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Abstract: Quantitative microbial risk assessment (QMRA) is a computational science leveraged
to optimize infectious disease controls at both population and individual levels. Often, diverse
populations will have different health risks based on a population’s susceptibility or outcome severity
due to heterogeneity within the host. Unfortunately, due to a host homogeneity assumption in the
microbial dose-response models’ derivation, the current QMRA method of modeling exposure volume
heterogeneity is not an accurate method for pathogens such as Legionella pneumophila. Therefore,
a new method to model within-group heterogeneity is needed. The method developed in this research
uses USA national incidence rates from the Centers for Disease Control and Prevention (CDC) to
calculate proxies for the morbidity ratio that are descriptive of the within-group variability. From these
proxies, an example QMRA model is developed to demonstrate their use. This method makes the
QMRA results more representative of clinical outcomes and increases population-specific precision.
Further, the risks estimated demonstrate a significant difference between demographic groups known
to have heterogeneous health outcomes after infection. The method both improves fidelity to the
real health impacts resulting from L. pneumophila infection and allows for the estimation of severe
disability-adjusted life years (DALYs) for Legionnaires’ disease, moderate DALYs for Pontiac fever,
and post-acute DALYs for sequela after recovering from Legionnaires’ disease.
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1. Introduction

1.1. Fundamental Background of L. pneumophila and Disease Endpoints

Legionella pneumophila (L. pneumophila) is a facultative saprozoic bacterium that is the causative agent
of legionellosis [1]. Legionellosis has two distinct disease endpoints: Pontiac fever and Legionnaires’
disease (LD). Pontiac fever is a non-lethal, self-limiting, flu-like illness. LD, the more serious disease
endpoint for L. pneumophila, is a community pneumonia that can result in death.

As of 2006, L. pneumophila became the third most common etiological agent in waterborne disease
outbreak surveillance data, averaging 10,000–15,000 cases annually [2]. Due to the increased susceptibly
of patients in healthcare environments, L. pneumophila is also a significant healthcare-associated infection
hazard [3–5]. The water-associated transmission of L. pneumophila was first recognized in 1980 during
an outbreak in a British hospital transplantation ward that was linked to the ward’s showers [6].
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1.2. The Evolution of L. pneumophila Causes Water Systems Control Challenges and Drives Pathogenesis

Through its evolution, L. pneumophila has developed survival mechanisms to enter and grow in
both biofilms and predatory cells, such as protozoa [7,8]. The evolution of its intracellular survival
capabilities makes L. pneumophila challenging in public health and engineering, primarily due to
L. pneumophila’s ability to invade and survive within both biofilms and host cells. Its survival
is partially due to the ineffectiveness of residual disinfectants penetrating the biofilms of water
distributions systems [9]. This is exacerbated by the saprozoic organisms’ use of biofilm nutrient
transport mechanisms for persistence and growth. L. pneumophila’s persistence and growth within
a biofilm is accelerated with the presence of a predating protozoan, a classic example of which is
Acanthamoeba [10–12]. These factors and the widespread presence of biofilms in premise plumbing
systems (PPS) are a likely reason L. pneumophila began overtaking all other etiological agents of
water-associated diseases [7,13,14]. In response, there has been increased interest in developing means
of controlling L. pneumophila in PPS [15,16]. However, choosing the optimal intervention (public health
control measure or technology) requires the assessment of public health goals and risks.

How L. pneumophila grows in the human body impacts therapeutic options, thus having a further
public health impact. The human body has evolutionarily conserved cells (neutrophils) that serve
as sentry cells to protect the body from hazards. The alveolar macrophage (AMac) is one such
neutrophil and is the infectious location of L. pneumophila in the human body [17–19]. AMacs utilize
phagocytosis (simplified in Figure 1) to internalize cells and other substrates necessary during their
lifecycle. However, due to its intracellular growth capabilities, AMacs, like other phagocytes, are a
critical component in L. pneumophila’s lifecycle [20–22]. Once internalized in the AMac, L. pneumophila
primarily uses Dot/Icm Type-IV secretion systems to modulate the capsase-1 process within the AMac.
The capsase-1 process is intended to limit the growth and proliferation of organisms intracellularly
absorbed into the AMac [22,23]. The primary result of modulating the capsase-1 process is the
prevention of lysosome-phagosome fusion, which the phagocyte uses to digest the internalized cell.
This is just one of a set of biochemical processes that are used to halt the phagocytosis process allowing
for proliferation of the pathogen. Space and scope do not allow for a full discussion of the pathogenesis;
however, excellent resources are recommended to expand upon this brief synopsis [1,18,19,22–24].
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Figure 1. Depiction of the phagocytosis process.

