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Abstract: The Richards’-equation is widely used for modeling complex soil water dynamics in the
vadose zone. Usually, the Richards’-equation is simulated with the Finite Element Method, the Finite
Difference Method, or the Finite Volume Method. In all three cases, huge systems of equations are to
be solved, which is computationally expensive. By employing the free software library AMGCL, a
reduction of the computational running time of up to 79% was achieved without losing accuracy.
Seven models with different soils and geometries were tested, and the analysis of these tests showed,
that AMGCL causes a speedup in all models with 20,000 or more nodes. However, the numerical
overhead of AMGCL causes a slowdown in all models with 20,000 or fewer nodes.
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1. Introduction

The vadose zone extends from the surface of the Earth down to the groundwater-table. This region
is a habitat for bacteria and other microorganisms, some of which clean water while it travels through
this zone. However, human activities in agriculture pollute the vadose zone and the groundwater
with chlorine, nitrate [1], and hormones [2]. Industrial activities pollute the vadose zone and the
groundwater with radioactive [3], petrochemical [4], and pharmaceutical [5] compounds. Some of
these acts of pollution have the potential to change the properties of the vadose zone and the aquifer
irreversibly [6] which in turn threatens the quality of groundwater in some regions permanently.

Land use can influence the amount of water in the vadose zone and the groundwater level [7].
The extraction of groundwater for irrigation can lead to land subsidence, especially in arid regions [8].
However, too much water in a slope may cause slope failure [9].

All this underlines the importance of being able to simulate the vadose zone. Accurate simulations
of the vadose zone can aid in the decision on how to react to an incident of pollution. Also, changes in
land use and their impact on the recharge of the aquifer can be simulated. Furthermore, the decision to
evacuate areas under a slope can be supported with accurate simulations of the vadose zone.

The Richards’-equation is widely used for modeling complex soil water dynamics in the vadose
zone [10]:
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Here, θ represents the water content, i, j ∈ {x, z} for a 2-dimensional formulation and i, j ∈
{
x, y, z

}
for a 3-dimensional consideration where z is the vertical dimension, K is the hydraulic conductivity, KA

i, j
is the anisotropy tensor, h is the pressure head, and S is a sink term that models the in- and outflow over
the system boundaries like evapotranspiration and precipitation. Thereby, Equation (1) formulates,
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that the change in water content is caused by the seepage flow that is caused by pressure and gravity
and by the in- and outflow of water over the system boundaries.

The aim of this study is to show that the numerical simulation of Equation (1) can be sped up by
using the free software library AMGCL [11]. In Section 2, an overview on how equation systems that
arise from numerical discretizations of Equation (1) are solved is given. In Section 3, AMGCL and
PCSiWaPro [12] are introduced. The metrics that are used to compare the performance of the solver
in PCSiWaPro and AMGCL are introduced in Section 4. In Section 5, models are presented that are
used to make the comparison of the solver in PCSiWaPro and AMGCL. The results obtained from the
simulations of these models are presented in Section 6. Section 7 finishes this study with a discussion
and conclusion.

2. Solving Equation Systems that Arise from the Numerical Discretization of the Richards’
Equation

There are several software packages available for the simulation of Equation (1). The most
prominent are FEFLOW [13], FEMWATER [14], HydroGeoSphere [15], HYDRUS [16], PCSiWaPro,
STOMP [17], SWMS [18], TOUGH3 [19], VS2D [20], and VSAFT2 [21].

Equation (1) is usually simulated with the Finite Element Method [22], the Finite Difference
Method [22] or the Finite Volume Method [23].

Equation (1) is modelled with Finite Elements in FEFLOW, HydroGeoSphere, HYDRUS,
PCSiWaPro, SWMS, and VSAFT2. The Finite Difference Method is used in STOMP, TOUGH3
and VS2D. The Finite Volume Method is considered in theoretical works [24,25], and also, there are
some implementations of Equation (1) in the free numerical simulation toolbox OpenFOAM that
discretize Equation (1) with the Finite Volume Method [26,27].

