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Abstract: In large river basins where in situ data were limited or absent, satellite-based soil moisture
estimates can be used to supplement ground measurements for land and water resource management
solutions. Consistent soil moisture estimation can aid in monitoring droughts, forecasting floods,
monitoring crop productivity, and assisting weather forecasting. Satellite-based soil moisture estimates
are readily available at the global scale but are provided at spatial scales that are relatively coarse
for many hydrological modeling and decision-making purposes. Soil moisture data are obtained
from NASA’s soil moisture active passive (SMAP) mission radiometer as an interpolated product at
9 km gridded resolution. This study implements a soil moisture downscaling algorithm that was
developed based on the relationship between daily temperature change and average soil moisture
under varying vegetation conditions. It applies a look-up table using global land data assimilation
system (GLDAS) soil moisture and surface temperature data, and advanced very high resolution
radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) normalized
difference vegetation index (NDVI) and land surface temperature (LST). MODIS LST and NDVI are
used to obtain downscaled soil moisture estimates. These estimates are then used to enhance the
spatial resolution of soil moisture estimates from SMAP 9 km to 1 km. Soil moisture estimates at
1 km resolution are able to provide detailed information on the spatial distribution and pattern over
the regions being analyzed. Higher resolution soil moisture data are needed for practical applications
and modelling in large watersheds with limited in situ data, like in the Lower Mekong River Basin
(LMB) in Southeast Asia. The 1 km soil moisture estimates can be applied directly to improve flood
prediction and assessment as well as drought monitoring and agricultural productivity predictions
for large river basins.

Keywords: SMAP; passive microwave soil moisture; soil moisture downscaling

1. Introduction

Estimating the water balance in large watersheds is of great interest for water resource management
and soil moisture is a key variable in this estimation as it effects evaporation, infiltration, and runoff [1].
Soil moisture acts as a link between energy and water fluxes at Earth’s surface-atmosphere interface,
and knowledge of soil moisture variation is the key to understanding the hydrological cycle [2].
Soil moisture is the primary source of water for agriculture and directly influences crop growth
and food production [3]. Even though it only accounts for a small portion of global freshwater,
it is still an important factor in global hydrologic cycles [3]. This seemingly small layer (top few
centimeters) controls the regulation and distribution of precipitation between runoff and water
storage [4]. Soil moisture observations over large areas are increasingly necessary for a range of
applications such as meteorology, hydrology, water resource management, and climatology [5].
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Remote sensing has provided valuable data sets for understanding land surface hydrological and
meteorological processes [6–9].

Obtaining soil moisture measurements can be achieved using a variety of remote sensing
instruments or ground-based systems. Satellite-based radars can measure soil moisture at high
resolution but are limited in spatial coverage and temporal frequency. Satellite data products can
produce global soil moisture estimates but are usually too coarse for practical use in modelling and
decision-making [10]. High resolution soil moisture estimates can be applied directly to improve flood
prediction and assessment as well as drought monitoring, agricultural productivity prediction, and
irrigation management [11–14]. With improved prediction of extreme events, we can also better prepare
for their effects on the natural environment and future climate change [2]. NASA’s soil moisture active
passive (SMAP) will help determine whether there will be more or less water, regionally, in the future
compared to today [15,16]. Monitoring these changes in future water resources is a very important
aspect of climate change as this will affect the future water supply and food production in areas like the
Lower Mekong Basin [17–19]. High resolution soil moisture can aid in crop yield forecasting as well as
by providing earlier monitoring of droughts and better understanding of hydrologic processes [4].

This research uses global soil moisture data derived from the L-band radiometer aboard NASA’s
SMAP observatory [20]. However, satellite microwave radiometers are much coarser than active
microwave and optical systems [6]. This coarseness reduces satellite applicability in large watershed
models and for regional flood prediction [21]. This study aims to downscale SMAP soil moisture
estimates, from gridded 9 km resolution to 1 km resolution, in the Lower Mekong Basin (LMB). This will
be done using the regression relationship between daily temperature changes and daily soil moisture
under different vegetation conditions with the algorithm developed by Fang et al., 2013. Soil moisture
estimates with high spatial resolution can be very useful for watershed scale hydrological modeling
due to the fact that soil moisture estimates can be used to constrain errors during extensive wetting
and dry downs [21]. The downscaling algorithm and methodology implemented in this research
were developed in a previous study by Fang et al., 2018. This algorithm has been applied to the
Black Bear-Red Rock watershed in Oklahoma and validated with in situ soil moisture from the ISMN
(International Soil Moisture Network). Regions with low elevation are vulnerable to flooding and
other water-resource related problems. With these problems, it is important to increase the capacity of
flood and drought monitoring. Here we apply this validated algorithm to the Lower Mekong Basin,
an area with no functioning in situ soil moisture network. With higher resolution soil moisture, this
region would have greater modelling capabilities and the ability to make better decisions concerning
water resource management. This algorithm can be applied to other watersheds worldwide, with little
absent from the in situ soil moisture systems.