During the pathogenesis process, L. pneumophila can then exit the host-cell (AMac) with or without
apoptosis or lysis. Once externalized, L. pneumophila then attracts another phagocyte and continues
proliferating, resulting in the rapid body burden that is typical of LD [25]. This rapid body burden is
why therapeutics and recovery from LD are challenging. Therefore, controlling or eliminating exposure
to L. pneumophila is crucial to protect public health.
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1.3. Health Effects Within Diverse Populations Are Not Equal

Most infectious disease outcomes are heterogeneous within diverse populations. When examining
demographic trends in LD cases for the USA, consistent outcomes are noted. The elderly, males,
smokers, and African Americans are the demographic groups with the greatest caseloads [13,14].
Contrastingly to other infectious disease hazards, the young represent the lowest number of cases [13].
It is important to note that it is often tempting to combine this to say that African American elderly
males are at the greatest risk. However, this confounds the epidemiological evidence since each of
these demographic groups were analyzed separately, and not in combination, for example, only males
and only elderly, not elderly males. Secondly, this conflates risk and caseloads, as caseloads are the
realization of an estimated risk of infection and illness. Due to the heterogeneity in health outcomes,
a risk model to target public health interventions for a population needs to consider this heterogeneity.

1.4. QMRA Can Optimize L. pneumophila Interventions

Quantitative microbial risk assessment (QMRA) is a computational science that allows for the
analysis and forecasting of pathogenic health risks [26]. QMRA has demonstrated its capabilities as an
analytical and decision support science in multiple environmental media and exposure scenarios [27–30].
Subsequently, QMRA can bridge the practitioner divide between environmental engineering and
environmental health sciences. This bridge between fields is vital to improve targeted public health
protection with the use of engineering controls. For example, in Hamilton et al. (2019) [31], QMRA
modeling was used to estimate critical L. pneumophila concentrations for sets of health targets. Narrowing
this gap between environmental engineering and environmental health sciences leads to more targeted
and effective public health interventions moving forward.

1.5. Current QMRA Modeling Methods Are Inadequate for L. pneumophila

In QMRA modeling, to account for within-group heterogeneity, a group-specific exposure
volume—for example, elderly inhalation volume for elderly hospital patients—is used to make the
exposure model specific to that group. This method has been employed the most in recreational
water QMRA models since children’s recreational risks are often used to prioritize intervention
options [28,32–34]. Therefore, for host-age heterogeneity in L. pneumophila exposure modeling,
inhalation volumes for children, adults, and the elderly can be chosen from the EPA exposure factors
handbook [35] to make the exposure model specific to the population’s age heterogeneity. The concept
is that once the exposure volume has been adapted to the specific age group, then the dose will
be descriptive to that age group, then, in turn, the modeled risk will be descriptive to that group.
In drinking water systems, particularly for opportunistic pathogens, the delineation of risks based
on the demographics of the population is noted as a necessary component with the same underlying
method used or recommended [8,15,26,29,36–38].

Unfortunately, due to limitations in the dose-response model derivation, this current method of
altering group-specific exposure factors will produce risk estimates that are inaccurate when compared
to the known clinical outcomes for humans exposed to pathogens such as L. pneumophila. Due, in part,
to nearly identical respiration rates between the elderly and adult populations [35], the exposure factor
adjustment method results in equivalent probabilities of infection. This is not considered an issue until
the probability of illness is calculated using either the morbidity ratio, conditional dose-response, or
probability of illness dose-response. In any of these methods, to estimate the probability of illness or
disease outcome, the equivalence of risk estimates remains due to a fundamental limitation of the
mechanistic dose-response models.

The microbial dose-response model derivation (simplified in Equation (1)) implicitly assumes
host susceptibility homogeneity when considering the probability of infection, when these models
are used to model the probability of illness or disease endpoint, this host homogeneity assumption
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remains. The mechanistic dose-response models’ derivation is described in greater detail elsewhere;
however, a simplified version will be presented here [26,38,39].

p(d) =
∞∑

k=kmin

(d · r)2e−d ·r

k!

∞∑
j = k

d(1−r) j−ke−d(1−r)

( j−k)!

p(d) =
∞∑

k=kmin

(d · r)2e−d ·r

k! � p(d) = 1 − exp (−r·d)
(1)

The mechanistic microbial dose-response models are derived from the same set of three first
principles that we can track through Equation (1):

1. The host is exposed to an average dose in the environment (d), modeled as a random discrete
Poisson dose (red in Equation (1)).

2. From this d, there are j pathogens that are delivered to a susceptible location within the host, for
example, alveoli for L. pneumophila.

3. From those j organisms, k survive to initiate an infection, which is a Boolean outcome and, thus,
the binomial distribution (blue in Equation (1)). These likelihoods are coupled to develop the
joint probability that d will result in an infection, which is then simplified to the exponential
dose-response function at the far right (green in Equation (1)).

The simplicity of this derivation allows the mechanistic dose-response models to be used across a
wide range of host and pathogen species and exposure routes. However, it is not possible to model
host effects, such as age, physiology, or immune response in the standard dose-response models.
Since probability of illness dose-response models retain this derivational limitation, this same implicit
assumption of host homogeneity exists. For only a small number of pathogens, where appropriate
data were garnered from literature reviews, host-side dynamics have been included in dose-response
models [40–42]. However, these data for such advanced dose-response models are expensive and
difficult to develop. Thus, this research was targeted at developing a means of describing host
heterogeneity outside of the dose-response models, until these host heterogeneity dose-response
models can be developed.