Whatever scheme is chosen to simulate Equation (1), the result is always an equation system of
the form

Ax = b, (2)

where A is a matrix and x and b are vectors. In general, there are two ways to solve Equation (2) for x:
The direct solution with the Gauss algorithm or “relatives” of it [22], or iterative methods [28].

The Gauss algorithm is computationally expensive which is why the Gauss algorithm is mainly
used for small systems of equations. A “cousin” of the Gauss algorithm is the LU-decomposition [22],
where one employs the Gauss algorithm to compute two matrices L and U where L is a lower triangular
matrix and U is an upper triangular matrix, so that LU = A. A “cousin” of LU is the Cholesky
factorization [22], which demands A to be symmetric, where a lower triangular matrix L is computed
so that LLT = A. The LU-decomposition or the Cholesky-decomposition are popular in situations,
where one wants to solve an equation system as in Equation (2) with constant matrix A and changing
right hand sides b, because once the decompositions are computed, Ax = b can be solved, in case of
the LU-decomposition, as LUx = b, which in turn can be solved as Ly = b with y = Ux. Both of these
equation systems are triangular, and therefore these systems of equations can be solved very fast.

In the case of iterative procedures, one computes a sequence of approximate solutions xi, so that
the residual ri = b−Axi vanishes with growing i. There are several different schemes to compute this
sequence. The most famous schemes are Gauss–Seidel [28], Krylow Subspace [28] algorithms, the
Multigrid [28] method, and Stone’s [29] method.

The basic idea of Gauss–Seidel is to decompose the matrix A = D− E− F where D is a diagonal
matrix, E is a lower triangular matrix and F is an upper triangular matrix. From this, a recursion can
be built: xi+1 = (D− E)−1Fxi + (D− E)−1b. Instead of computing y = (D− E)−1v for a given vector
v = Fxi or v = b, one solves (D− E)y = v for y which is computationally cheap since (D− E) is a lower
triangular matrix.

Krylow Subspace schemes employ the idea to compute the error r0 = b −Ax0, and to create a
subspace of dimension i from this error by defining Ki = span

{
r0, Ar0, · · · , Ai−1r0

}
. Then, one chooses

xi ∈ x0 + Ki so that b−Axi is perpendicular on Li, where Li is another subspace of dimension i. The
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simplest choice is Li = Ki which is the starting point for the Conjugate Gradient algorithm [28]. In
the Conjugate Gradient algorithm, the update of approximation xi to xi+1 is made by employing a
search direction pi, that is computed with the vectors ri = b −Axi and pi−1. The search directions
p0, p1, . . . hold (Api)

Tp j = 0 for i , j, which explains the term “conjugate” in Conjugate Gradient.
ORTHOMIN [28] is a Krylow-type algorithm, where the search direction pi is computed with the
vectors ri and pi−m, pi−m+1, . . . , pi−1, where the memory m begins in the first iteration with m = 1 and
grows with each iteration i until a maximum k is reached, where m is restarted with m = 1. All Krylow
Subspace algorithms aim at minimizing the norm of ri, and the use of multiple past search directions
as well as the reset of the number of past search directions every k iterations help ORTHOMIN to not
get stuck in local minima. Another Krylow-type algorithm is BICGSTAB [28] where the update of xi is
made with a search direction pi and a vector si that is a scaled version of the resulting residual which in
turn is caused by the update of xi with pi. Vector si is scaled, so that the update of xi with pi and si
minimizes the norm of the residual ri+1 = b −Axi+1. This choice of si stabilizes the convergence of
BICGSTAB. Aside from the Conjugate Gradient algorithm, ORTHOMIN and BICGSTAB, there are
many other Krylow Subspace schemes. A good overview over these schemes can be found in [28].