The Mekong River in Southeast Asia provides food, water, and energy resources to the countries of
China, Laos, Myanmar, Thailand, Cambodia, and Vietnam [2]. It is the 12th longest river in the world,
extending over 4300 km [22]. The basin can be divided into two major catchments also known as the
upper and lower river basins. The upper basin is mostly mountainous, rising in the Tibetan Plateau
(Figure 1). The Lower Mekong Basin (LMB) is subject to high levels of flooding due to the combination
of low-lying terrain and seasonal precipitation cycles [22]. The LMB is home to the rice paddy fields
of Vietnam, which would benefit greatly from consistent soil moisture data. Unfortunately, the LMB
does not have a consistent in situ soil moisture measuring system, which makes satellite-derived soil
moisture estimates appealing for application in watershed-scale hydrological modelling in this region.
The lack of ground measurements for soil moisture also complicated the validity of remotely-sensed
estimates of the LMB [2].
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Figure 1. Topography and river networks in Lower Mekong River Basin (LMB).

2. Data

2.1. SMAP Data

Developed by NASA, the soil moisture active passive (SMAP) observatory was designed to
distinguish between frozen and thawed land surfaces [14]. This mission was launched in January
2015 with the goal of combining radar and radiometer at L-band frequencies to record high resolution
soil moisture measurements and freeze/thaw detection at global scale. Unfortunately, shortly after
the launch a hardware failure caused the radar to stop working, leaving the radiometer as the only
operational mechanism to record data [23]. Since the launch, the radiometer aboard the observatory
has been collecting data at a spatial resolution of 36 km and providing global coverage every 2 to
3 days [23]. Observations from SMAP will provide improved estimates of water, energy, and transfers
between land and atmosphere [24,25]. SMAP uses lower frequency microwave radiometry (L Band)
to map soil moisture at Earth’s land surface because at lower frequencies the atmosphere is less
opaque, vegetation is more transparent, and the results were more representative of the soil below
the skin surface than when higher frequencies were used [26,27]. This research utilizes the SMAP
Level 2 enhanced passive soil moisture product (L2_SM_P_E), which is available on a 9-km grid for
downscaling to 1-km resolution.

2.2. GLDAS Data

NASA’s global land data assimilation system (GLDAS) was designed to combine satellite-
and observation-based data to produce high resolution, global information on Earth’s land surface
states and fluxes [28]. GLDAS is able to provide 36 land surface fields from 2000 to the present,
including soil moisture, surface temperature, surface runoff, and rainfall. The product of 3-hourly
data (GLDAS_NOAH025_3H) with 0.25◦ × 0.25◦ spatial resolution was used in this study [29].
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Our downscaling approach utilized soil moisture with 0 to 10 cm depth and surface skin temperature
from GLDAS that corresponded to the closest overpass times of the Aqua satellite for the LMB, which
was approximately 12:00 and 24:00 local time.

2.3. MODIS Data

NASA’s moderate resolution imaging spectroradiometer (MODIS) was launched aboard the Earth
observing system (EOS) aqua satellite in May 2002 and provides atmospheric, terrestrial and oceanic
data products [30]. With 36 spectral bands, the highest of any global coverage moderate resolution
imager, and spatial resolution ranging from 250 m to 1 km, MODIS is able to provide a multitude of
global land products [30]. In this study, daily normalized difference vegetation index (NDVI) and
land surface temperature (LST) from MODIS were used to downscale SMAP soil moisture estimates.
The 1 km daily LST (MYD11A1), 1 km biweekly NDVI (MYD13A2), and 500 m biweekly climate
modeling grid (CMG) NDVI (MYD13C1) were utilized in this study.

2.4. AVHRR Data

The advanced very high resolution radiometer (AVHRR) utilizes National Oceanic and
Atmospheric Administration (NOAA) polar-orbiting satellites to provide four- to six- band multispectral
global data [31]. The AVHRR is used to remotely detect cloud cover and the Earth’s surface temperature
(NOAA satellite information system, 2013). Prior to MODIS data, AVHRR’s 5 km CMG NDVI data
were used for long-term surface ground measurements [11]. In this study, daily NDVI data (AVH13C1)
from AVHRR from 1981 to 1999 were used. The quality of AVHRR data after this time period is
inadequate due to satellite drifting and, therefore, data after 2000 was not used in this study [11]
(Table 1).