1.6. Scope and Purpose of Research

Through this research, we have developed a method to model the risk of illness and specific health
effects for different age, sex, and racial groups within diverse populations. Once the probability of
illness is accurately modeled, then severe disability-adjusted life years (DALYs) are used to estimate
the risk of LD and moderate DALYs for Pontiac fever. This resolution in the QMRA model is vital to
target realistic public health interventions within diverse populations. The method developed in this
research is targeted to modeling a demographic-specific morbidity ratio using surveillance data from
the CDC. This will allow for the estimation of a probability of illness for a specific demographic group
with greater accuracy than possible under current QMRA methods.

Since the QMRA methodology is scenario dependent, we have developed this QMRA model to
address a heterogeneous population comprised of a mixture of races and sexes and ages. Total numbers
of each group are not pertinent since we will only be comparing the general daily risks and DALYs, not
estimating the likely numbers of cases. The scenario is the use of a shower (length of shower is a model
variable), where there is an uncertain concentration of L. pneumophila in the premise plumbing water.

2. Modeling Methods

This research is developed in two stages. The first stage develops a stochastic simulation to
estimate the risk of infection since the dose-response model available estimates the probability of
infection [43]. The second stage is the development of the new method to model the probability of
illness and DALYs for the heterogeneous population. For the first stage, the probability of infection is
modeled for broad age ranges: children (0–18 years), adults (19–60), and the elderly (≥60). This will
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facilitate the evaluation of the improvement in model accuracy using the new method. Further, when
conducting a simulation using random variates, it is important to conduct the appropriate quality
assurance tests to ensure that a random sample is truly random. Ross (2007) [44] has a good description
of this.

2.1. Two-Dimensional Simulation for Risk Modeling

Due to the uncertainty and variability in the model variables and outputs, the two-dimensional
Monte Carlo (2D-simulation) method is used. Two-dimensional-simulation modeling is an effective
method of accounting for both variability and uncertainty in a model [45]. By sampling variable
and uncertain variables at different levels, uncertainty in the simulation can be accounted for with
greater confidence. Figure 2 shows a conceptual diagram of the 2D-simulation, where variables with
variability (variable variables) are sampled in the outer layer, and uncertain variables (variables with
uncertainty) are sampled in the inner layer. This invokes the law of large numbers for each outer
layer iteration. Thus, resulting in computational data with an n of 1001 for variable variables and
10,010,000 for uncertain variables. Variable variables and uncertain variables are randomly sampled
from the probability distributions assigned to them (Table 1). This research uses random sampling as
opposed to one that is managed using a technique, such as the Latin hypercube, to ensure stochasticity
using a seed of 36 (required for reproducible stochastic models). The 2D-simulation and all subsequent
analyses and plotting were programmed in R (version 3.5.3 “Eggshell Igloo”; R Core Team, Vienna,
Austria.). All statistical inferences were performed using the analysis of variance (ANOVA) with an
alpha of 0.05. Because there are 10,010,000 computational data points of estimated risks, the central
limit is overcome and negates the need for normality tests.
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Table 1. Parameters, distributions used, and distribution parameters of the Pinf model.

Model Parameter
Distribution

Variability or Uncertainty a;
AICw

Value(s) Units Citation

Hmix
Truncated Normal b—V

AICw = 0.350

µ c = 0.5778; σ d = 0.0399
UB e = 0.5094;
LB f = 0.6472

Unitless

Estimated in this research

Cmix
Cauchy—V

AICw = 0.65
Location = 0.363;

Scale = 0.0217

AFQ1H
Triangular—V
AICw = NA h

Min = 0.0097;
Median = 0.0013

Max = 0.0069 Distribution optimized in this
research, data used for
optimization from [46]AFQ2H

Triangular—V
AICw = NA h

Min = 0.0014;
Median = 0.0027

Max = 0.0128

AFQ3H
Triangular—V
AICw = NA h

Min = 0.0010;
Median = 0.0015

Max = 0.0061

AFQ1C
Truncated Weibull—V

AICw = 0.349

Scale = 2.754;
shape = 0.0308

UB = 0.0478; LB = 1(10−15)

AFQ2C
Truncated Weibull—V

AICw = 0.460

Scale = 4.125;
shape = 0.0373

UB = 0.0473; LB = 1(10−15)

AFQ3C
Triangular—V
AICw = NA h

Min = 0.0097;
Median = 0.0128

Max = 0.0173

Cw
Uniform—U

AICw = NA h Min = 1; Max = 1(106) CFU L−1 Min [47], Max [48]