Krylow schemes can be sped up by preconditioning. In each iteration, the approximation error
can be computed: ri = b−Axi, then xi + A−1ri = xi + A−1Ax−A−1Axi = xi + x− xi = x. But since A−1

is usually unknown and computationally expensive to compute, one searches for a matrix M so that
M ≈ A−1. A suitable matrix M is called a preconditioner. The most famous preconditioner is ILU
(Incomplete LU [28]), where one attempts to approximate A by LU ≈ A, where L is a lower triangular
matrix and U is an upper triangular matrix. L and U are not computed so that LU = A because this
would be too expensive computationally. A vector v is preconditioned with ILU by solving LUy = v
for y, which is computationally cheap since L and U are both triangular matrices. However, this
scheme cannot be parallelized, because in order to solve a triangular equation system, one has to solve
the rows consecutively. Another popular preconditioner is SPAI (sparse approximate inverse [30]).
Here, one attempts to compute a matrix M, so that the sum over the squares of the entries of I −MA is
minimal, where I is the identity matrix. The advantage of SPAI is, that SPAI is constructed in a way that
M can be computed massively parallel. There also exists polynomial preconditioning [28]: consider
Ã = ωA = I − B, where ω is chosen, so that the largest absolute eigenvalue of B is smaller than 1, then
the following relationship holds: Ã−1 =

∑
k Bk. This preconditioner is computationally very expensive

since it demands many matrix-matrix-multiplications, but it can be massively parallelized. Also, this
preconditioner demands enormous amounts of storage. Usually, the matrices involved with Finite
Element, Finite Difference, or Finite Volume models are sparse, which means, that each row of the
matrices has only a few entries which need to be kept in storage. If one multiplies matrices with each
other, this sparsity is lost in general, which results in huge demands for storage.

Another approach to solve large equation systems is the Multigrid for which there are two
variations: The geometric Multigrid and the algebraic Multigrid. In the case of the geometric
Multigrid [28], the discretization of the problem underlying Equation (2) is mapped to a sequence of
consecutive coarser discretizations, and for each level of discretization, an equation system is created.
Thereby, the equation system gets smaller with each level of discretization. On a given level, the current
approximation error is reduced by a simple iterative scheme. This reduction of the approximation error
is called relaxation. Simple algorithms are preferred for the relaxation, because one does not want to
compute the exact solution, but rather a good approximation which can be computed fast. Algorithms
like Gauss–Seidel or SPAI0 [31] are popular algorithms for relaxation. SPAI0 defines a smoother

xi+1 = xi −M(Axi − b), where the matrix M is a diagonal matrix with Mk,k =
Ak,k∑
j A2

k, j
. Due to its simple

structure, M can be computed in parallel. Also, the smoother SPAI0 can be highly parallelized, since it
consists only of matrix-vector products and vector subtractions. On a given level, after the relaxation,
the current approximation is either mapped to a coarser level or to a finer level. The mapping of the
current approximation from a coarse- to a fine level is called prolongation, the mapping from a fine
level to a coarse level is called restriction. There are different schemes like the V-cycle [28], where one
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starts on the finest level, relaxes and restricts until the coarsest level is reached, and then relaxes and
prolongs until the finest level is reached, where the sequence of restrictions and prolongations forms
a “V”. In the W-cycle [28], one arranges the restrictions and prolongations, so that they form a “W”.
Since the dimensionality of the equation systems sinks with the coarseness of a level, the operations on
the coarse levels are computationally very cheap. To sum up the idea of the geometric Multigrid, one
maps a discretized geometry to a sequence of discretized geometries with increasing coarseness. For
each of these grids, an equation system is formulated and the solution on each grid is approximated
and mapped to the next grid. The problem with the geometric Multigrid is, however, that it shows
difficulties with anisotropic coefficients of the underlying partial differential equation [28]. These
problems arise from the fact, that if the coefficients of the underlying partial differential equation are
anisotropic, then errors are automatically introduced into the solution with the step from the fine
grid to the coarse grid and vice versa. In the case of Equation (1), the coefficients are anisotropic,
because each point in space has a pressure head which defines the hydraulic conductivity at that point.
Therefore, if the pressure heads are anisotropic, then the hydraulic conductivity in Equation (1) is
anisotropic. To illustrate the problem, consider the simple model of two nodes, where both nodes have
a unique pressure head. If one would coarsen this simple model, one would restrict both nodes to one
node. The node on the coarser level, however, can only reflect the hydraulic conductivity of at most
one node from the finer level. Therefore, geometric Multigrid solvers perform poorly on discretizations
of Equation (1).