Table 1. Description of the data products used in the downscaling process including their spatial and
temporal resolutions and data availability.

Data Product Variable Spatial Resolution Temporal
Resolution Availability

SMAP Soil moisture 9 km Daily 2015–present
GPM IMERG Precipitation 10 km Daily 2000–present

GLDAS Soil moisture 25 km 3 hours 1979–present

MODIS Land surface
temperature (LST) 1 km Daily 2002–present

MODIS NDVI 1 km Biweekly 2002–present
AVHRR NDVI 5 km Daily 1981–1999

3. Methodology

In this research, the downscaling algorithm and methodology used were developed in Fang et al.,
2018 [32]. Similar to the study by Lakshmi and Fang (2015) of the Little Washita Watershed, this study
assumes that LST is a linear combination of soil and vegetation temperature [33]. We assume the top soil
moisture layer is a function of soil evaporation efficiency and field capacity. It is assumed that the soil
moisture at a certain time during the day is inversely proportional to the daily temperature change for
the same day, and that the presence of vegetation (NDVI) will influence the soil moisture–temperature
change relationship. We also assume that the thermal inertia relationship between temperature
difference and soil moisture within a 25 km domain has no spatial variability. Additionally, the
assumption is made that the field capacity of each NLDAS pixel is homogenous and does not account
for variation at the 1 km scale [32].

In this study, we applied an algorithm developed by Fang et al., 2018, based on soil moisture,
LST, and NDVI, to create 1 km soil moisture maps [32]. The methodology of this algorithm is outlined
in Figure 2. Due to the effects of vegetation cover on soil moisture estimation, the algorithm applied



Water 2020, 12, 56 5 of 14

here uses a vegetation-based lookup table to relate microwave polarization to soil moisture estimates.
As soil becomes more wet its heat capacity increases. The soil moisture at a given time is inversely
proportional to the change in temperature 12 hours beforehand, which corresponds with SMAP AM and
PM overpasses. Soil moisture daily values were negatively related to the daily temperature difference
under varying vegetation conditions. The following equation represents the linear relationship between
soil moisture and temperature difference for a specific NDVI (single month):

θ(i, j) = a0 + a1∆Ts(i, j) (1)

where θ(i, j) is GLDAS soil moisture gridded to match SMAP overpasses and ∆Ts(i, j) is the GLDAS
12 h temperature difference closest and prior to SMAP overpasses. This equation uses data at the
GLDAS spatial resolution for soil moisture and surface temperature for single months, beginning in
1981. Using the nearest neighbor method, daily NDVI from AVHRR was aggregated to corresponding
GLDAS pixels. The NDVI data were categorized into classes from 0 to 1 with increments at 0.1. Classes
with less than 8 data points were not included because a sample size smaller than this will not yield
valid and statistically significant results from linear regression fitting. Soil moisture at 1 km resolution
was calculated from 1 km MODIS LST difference at the corresponding NDVI class. We applied the
linear regression fit equation between θ and ∆Ts, which was built at 25 km resolution, to all the
1 km MODIS grids within the 25 km GLDAS grid. We assumed that the thermal inertia relationship
between temperature difference and soil moisture within the 25 km domain had no spatial variability.
The following equation represents the correction of the 1 km soil moisture pixel from the MODIS LST
products, acquired by removing the difference between SMAP and MODIS derived soil moisture:

θcorr(i, j) = θ(i, j) +

Θ − 1
n

n∑
i=1

Θi

 (2)