PC Uniform—V
AICw = NA h Min = 0.25; Max = 0.65 Unitless Value from [29]

ts
Uniform—V

AICw = NA h Min = 0.0333; Max = 0.25 Hours Estimated in this research

RI,Child
Triangular—V
AICw = NA h

Min = 0.0076;
Median = 0.0111

Max = 0.013 m3 h−1
Distributions chosen in this
research, data from US EPA

exposure factors handbook [35]
RI,Adult

Triangular—V
AICw = NA h

Min = 0.012;
Median = 0.0124

Max = 0.013

RI,Elderly
Point value—V
AICw = NA h 0.012

DF1
Truncated Logistic b—U

AICw = 0.525

Location = 0.06777;
Scale = 0.04305

UB = 0.01; LB = 0.195

Unitless

Distributions from this research,
data from [49]

DF2
Truncated Weibull b—U

AICw = 0.658

Scale = 0.4134;
shape = 0.2102

UB = 0.00; LB = 0.41

DF3
Truncated lognormal b—U

AICw = 0.429
µ = –1.052; σ = 0.4350
UB = 0.159; LB = 0.62

k Triangular—U
AICw = NA h

Median = 0.00599;
Min = 0.00326;
Max = 0.131

Distribution from this research.
Values from [43]

ˆMRC; ˆMRA; ˆMRE
g Point values

AICw = NA h

0.0077; 0.097; 0.75 for Child
Adult and Elderly

respectively Calculated in this research
Data from [50]

ˆMRAI; ˆMRA; ˆMRB;
ˆMRW ; ˆMRO

g
Point values

AICw = NA h

0.0025; 0.010; 0.15; 0.61;
1.4 (10−5) for American

Indian; Asian; Black;
White and Other races

respectively

ˆMRM; ˆMRF
g Point Values

AICw = NA h
0.64; 0.36 for male and

female respectively

DWM
Triangular—U
AICw = NA h

Min = 0.039;
median = 0.051;

max = 0.06 Distributions from this research
data from [51]

DWP
Triangular—U
AICw = NA h

Min = 0.104;
median = 0.125;

max = 0.152

DWS
Triangular—U
AICw = NA h

Min = 0.179;
median = 0.217;

max = 0.251
a—V = Variability, U = Uncertainty, b—necessary to ensure no negative values, while using the distribution that best
fit the data; c—µ = mean; d—σ = standard deviation; e—UB = Upper Bound; f —LB = Lower Bound; min = minimum;
max = maximum; g—Corrected for population; h—AICw is not applicable for assumed distributions or point values.
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Since the Monte Carlo method uses probability distributions to describe model variables and
parameters, these distributions either need to be optimized to data or carefully assumed [44,52]. This
research assigns uniform or triangular distributions as assumed distributions. These distributions
do not impose a detailed shape or underlying assumption of the functions. These distributions are
parameterized to available descriptive statistics such as minimum, maximum, and likeliest value.

For those variables, where enough data (greater than 10 data points) is obtained, probability
distributions are optimized to these data using the optim function in R. This function uses the
Nelder-Mead algorithm to converge to the global minimum of the log-likelihood function. To determine
the best fitting distribution, the Akaike Information Criterion weights (AICw) are used. The AICw
discounts for the number of parameters in the optimized model, thus, making for a more even
comparison between optimized models. AICw values for the best performing distributions can be
found in Table 1; all continuous probability distributions available in R were optimized.

2.2. Exposure Model and Probability of Infection

An aerosol size small enough (≤5 µm) to allow for inhalation into the lung is required for at-risk
exposure to L. pneumophila to result in any change of infection. Outbreak data implicates showers as the
activity most associated with use patterns, aerosol generation/exposure, and LD illnesses. Additional
studies corroborate that showers also produce the highest level of contained aerosolized particles on a
consistent basis [6,24,29,53]. Therefore, the exposure model must account for the following:

• Concentration of L. pneumophila in the premise plumbing water;
• Concentration of L. pneumophila in the air during showering, within a shower duration;
• Generation of aerosols sized ≤5 µm;
• Delivered dose to alveoli of human lungs, accounting for intermediate losses in the previous two

regions of the respiratory system.

Using an environmental chamber configured as a shower, Zhou et al., (2007) [46] investigated the
generation and size distribution of drinking water aerosols. Their study examined three separate flow
rates and two temperature ranges, 24–25 ◦C for cold water and 43–44 ◦C for hot water [46].

Equation (2) uses the Zhou et al. (2007) data to model AFQx, which is the fraction of aerosols that
are ≤5 µm, generated after mixing hot and cold water at flow rate x. This is performed using fractional
proportions of 43 ◦C water for hot water and 24 ◦C for cold water. This models the aerosol fractions for
each flow rate and each broad temperature classification, where AFQxC and AFQxH are the cold and
hot water aerosol fractions for each flow rate x (5.1, 6.6, and 9.0 L min−1), respectively. This level of
granularity of the aerosolization has not been included in a QMRA previously; therefore, these data
were chosen to provide for this option.

However, people do not shower in only cold or hot water; therefore, warm water needs to be
modeled. Equation (2) uses cold and hot water mixtures, Cmix and Hmix, which are fractional portions
of cold and hot water used to develop a safe and comfortable showering temperature. The mixed water
temperature modeled is monitored to ensure that it does not exceed 43 ◦C to prevent scalding [54].
Distributions for Cmix and Hmix were chosen by iteratively solving for each mixture value (Cmix and
Hmix) at each temperature setting for an upper value of 43 ◦C and a low value of 30 ◦C, using 0.5 ◦C
increments. Then probability distributions are optimized to the iteratively solved mixture values
(AICw in Table 1). Distributions and parameter values for AFQxC, AFQxH, Cmix, and Hmix can be seen in
Table 1.