In the case of the algebraic Multigrid, one does not bother with the geometry of the discretization,
but rather one creates from the original equation system a sequence of equation systems with decreasing
sizes [28]. There are several schemes to compute the smaller equation system from a given equation
system, the most famous schemes are the ones by Ruge and Stüben [32] and Smoothed Aggregation [33].
The basic idea of Ruge and Stüben is, to interpret a matrix A as a graph, where the entry Ak, j tells, how
strongly the row k is connected to the row j. Then, one uses this strength of connection to decide,
which rows need to be represented in the next coarser level, the C rows, and which rows need not
to be represented, the F rows. In the Ruge and Stüben scheme, k is strongly negative coupled to j
if −Ak, j ≥ εmax

Ak,l<0

∣∣∣Ak,l
∣∣∣ for some 0 < ε < 1. This strongly negative coupling is then used to define the

set Sk =
{
j : Ak, j , 0, k strongly negative coupled to j

}
. The transpose of this set is ST

k =
{
j : k ∈ S j

}
.

Therefore, ST
k contains all j that are strongly negative coupled to k. Once, the sets ST

k are computed
for each row, one iteratively selects one k, puts this row into the C set, and the rows in ST

k into the
F set. Since this selection has to be performed iteratively, it cannot be parallelized. However, the
information from the rows in the F set must not vanish, therefore the information from these rows is
interpolated into the rows from the C set. Thereby, the problem with anisotropic coefficients in the
geometric Multigrid is circumvented. In the Smoothed Aggregation algorithm, for each row k, the
neighborhood is defined by Nk(ε) =

{
j :

∣∣∣Ak, j
∣∣∣ ≥ ε√Ak,kA j, j

}
. For a given k, k is put into the C set, and

the j in Nk(ε) are put into the F set. As with the Ruge and Stüben algorithm, the information from
the rows in the F set is interpolated into the rows from the C set. In both algorithms, the solution is
computed as with the geometric Multigrid once the equation systems are created.

The last approach to solve large equation systems that shall be considered in this paper is Stone’s
Method. The core of Stone’s Method is to decompose A = S − T. Then, one can formulate the iterative
scheme Sxi+1 = Txi + b. Now, one has to solve this equation system for xi+1 which is why one chooses
S, so that the decomposition S = LU, where L is a lower triangular matrix and U is an upper triangular
matrix, is easy to compute.

FEFLOW offers direct Gaussian-type solvers, Krylow Subspace schemes and geometric and
algebraic Multigrid. The Krylow schemes can be preconditioned with ILU. FEMWATER has
Gauss–Seidel and preconditioned Conjugate Gradient solvers. The preconditioners are ILU and
polynomial. HydroGeoSphere uses ORTHOMIN with ILU as preconditioner. HYDRUS, PCSiWaPro,
STOMP and SWMS employ the Gauss-algorithm and preconditioned Conjugate Gradient with ILU
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as preconditioner. TOUGH3 offers the Gauss-algorithm and ILU-preconditioned Krylow Subspace
schemes. VS2D uses Stone’s method as solver, and VSAFT2 has the ILU-preconditioned Conjugate
Gradient as solver.