where θcorr(i, j) is the corrected 1 km soil moisture, n is the number of 1 km soil moisture pixels that
are in each SMAP 9 km pixel, Θ is the original SMAP 9 km soil moisture estimate, and θi is the number
of uncorrected 1 km SMAP soil moisture pixels that fall in the original 9 km SMAP grid Θ. The value
of n is ideally 81, but it may be less due to cloud contaminated data. The corrected soil moisture was
characterized by the soil moisture and daily temperature relationship, which changed under different
vegetation conditions. Since visualizing rainfall is essential to determining the response of the soil
moisture, rainfall from GPM IMERG was used in this study to analyze the wetting and dry-down
patterns after a significant rainfall event. One limitation of this methodology occurred when the
9 km original SMAP was biased. Then that bias was passed onto the corrected 1 km soil moisture.
Another limitation was the difficulty to recover cloud-contaminated data, which resulted in spatial
inconsistencies in the 1 km corrected soil moisture maps.
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Figure 2. Workflow for building downscaling model and executing the algorithm.
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The algorithm used in this study was validated using in situ measurements in the CONUS region,
by Fang et al., 2018, for soil moisture estimates from AMSR2 between 2015 and 2017. Their validation
showed variability in seasonal performance and stronger correlations in the soil moisture–temperature
change relationship during summer months. Also, the remotely sensed soil moisture and downscaled
estimates both underestimated in situ soil moisture during precipitation events. It is important to note
the effects of precipitation on soil moisture retrieval; the microwave sensing depth is reduced. An
additional validation of this algorithm was performed in the Walnut Gulch Experimental Watershed
(WGEW) and indicated that downscaled soil moisture had better validation metrics than the original
SMAP [32]. The R2 of the 1 km soil moisture ranged from 0.189 to 0.697, whereas the 9 km SMAP
ranged from 0.003 to 0.597. The slope values for the 1 km are higher than those for the 9 km SMAP.
Additionally, the 1 km soil moisture RMSE values and biases improved compared to the original
SMAP data. There were no consistent soil moisture measurements in the Lower Mekong Basin, and
this presents a formidable challenge to validation. However, future work may be able to carry out
validation by comparison of the 1 km soil moisture to outputs from hydrological models.

4. Results

4.1. Rainfall Variation in the Lower Mekong Basin

Variations in rainfall patterns result in changes in soil moisture. Precipitation has a direct impact
on the wetting and drying of soils and, therefore, must be examined alongside soil moisture. In the
LMB, the annual wet season (April–September) results in more vegetation growth and cloud cover
compared to the dry season. Therefore, the ability to measure soil moisture via remote sensing is
affected during these months. Daily precipitation data from GPM IMERG Final Precipitation L3 1 day
0.1◦ by 0.1◦ V05 (GPM_3IMERGDF) were aggregated for monthly accumulation for April through
September from 2015 to 2018, to correspond with the downscaled soil moisture in order to examine the
monthly variations (Figure 3) [34].
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Figure 3. Bar plot of monthly average precipitation for April 2015–September 2018 in the LMB.

In this study, precipitation patterns varied in the wet season months, with July and August
generally accumulating the most rainfall and April and May receiving the least (Figure 3). Additionally,
precipitation varied from year to year over the LMB, with certain years being more dry or wet than
others due to regulation by monsoons. For example, comparing the year 2016 to 2018 in Figure 3
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shows 2016 as a much dryer year, especially in the wettest month of the year, July, which received
over 100 mm of rainfall. This pattern can also be seen by comparing the monthly maps from 2016
and 2018 (Figure 4). Figure 4 shows the spatial distribution of accumulated precipitation over the
LMB for each month, corresponding to the 1 km soil moisture estimates. Rainfall patterns varied
significantly between countries in the LMB. Areas in Laos and Cambodia receive the greatest amounts
of precipitation annually (over 2800 mm), while the Thailand plateau only received a third or less of
that amount. Here, precipitation from IMERG was used to detect and observe the dry-down patterns
of soil moisture after a large rainfall event.Water 2019, 11, x FOR PEER REVIEW 8 of 17 
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Figure 4. Monthly rainfall accumulation from GPM IMERG for April 2015–September 2018 in the LMB.

4.2. Soil Dryness Response to Large Rainfall Events

In this section, soil moisture is examined alongside precipitation with the purpose of examining
the drying of soil over time in response to a rainfall event. By evaluating the time series after a large
precipitation event with almost no subsequent precipitation, we were able to observe the near-surface
soil moisture observations as they transitioned from saturated to dry conditions. Daily 9 km SMAP
soil moisture estimates were compared to daily 10 km IMERG precipitation to examine the response of
soil moisture to precipitation events. It is possible that, in the absence of precipitation, agriculture is
irrigated. Hence, we may have seen wetness from irrigation in these regions, despite no significant
rainfall event. Figure 5 shows the relationship between daily rainfall and soil moisture between 2015
and 2018 averaged over the LMB.
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Figure 5. Time series of daily soil moisture active passive (SMAP) 9 km soil moisture and daily Global
Precipitation Measurement-Integrated Multi-satellitE Retrieval (GPM-IMERG) 10 km precipitation for
April 2015–September 2018 averaged in the LMB.