AFQx =
(
Hmix·AFQxH

)
+

(
Cmix·AFQxC

)
(2)

Equation (3) uses AFQX estimates to model the concentration of L. pneumophila in the air within
aerosols ≤5 µm aerosols. For Equation (3), the variability of concentration in the water (Cw) is
modeled as a uniform distribution parameterized from the open literature [47,48]. The concentration
of L. pneumophila in these studies is serogroup-1 and based on a culture method [47,48]. L. pneumophila
concentrations vary greatly in municipal water, and a QMRA model developed for the real world uses
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site-specific sampling results to inform the concentration. This model is intended as a generalized
risk model rather than a model for a specific municipality or region. Thus, as in all QMRA models,
the values used in the distributions should not be used for a policy or engineering application but
rather for the method used. Then, a partitioning coefficient (PC) allows the estimation of L. pneumophila
concentration in the air during a shower (CaQx; Table 1).

CaQx = Cw·PC·AFQx (3)

To model the dose delivered to the alveoli, three compartment models are operated in series using
the three-region lung model [49]. Equation (4) models the inhalation of the aerosols generated in the
shower. The concentration in the air (region-0) is converted to a dose inhaled into the respiratory
system (DR0Qx) for shower flow rate x. Then, shower duration (ts) and the inhalation rate dependent
on age group (RI,age; normalized to ts) models DR0Qx.

DR0Qx = CaQx·ts·RI, age (4)

Equation (5) models the dose lost to region-1 of the respiratory system for flow rate x (DR1Qx),
using the deposition fraction in region-1 (DF1; Table 1). The DR1Qx estimates and deposition fraction
for region-2 (DF2; Table 1) by modeling the dose lost to region-2 at flow rate x (DR2Qx; Equation (6)).
Equation (7) uses these previous results from Equations (4–6) to model the dose to the alveolated region
of the lungs at flow rate x (DR3Qx) using the deposition fraction for region-3 (DF3; Table 1). DR3Qx is the
dose that deposits within the alveoli, which is the dose that is used to estimate the risk of infection for
flow rate x (Pinf, x). The deposition fractions used are from a standard text used throughout inhalation
toxicology as well as QMRA modeling [30,55]. Pinf, x is modeled using Equation (8), the exponential
dose-response model (Equation (8)). The exponential has one parameter k (Table 1), where k is the
probability of a pathogen surviving to initiate an infection in the host [26].

DR1Qx = DR0Qx·DF1 (5)

DR2Qx =
(
DR0Qx −DR1Qx

)
·DF2 (6)

DR3Qx =
[
DR0Qx −

(
DR1Qx + DR2Qx

)]
·DF3 (7)

Pinfx = 1− exp
(
−k·DR3Qx

)
(8)

2.3. Risk Characterization: Probability of Illness and DALYs

The data from the morbidity and mortality weekly report (MMWR) for racial and gender incidence
rates are not age-adjusted [13]. Therefore, before calculating the probability of illness and DALYs for
the demographic groups, the groups’ risk estimates must be combined into an overall population risk.
Equation (9) is an expansion of the inclusion/exclusion principle of a union, which can be used to
combine the probability of infection estimates for all ages (children, adults, and the elderly) at flow
rate x (REx in Equation (9)) [30]. Once P(REx) is modeled, the probability of illness can be estimated
using this research’s new method.

PRx =

∣∣∣∣∣∣∣
n⋃

i=1

Ri

∣∣∣∣∣∣∣ =
n∑

j=1

(−1) j+1

 ∑
1≤i1≤...≤i j≤n

∣∣∣∣Ri ∩ . . .∩Ri j

∣∣∣∣
 (9)

2.4. Method to Estimate Morbidity Ratio Proxies and Dynamic Health Effect QMRA Models

Morbidity ratios are often used to model the probability of illness (Pill) given exposure and
infection [56,57]. Using data from the morbidity and mortality weekly report (MMWR) [13], the
incidence rate for each demographic group is used to calculate a morbidity ratio proxy for that
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group ( ˆMRG). This will allow for the Pill to be modeled for each group and overcome the assumed
homogeneity of health effects from the dose-response model derivation.

The method for estimating ˆMRG for each of the demographic groups is founded on concepts
of utilizing relative risks from incidence rates. Using Equation (10), ˆMRG can be estimated using
the national attack rate (AR) or incidence proportion of 0.05 [58], legionellosis incidence rate for the
demographic group (IRG) from the MMWR [59], and the legionellosis incidence rate for the total US
population (IRP) during the years of the MMWR study. All ˆMRG values can be seen in Table 1. A brief
logic explanation is provided in the supplementary material.