3. AMGCL and PCSiWaPro

As one can see, most software packages that solve the Richards’-equation with Krylow-type
algorithms employ the ILU preconditioner. As shown above, ILU suffers from two aspects: On the
one hand, ILU itself can in general only be a poor approximation to the real inverse, and on the other
hand, ILU cannot be parallelized which makes preconditioning with ILU slow. Hence, there is a
need for a highly parallelizable and yet accurate preconditioner for Krylow-type solvers of equation
systems arising from discretizations of Equation (1). Because if one had a highly parallelizable and yet
accurate preconditioner, then this preconditioner would speed up the solution of equation systems
arising from discretizations of Equation (1). This speedup can then be translated into larger models
that simulate the system in question in more detail, or one could use this additional time for simulating
multiple scenarios.

Demidov published AMGCL, a C++-library with several Krylow-type solvers for which there
are several algebraic Multigrid preconditioners available. AMGCL supports parallelization via
OpenMP [34], CUDA [35] and MPI [36]. In the standard settings, AMGCL performs preconditioning
with an algebraic Multigrid and employs the V-cycle, and the equation system is coarsened until the
coarsest level has at most 3000 nodes. On the coarsest level, a LU-solver is employed. According to
the standard settings of AMGCL, on each level two iterations of relaxation are performed. AMGCL
offers algebraic Multigrid preconditioning according to the Ruge and Stüben scheme and Smoothed
Aggregation. For the relaxation, there are Gauss–Seidel-, ILU- and SPAI-smoothers.

The development of PCSiWaPro began in the early 2000s when a group of scientists at the Technical
University of Dresden took the numerical simulation code of SWMS_2D and extended this code by
coupling the numerical kernel of SWMS_2D with a GUI that allows the user to create, modify and save
2-dimensional Finite Element models of the Richards′ equation. Also, PCSiWaPro extends SWMS_2D
by offering a database that contains the properties of various soils according to DIN 4220 [37] which
is a standard for the designation, classification and deduction of soil parameters in Germany. The
parameters of the soils can also be set manually. In order to extend the modelling capabilities of
PCSiWaPro, the numerical kernel of SWMS_3D [38] was added in 2019. Furthermore, the extension
“Weather Generator” allows to create atmospheric boundary conditions from measurement data.
PCSiWaPro uses the van Genuchten (which shall be abbreviated by VG) model [39,40] to describe
the retention curve and the unsaturated hydraulic conductivity function of the soils in the model.
As stated above, PCSiWaPro uses a Gaussian-type solver (for equation systems with less than 500
dimensions) and the ILU-preconditioned Conjugate Gradient (for equation systems with 500 or more
dimensions) to solve equation systems that arise from the numerical approximation of Equation (1). A
relative and an absolute tolerance of 1e−6 and a maximum of 1000 iterations are used as criteria for
convergence and divergence. PCSiWaPro supports varying time step sizes. If the computation of a
time step costs less than 4 calls of the solver, then the time step size is increased by a user defined factor.
If the computation of a time step costs more than 6 calls of the solver, then the time step size is reduced
by a user defined factor.

In order to investigate whether AMGCL can speed up the simulation of Equation (1), AMGCL was
integrated into PCSiWaPro. The AMGCL solver was set up to employ BICGSTAB with an algebraic
Multigrid-preconditioner which is based on Smoothed Aggregation where SPAI0 is used for relaxation.

BICGSTAB was chosen, due to its stabilized convergence behavior which makes the solver more
robust. Initial tests revealed, that BICGSTAB preconditioned with algebraic Multigrid based on
Smoothed Aggregation computes faster than BICGSTAB preconditioned with algebraic Multigrid
based on the algorithm by Ruge and Stüben, therefore algebraic Multgrid with Smoothed Aggregation
was chosen as preconditioner. SPAI0 was chosen for the relaxation, because SPAI0 was designed with
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the intention of massive parallelization, whereas, for example, the Gauss–Seidel scheme or ILU cannot
be parallelized really well since triangular equation systems have to be solved.

Since the performance of AMGCL is to be compared with the ILU-preconditioned Conjugate
Gradient solver, the absolute and relative tolerance of 1e-6 and a maximum of 1000 iterations were
coded into AMGCL to have a fair comparison.