Using Figure 5, two precipitation events were selected in which soil moisture exhibited a
clear dry-down pattern after the rainfall. The events were examined more closely in combination
with corresponding daily downscaled soil moisture, in order to evaluate the improvement in the
representation of drying from 9 km to 1 km. Figure 6 more closely examines the time series of the
dry-down period in the LMB from 13 April 2015 to 20 April 2015, after a large precipitation event
occurred on 13 April. Figure 7 shows the spatial distribution of rainfall, 9 km SMAP soil moisture,
and 1 km downscaled soil moisture for each day during the dry-down period. The second event
selected was from 6 April 2018 to 11 April 2018. Figure 8 shows the time series of the dry-down
period after the precipitation event on 6 April 2018. The 1 km soil moisture (blue) was better able to
capture the dry-down pattern than the 9 km SMAP soil moisture (green) (Figure 8). Figure 9 shows
the spatial distribution of rainfall, 9 km SMAP soil moisture, and 1 km downscaled soil moisture for
each day during the dry-down period in April 2018. The coverage of the 1 km corrected soil moisture
was dependent on MODIS LST data and influenced by cloud cover, which made it difficult to find
good coverage on consecutive days. The 1 km SMAP did not perform as well during wet days due
to the spatial coverage of the MODIS land surface temperature (LST) data being compromised by
cloud contamination.
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4.3. Importance of High Spatial Resolution Soil Moisture for Hydrology and Water Resources

The high spatial resolution observed soil moisture generated in this study was an important data
set that could not be obtained from other sources. Firstly, there are no consistent in situ networks that
monitor soil moisture in the Lower Mekong River Basin. Even in other parts of the world that do have
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such networks, they are seldom dense enough to produce soil moisture at 1 km spatial resolution.
Secondly, although land surface models can simulate soil moisture at high spatial resolution, they lack
the precipitation input at 1 km spatial resolution, which is needed to minimize variations in small-scale
processes [35]. Currently, the “best” spatial resolution of globally available precipitation is the climate
hazards group infrared precipitation with station observations (CHIRPS) at 0.05◦. CHIRPS provides
estimates from 1981 to the near present and uses a recently produced satellite rainfall algorithm that
combines climatology data, satellite precipitation estimates, and in situ rain gauge measurements to
produce a high resolution precipitation product [36].

The 1 km spatial resolution soil moisture from this research can be used in combination with land
use and land cover data from MODIS (moderate resolution imaging spectroradiometer) at 1 km and
Landsat imagery at 30 m to map the co-variability of land use and wetness. This will be a valuable
tool for land use planning, specifically in the LMB where there are competing cropping strategies and
land use for industrial development. Additionally, this 1 km soil moisture can be used to determine
antecedent soil moisture conditions in watershed modeling, meaning it can serve as an input to
determine the portion of rainfall that will infiltrate the soil and that which will run off to the stream
network. More detailed estimations of streamflow runoff will in turn benefit flood prediction and
monitoring in watersheds [37]. This high spatial resolution 1 km observed soil moisture can serve a
variety of water resource applications and will be of much use in the LMB.

5. Conclusions

This study applied a previously developed method to a new geographical location where in
situ observations are lacking. Here, higher resolution could help various land use decisions such
as construction of dams, agriculture, and aquaculture. In this study, soil moisture estimates of the
Lower Mekong River Basin from April 2015–September 2018, from SMAP Enhanced L2 Radiometer
Half-Orbit 9 km V.2., were enhanced to 1 km resolution. In this study, we applied an algorithm
developed by Fang et al., 2018, based on soil moisture, LST, and NDVI to create 1 km soil moisture
maps. Soil moisture daily values were negatively related to the daily temperature difference under
varying vegetation conditions. The downscaling algorithm was based on LST, soil moisture, and NDVI
and used the relationship between daily soil moisture and daily land surface temperature difference
between satellite overpasses as well as the vegetation class to downscale soil moisture to a higher
resolution. The months of April and May showed the best coverage of soil moisture at 1 km and
July–September showed the least coverage at 1 km, due to LST/NDVI data with substantial cloud
coverage and higher vegetation growth. It was discovered in this study that the 1 km SMAP did not
perform as well during wet days due to the spatial coverage of the MODIS land surface temperature
(LST) data being compromised by cloud contamination.

Soil moisture estimates are readily available at global scale from a multitude of satellite products
but are represented at spatial scales that are often too coarse for effective hydrological modeling
and decision-making purposes. Soil moisture at high resolution can be used in place of ground
measurements for land and water management decisions in large river basins where in situ data are
limited such as the LMB. The high resolution soil moisture estimates derived in this study can be
more useful for assessing dry-down and wetting trends than coarser resolution data, such as the 9 km
SMAP product in the LMB. Additionally, 1 km soil moisture retrievals can better aid drought and crop
productivity monitoring, flood forecasting, and assist weather forecasting by providing greater spatial
representation than coarser products. This high spatial resolution soil moisture at 1 km can be applied
to a multitude of water resources applications in order to benefit large watershed management.
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