rhythm before death. Styrishave et al. [7] noticed that heart rate increased during
the day and decreased at night in noble crayfish Astacus astacus when exposed to copper (8.0 mg L−1)
and mercury (0.1 mg L−1). In this case high mortality (>90%) was detected after 19 days of exposure.
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Consequently, the ClO2 used in our monitoring and heavy metals used by Styrishave et al. [7] and
hydroquinone used in Kuznetsova et al. [21] can be toxic compounds at certain concentrations, and
may negatively affect the health of aquatic organisms and even induce their mortality.

Not only are the loss of circadian rhythmicity suspected to induce crayfish mortality, but also the
changes in physiology. The gills of fathead minnows Pimephales promelas were negatively affected by
0.13 mg L−1 of ClO2 concentration [25]. Chupani et al. [26] found heavy histopathological changes in
crayfish exposed to peracetic acid (2–10 mg L−1), while similar effects often induce mortality in juvenile
grass carp Ctenopharyngodon idella [27] and channel catfish Ictalurus punctatus [28]. Subsequently, ClO2

could induce adverse cardio-respiratory responses, reduce larval rainbow trout (Oncorhynchus mykiss)
growth in concentration above 0.3 mg L−1 [17] and cause oxidative damage and changes in antioxidant
defenses in the heart tissue of juvenile rainbow trout [19]. Hence, it could have a similar effect in
crayfish. Moreover, ClO2 is more toxic to aquatic organisms than chlorite and peracetic acid [17,18].
Therefore, considering how ClO2 is harmful for non-target aquatic animals and that it has higher
toxicity than other substances, ClO2 might likely have an adverse effect on crayfish tissues, leading to
various disorders and subsequent mortality.

Peak concentrations of ClO2 (0.2–0.29 mg L−1) observed during our experiment significantly
influenced the life duration of animals. Another study determined that 1–5 mg L−1 of ClO2 induces
mortality of zebra mussel D. polymorpha [20].

When the Cmax occurred, crayfish mortality was noticed after approximately 10 ± 7 days. Group
one could likely not survive due to immediate exposure to increased ClO2 concentrations, which
resulted in rapid mortality. The prolonged exposure of Group three to low-to-medium concentrations
of ClO2 resulted in a cumulative effect, preventing organ and tissue regeneration, and resulted in
crayfish mortalities 5 ± 2 days after Cmax occurred. Group two, which was exposed to moderate
ClO2 concentrations within relatively short time (longer than Group one but shorter than Group
three), had the longest life duration after getting Cmax. This may suggest that crayfish responses differ
between individuals.

5. Conclusions

Changes in crayfish heart rate and circadian rhythmicity could provide information about their
functional state and help us make inferences on environmental state. Crayfish’s physiological sensitivity
allow early detection of increased levels of harmful chemicals, thereby presenting a practical solution
for proactive water quality monitoring. Our results suggest that the changes in heart rate and diurnal
rhythm of treated animals was crayfish-specific, which may stem from their varying functional state
and individual physiological response to ClO2 concentrations. There was a direct correlation between
Cmax, and crayfish mortality. ClO2 adversely affected crayfish circadian rhythm. In conclusion, this
study demonstrated that crayfish could serve as effective bioindicators for long term practical water
quality monitoring.
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