PCSiWaPro with the AMGCL-solver with BICGSTAB as solver and algebraic Multigrid
preconditioning based on the Smoothed Aggregation scheme with SPAI0 relaxation will be from now
on referenced as PCSiWaPro AMGCL, whereas PCSiWaPro with the ILU-preconditioned Conjugate
Gradient will be referenced as PCSiWaPro Original.

4. Method

PCSiWaPro AMGCL and PCSiWaPro Original were compared on 7 synthetic models which will
be described in the next section. These models were tuned with computations run in PCSiWaPro
Original. The number of nodes in the models ranges from 7000 nodes to 2,400,000 nodes. Two models
consider simple rectangular shapes, one model considers a rectangular cuboid, whereas the other four
models consider more complex geometries. Four models consist of only one type of soil, the other
three models each have at least two different kinds of soil.

All computations for the 6 2-dimensional models were run on a desktop PC running Windows
8 with an Intel Core i7-6700 CPU and 8 GB of RAM. During the computations, all 8 cores that are
available on the i7-6700 CPU were used since PCSiWaPro and AMGCL both support parallelization
with OpenMP. The 3-dimensional model was simulated on a computer running Windows Server 2012 r2
with an Intel Core i7-6800K CPU and 32 GB of RAM, and all 6 cores were used during the computations.

For the comparison of PCSiWaPro AMGCL with PCSiWaPro Original, three metrics were
considered: the computational running time of the simulations which was measured in seconds, the
R2-value between the pressure heads computed with PCSiWaPro Original and PCSiWaPro AMGCL,
and the relative cumulative mass balance error (which shall abbreviated with RCMBE) computed with
these two programs.

The R2-value between the pressure heads computed with PCSiWaPro Original and PCSiWaPro
AMGCL was chosen as a metric, because PCSiWaPro solves Equation (1) for the pressured heads.

R2(xi, yi) = 1−

∑
j

(
x j

i − y j
i

)2

∑
j

(
x j

i − µi
)2 , (3)

The R2-value was computed with Equation (3), where xi is the vector of the pressure heads
computed with PCSiWaPro Original at time point ti, and x j

i is the j-th entry of this vector. µi is the
mean of the values in xi. yi is the vector of the pressure heads computed with PCSiWaPro AMGCL at
time point ti, and y j

i is the j-th entry of this vector. The nominator in Equation (3) is the squared error
metric that computes the squared distance between the vectors xi and yi. This distance is normalized
by the denominator. The normalization allows the R2-value of different time steps or models to be
compared. The best possible R2-value is 1 when xi and yi are identical. The smaller the R2-value, the
greater the distance between the vectors xi and yi. The R2-value was computed for every time step,
and thereby, for each model, a time series of R2-values was computed. The R2-values were rounded to
4 digits after the decimal point.

RCMBE(ti) =

∣∣∣∣Vti −Vt0 +
∫ ti

t0
RWU(t)dt−

∫ ti
t0

∑
j∈Γ Q j(t)dt

∣∣∣∣
max

(∑
e

∣∣∣∣Ve
ti
−Ve

t0

∣∣∣∣, ∫ ti
t0

(
RWU(t) +

∑
j∈Γ

∣∣∣Q j(t)
∣∣∣)dt

) (4)

The RCMBE was computed with Equation (4). Here, Vt0 is the amount of water in the model at
time point t0. Vti is the amount of water in the model at time point ti. RWU(t) is the root water uptake
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at time point t. Γ is the set of boundary nodes of the model. Q j(t) is the flow over the boundary in
boundary node j at time point t. Ve