ˆMRG = AR·
IRG
IRP

(10)

Using ˆMRG, the probability of illness given exposure and infection for each demographic group
at flow rate x (Pill,Gx ) is estimated using Equation (11). Equation (11) estimates Pill,G for the following
groups: children (Pill,C), adults (Pill,A), Elderly (Pill,E), American Indians (Pill,AI), Asian (Pill,Asian), Black
(Pill,B), White (Pill,W), Other race (Pill,O), females (Pill,F), and males (Pill,M).

Pill,Gx = PRx ·
ˆMRG (11)

Once the Pill,Gx is estimated the disability-adjusted life years (DALYs) can be estimated for each
demographic group at flow rate x. For improved intervention assessment separating moderate, severe
and post-acute DALYs for flow rate x (DALYMx , DALYSx and DALYPx , respectively) is needed. This is
postulated as a means of modeling Pontiac Fever (DALYMx), LD (DALYSx S) and sequela from LD
(DALYPx) at flow rate x utilizing the associated disability weights published by the World Health
Organization. Equation (13) multiplies the annualized risks from Equation (12) (Pill,G,A) by the disability
weights for moderate illness, DWM, or severe DWS (termed DWa in Equation (12)). The value of
DALYPx is estimated using Equation (14) to account for post-acute illness (DWP) and DWS disability
weights. DWs is used in Equation (14) since post-acute is estimating sequela for survivors of LD.

Pill,G,A = 1−
j∏
1

(
1− Pill,Gx

)
(12)

DALYax = Pill,G,A·DWa (13)

DALYPx = Pill,G,A ·
∑

(DWP, DWS) (14)

3. Results

Due to space considerations, the 5.1 L min−1 flow rate will be used to demonstrate the results.
The plots depict the same fundamental trends for the other two flow rates, 6.6 and 9.0 L min−1. Results
of the statistical comparisons across flow rates using the ANOVA are presented below. All plots for the
other two flow rates can be seen in the supplementary information. Full model plotting and analysis
source code are available in the supplementary information.

3.1. Effects of Flow Rate

With a p-value of 1 (10−5), there is a significant difference between the first two flow rates (5.1 and
6.6 L min−1) when comparing the probability of illness. There is also a significant difference in
probability of illness or DALY between the lowest and highest, 5.1 and 9 L min−1 p-value of 1 (10−4),
and medium and highest 6.6 and 9.0 L min−1, p-value of 1 (10−5). With higher flow rates, there is an
increased concentration of aerosolized L. pneumophila in the shower air resulting in higher inhalation
doses, thereby higher risks.



Water 2020, 12, 43 10 of 18

3.2. Age Demographic Risks

Risk results were compiled into boxplots for the presentation of the results and ease of comparison
between groups. All the boxplots are visualizing the natural log of the risks to allow for improved
visualization. Age demographic risk results can be seen in Table 2 and Figure 3.

Table 2. Risk model results for each demographic set for flow 5.1 L min−1.

Demographic
Group Statistic Pinf

a Pill
b MDALY c SDALY d PDALY e

Child
U95

f 7.29 (10−6) 2.39 (10−7) 1.20 (10−8) 3.03 (10−8) 6.36 (10−8)
M g 2.61 (10−6) 4.98 (10−8) 2.48 (10−9) 6.28 (10−9) 1.32 (10−8)
L95

h 2.69 (10−7) 4.19 (10−9) 2.08 (10−10) 5.28 (10−10) 1.11 (10−9)

Adult
U95 7.93 (10−6) 1.84 (10−6) 9.30 (10−8) 2.36 (10−6) 4.88 (10−7)
M 2.84 (10−6) 3.85 (10−7) 1.91 (10−8) 4.87 (10−8) 1.02 (10−7)
L95 2.93 (10−7) 3.24 (10−8) 1.60 (10−9) 4.09 (10−9) 8.53 (10−9)

Elderly
U95 7.57 (10−6) 2.64 (10−5) 1.33 (10−6) 3.37 (10−6) 7.00 (10−6)
M 2.71 (10−6) 5.54 (10−6) 2.75 (10−7) 7.03 (10−7) 1.47 (10−6)
L95 2.79 (10−7) 4.65 (10−7) 2.30 (10−8) 5.88 (10−8) 1.23 (10−7)

Combined
Ages

U95 5.95 (10−5)
Not Modeled jM 1.25 (10−5)

L95 1.05 (10−6)

American
Indian

U95

NA i

8.34 (10−6) 4.20 (10−7) 1.07 (10−6) 2.21 (10−6)
M 1.75 (10−6) 8.70 (10−8) 2.21 (10−7) 4.65 (10−7)
L95 1.47 (10−7) 7.27 (10−9) 1.86 (10−8) 3.91 (10−8)

Asian
U95 5.56 (10−6) 2.80 (10−7) 7.05 (10−7) 1.48 (10−6)
M 1.16 (10−6) 5.78 (10−8) 1.48 (10−7) 3.09 (10−7)
L95 9.80 (10−8) 4.86 (10−9) 1.24 (10−8) 2.60 (10−8)