t0
is the amount of water in element e at time point t0, Ve

ti
is the

amount of water in element e at time point ti. Therefore, the nominator in Equation (4) computes the
absolute cumulative mass balance error at time point ti by considering the difference in water mass
between the first time point t0 and the current time point ti, the root water uptake between the first
time point t0 and the current time point ti, and the in- and outflow of water over the system boundaries
between the first time point t0 and the current time point ti. The denominator compares two terms and
chooses the bigger one. The first term is the sum of the absolute changes in water mass in each element
between the first time point t0 and the current time point ti. The second term is the integral over the
root water uptake and the sum of the absolute values of the mass transfer over system boundaries
in the boundary nodes. The RCMBE is a proxy to how well the numerical approximation works,
because if there were no numerical approximation and no rounding errors, the nominator in Equation
(4) would be 0, because the change in water mass between the first and the current time point would be
explained by the amount of water removed by the plants and the amount of water that left and entered
the system over the boundaries. If the nominator in Equation (4) is not equal to 0, then the numerical
approximation and rounding errors created or destroyed water artificially. The code of PCSiWaPro
Original was used during the tuning of the models that will be presented in the next section. One aim
of the tuning was, to keep the RCMBE below 1% for all time points in the simulation period.

5. Description of Synthetic Models

Figure 1 gives a first overview over the 2-dimensional models used in the comparison. The
properties of their soils can be read in Table 1. Figure 2 gives an overview over Model 7.
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Figure 1. An overview over the shape of models 1 to 6, their sizes and the layout of the soil layers. The
colors mistyrose, lightcyan, and darkgoldenrod are reserved for soils. Black depicts a no-flow boundary
condition, blue depicts a constant pressure head boundary condition. Red, green, and grey depict a time
dependent infiltration rate, darkviolet and brown depict a system dependent boundary condition: As
long as the nodes are not saturated, darkviolet and brown nodes depict a no-flow boundary condition,
and once the nodes are saturated, the boundary condition switches to a boundary condition with a
constant pressure head of 0 m. Orange depicts a time dependent pressure head, olive depicts a seepage
face, yellow depicts a constant pressure head and only outflow is allowed in yellow nodes.

Table 1. Overview over the parameters of the soils in Figures 1 and 2.

Soil Porosity Permeability Residual
Air Content

Residual
Water Content VG α VG n VG m VG λ

- % m/s % % 1/m - - -

1 39 5 × 10−5 0 5 3 2.2 0.545 0.5
2 40 1.67 × 10−5 0 2 4 1.9 0.47 0.5
3 30 1 × 10−3 0 1 55 2 0.5 0.5
4 40 1 × 10−5 0 5 1 1.6 0.33 0.5
5 40 1.06 × 10−4 0 4 4.5 4 0.75 0.5
6 30 1.83 × 10−2 0 1 100 3 0.67 0.5
7 30 1.06 × 10−4 0 4 4.5 4 0.75 0.5
8 43 2.89 × 10−6 0 7.8 3.6 1.56 0.36 0.5
9 41 2 × 10−5 0 5.7 12.4 2.28 0.561 0.5

10 36 1.65 × 10−3 0 1 35 3 0.666 0.5
11 43 1.16 × 10−8 0 7.8 3.6 1.56 0.641 0.5
12 43 2.89 × 10−6 0 7.8 3.6 1.56 0.36 0.5

5.1. Model 1

Model 1 is a column of 1 m in height and 0.15 m in width. It is based on a setup of an infiltration
experiment with polluted water. The upper boundary condition is described by a time-dependent
infiltration rate (depicted in red in Model 1 in Figure 1) whereas the lower boundary condition is system
dependent (depicted in darkviolet in Model 1 in Figure 1): while the lower boundary is unsaturated, it
is handled as a no-flow boundary condition and the pressure head is calculated. As soon as the lower
boundary is saturated, the boundary condition switches to a boundary condition of the first type with
a prescribed pressure head of zero, and thus, the outflow is calculated. The model is discretized with
7178 nodes. The parameters of Soil 1 from Table 1 were used to describe the hydraulic properties of the
soil (depicted in mistyrose in Model 1 in Figure 1). The black nodes in Model 1 in Figure 1 depict a
no-flow boundary condition.