Black
U95 3.45 (10−5) 1.74 (10−6) 4.9 (10−6) 9.19 (10−6)
M 7.24 (10−6) 3.63 (10−7) 9.15 (10−7) 1.92 (10−6)
L95 6.09 (10−7) 3.04 (10−8) 7.68 (10−8) 1.62 (10−7)

White
U95 2.34 (10−5) 1.71 (10−6) 2.97 (10−6) 6.20 (10−6)
M 4.91 (10−6) 2.45 (10−7) 6.21 (10−7) 1.30 (10−6)
L95 4.13 (10−7) 2.04 (10−8) 5.21 (10−8) 1.10 (10−7)

Other
U95 1.48 (10−7) 7.38 (10−9) 1.87 (10−8) 3.93 (10−8)
M 3.10 (10−8) 1.55 (10−9) 3.91 (10−9) 8.22 (10−9)
L95 2.61 (10−9) 1.30 (10−10) 3.29 (10−10) 6.90 (10−10)

Female
U95 2.10 (10−5) 1.06 (10−6) 2.69 (10−6) 5.61 (10−6)
M 4.41 (10−6) 2.19 (10−7) 5.59 (10−7) 1.17 (10−6)
L95 3.71 (10−7) 1.84 (10−8) 4.69 (10−8) 9.80 (10−8)

Male
U95 3.85 (10−5) 1.92 (10−6) 4.93 (10−6) 1.02 (10−5)
M 8.07 (10−6) 4.03 (10−7) 1.02 (10−6) 2.14 (10−6)
L95 6.79 (10−7) 3.37 (10−8) 8.56 (10−8) 1.79 (10−7)

a—Probability of infection; b—Probability of illness; c—Moderate disability-adjusted life years (DALY) (Pontiac
Fever); d—Severe DALY (Legionaries’ Disease); e—Post Acute DALY; f—Upper 95th Percentile; g—Median; h—Lower
95th Percentile; i—Combined Ages Pinf using equation 8 used; j—due to data from MMWR not age-adjusted.

As can be seen, and as discussed previously, modeling the probability of infection does not
represent realistic population impacts. The risk of infection incorrectly assesses equivalent risks to
adults and the elderly. This is due to the similarity of respiration volumes for these groups.

When the new method is used to model the probability of illness for the elderly population, these
risks are higher than the other age groups (Figure 3). This follows through to a higher burden of
disease using DALYs for the moderate illness (MDALY), from Pontiac Fever, post-acute illness DALY
(PDALY), and severe illness (SDALY). When modeling infection, there is no significant difference
between ages—ANOVA p = 0.12. When modeling Pill and DALY, there is a significant difference
between ages for probability of illness—p = 4 (10−4), PDALY—p = 3 (10−4), SDALY—p = 3 (10−4), and
MDALY—p = 4 (10−4).
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3.4. Sex Demographic Risks

Risk results for the sex demographics can be seen in Figure 5. The male population has increased risk
of severe and post-acute DALYs as compared to the female population. This is also representative of known
clinical manifestations of legionellosis since men have more frequent illnesses and fatalities [13,24,50].
The differences between sex were statistically significant for only SDALY p = 3 (10−4) and PDALY p = 1
(10−3).
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4. Discussion

4.1. Interpretation of Results

A sensitivity analysis was conducted for the example QMRA model, but the morbidity ratio proxy
could not be included since it can only be estimated as a point value. Thus, without variation in the
Monte Carlo simulation, it cannot be included in the sensitivity analysis. However, as can be seen in
Figures 6–8, the concentration of L. pneumophila in the water is the second most critical parameter in the
example QMRA model, just following the exponential dose-response model parameter (k). It is also
important to note that the deposition fraction within the respiratory system (DF values) demonstrate
a negative impact on the estimated risks, until the third region of the lungs (DF3 in Figures 6–8).
This demonstrates fidelity to the reality of L. pneumophila needing to reach the alveolated third region of
the lung to develop an infection in the host. The model for children demonstrates a shift from negative
to lessened but positive impact from the inhalation rate variable, all the other relationships remaining
the same. A sensitivity analysis for the elderly demonstrated the same impacts as adults but without
an inhalation rate since that was a point value as well.
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In currently used L. pneumophila QMRA models [29,31,60], risk estimations including host-age
heterogeneity have not been included, quite likely due to the limitation in the dose-response model
derivation that inspired this research. In this research’s QMRA model, the improvement in modeling the
Pill and DALY as compared to Pinf is highlighted best for elderly populations. The elderly population is
the group best known clinically to demonstrate a significant increase in susceptibility to L. pneumophila,
including the likelihood of LD and mortality. The method developed in this research derives morbidity
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ratio proxies to model Pill and health outcome specific DALYs for each demographic group. This is the
first instance of this level of resolution for specific demographics in QMRA modeling. This level of
resolution is important to target future research towards sampling location for exposure intervention
or research to explain sex and racial differences in LD risks.

A more robust method would involve a large case-control study that quantifies exposure levels
to determine morbidity ratios for each of the demographic groups. Another method would be an
advanced dose-response model to model the risk of illness in specific populations. These dose-response
experiments would be limited to host-age and gender since only animal models could be used for
L. pneumophila exposure experiments. However, as has been demonstrated in other advanced dose
response models, these differences from age and other factors can be included in the mechanistic
dose response models without requiring re-derivation [38,40,61]. Lastly, it may be possible to include
host cell infectivity of L. pneumophila and cofactors of human illness susceptibility cofactors using an
environmentally mediated transmission modeling framework [62]. The difficulty in this is like the
case-control study, in that characterizing the exposures and linking them to health outcomes in the
cohorts will be the most challenging aspect to model. However, by leveraging more complex methods
of air transport, such as computational fluid dynamics, may provide the level of precision needed to
design and operate such studies.

With regards to the source of the dose-response parameter (k), there is possible confusion over the
host animal used in the dose-response experiments–guinea pigs. As was demonstrated in Bartrand et
al. (2008) [62] and is discussed in greater detail in Weir 2016 [38], there is no need to adjust for host
animal species. This is because the mechanistic dose-response models are derived using generalized
pathogenesis principles and are derived as single-hit infection models. Therefore, so long as the host
species is competent and can be infected via the same exposure route, it is a competent host species,
and will not require adjustment to humans. This contrasts with toxicological dose-response modeling,
where the body weight of the host must be accounted for due in major part to the toxin or toxicant
needing to be digested and metabolized, from which impacts are body-size dependent. This is not
the same when modeling the probability of infection since infection from a single-hit perspective is
dependent on a cell being infected and allowing for the propagation of the infection.

4.2. Model Limitations

This model is limited in three primary areas. First, the model uses an approximation of the
L. pneumophila concentration in premise plumbing systems. A further refined or advanced model
that accounts for growth and persistence of L. pneumophila in plumbing systems will improve this
substantially. Second, the development of estimates of the morbidity ratio proxy should be replaced
with true morbidity ratios that are estimated from the aforementioned case-control study or replaced
with an advanced dose-response model. Third, as has been discussed previously, a more complete
assessment and incorporation of different susceptibility within the population can be accomplished by
incorporating additional cofactors in the dose-response model. However, as also discussed, this is a
first step in the improvement of Legionellosis risk estimation.

4.3. Other Potential Methods for Future Research

A method of back-calculating a probability of illness given exposure by Hamilton et al. (2017)
is another possible means of modeling the probability of illness [63]. However, their method uses
a very generalized assumption of non-tubercular Mycobacterium lung diseases attributable to the
Mycobacterium avium complex. The underlying assumption of rates of illness for a broad set of
bacterial agents presents severe limitations to the expandability of that method as well as the accuracy
of the estimates from it. Furthermore, the Hamilton et al. (2017) method does not overcome the
inherently assumed host homogeneity in current microbial dose-response modeling.

Another potential method to model the probability of illness is to use a mortality dose-response
model. The rationale is that mortality results from severe illness. However, this still uses and potentially
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exacerbates the assumed homogeneity of response within hosts. Furthermore, the doses required to
result in observed probabilities of mortality in controlled experiments are significantly higher than
for infection, thus losing low dose resolution. This makes a QMRA model that uses such an extreme
health outcome inefficient for modeling realistic interventions.

This method and the need for it highlights the fundamental limitation with current mechanistic
microbial dose-response models for microbial hazards. While capable of use for multiple pathogens,
exposure routes, and host species, their capabilities are limited to the simple distilled approximation
of general pathogenesis. The second-generation dose response models, starting with Weir and Haas
(2009), demonstrate the potential to advance the current mechanistic dose response models [40,41,64].
This gives further credence to the need for third-generation microbial dose-response models [42,65].
However, this third-generation model will require an implicit inclusion of host-side dynamics,
for example, host heterogeneity, thus not solely focused on the pathogens’ ability to generate a response.

4.4. Broader Impacts of This Research

This QMRA model can be used to develop advanced risk management strategies. There is a
growing interest in understanding how premise plumbing pathogens are affecting healthcare facility
populations. This improved QMRA modeling method for L. pneumophila illness and DALYs will
make for an ideal tool, including its capability to model specific flow rates. The importance of this
capability is reinforced with the significant difference in risk outcomes between modeled flow rates.
For engineers, flow rate is a critical component of plumbing design, thus broadening the use and
importance of this QMRA model.

By modeling host heterogeneity, accurately using this research’s method estimates of the likelihood
of health risks are more precise for the real population risks. This will make the interventions more
responsive to the population members’ needs and risks. Further, in Hamilton et al. (2019) [31],
critical concentrations and, thereby, reduction targets were identified using QMRA models. That
QMRA model can be easily adapted using the methodology from this research to include diverse
populations in the building being modeled. This will, then, also output a range of health effects to
include severe, moderate, and post-acute health outcomes, previously possible. Consequently, any
monitoring programs developed using this QMRA modeling methodology or monitoring results used
to assess risks to the population will be more precise and representative of the population.
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