Water 2020, 12, 286 9 of 18Water 2020, 12, x FOR PEER REVIEW 9 of 20 

 

 

Figure 2. Overview over Model 7. Blue depicts a constant pressure head boundary condition, cyan 

depicts a free drainage boundary condition. The rest of the surface of the cuboid has a no-flow 

boundary condition which is not depicted. 

5.1. Model 1 

Model 1 is a column of 1 m in height and 0.15 m in width. It is based on a setup of an infiltration 

experiment with polluted water. The upper boundary condition is described by a time-dependent 

infiltration rate (depicted in red in Model 1 in Error! Reference source not found.) whereas the lower 

oundary condition is system dependent (depicted in darkviolet in Model 1 in Error! Reference source 

not found.): while the lower boundary is unsaturated, it is handled as a no-flow boundary condition 

and the pressure head is calculated. As soon as the lower boundary is saturated, the boundary 

Figure 2. Overview over Model 7. Blue depicts a constant pressure head boundary condition, cyan
depicts a free drainage boundary condition. The rest of the surface of the cuboid has a no-flow boundary
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5.2. Model 2

Model 2 is based on a physical experiment setup [41] and describes a small-scale levee of a
homogenous soil. The foot-width of the model-scale levee is 3.38 m, the slope angle of 1:2 according to
a height of 0.77 m. At the levee-crest, a rubber wall is installed having an anchoring depth of 100% of
the dam height. Below the levee, a berm with a height of 0.3 m was added at both, the water and the
valley side of the dam, to allow for exchange of the inflowing water with the groundwater. On the
downstream face, a drainage tube was implemented to effectively discharge excess water (depicted in
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brown in Model 2 in Figure 1). The model is discretized into 11,896 nodes. The parameters from Soil 2
in Table 1 were used for the hydraulic properties of the homogenous soil layer, the soil is depicted in
mistyrose in Model 2 in Figure 1. The black nodes in Model 2 in Figure 1 depict a no-flow boundary
condition. A flood is simulated by a time dependent pressure head depicted in orange nodes in Model
2 in Figure 1. Precipitation is modeled by a time dependent infiltration rate depicted in red nodes in
Model 2 in Figure 1. The olive nodes in Model 2 in Figure 1 model a seepage face where the flow is 0
and the pressure head is computed.

5.3. Model 3

Model 3 is a landfill site of 20 m height and 150 m width which is constructed with a surface
sealing system using the principle of a capillary barrier. It consists of a coarse layer as capillary block
(filling material, Soil 3 in Table 1, depicted in mistyrose in Model 3 in Figure 1) and a fine layer as cover
(Soil 4 in Table 1, depicted in brown in Model 3 in Figure 1). The aim of the model is to prove the
functionality of the sealing system under different precipitation scenarios and thicknesses of the cover
layer. Therefore, the upper boundary condition (depicted in red in Model 3 in Figure 1) infiltrates
water with varying intensity directly into the cover layer whose thickness ranges from 0.1 m to 0.3 m.
It is modelled with 53,795 nodes. The yellow nodes in Model 3 in Figure 1 depict a constant pressure
boundary condition where only outflow is allowed, whereas the black nodes in Model 3 in Figure 1
model a no-flow boundary condition.

5.4. Model 4

Model 4 is based on a physical experiment of a tipping trough. Its purpose is to simulate the
proper functionality of a capillary barrier under different inflow scenarios, slope angles, and hydraulic
properties of the built-in soil materials. The model used for the tests in this paper has a height of 0.6
m, a length of 6 m and a slope angle of 0.277 rad. Three different soil types are used: a cover layer
(capillary layer, Soil 5 in Table 1, depicted in mistyrose in Model 4 in Figure 1), a bottom layer (capillary
block, Soil 6 in Table 1, depicted in lightcyan in Model 4 in Figure 1) and a layer of filter sand (Soil
7 in Table 1, depicted in brown in Model 4 in Figure 1). On the upper left side, a water inlet with a
time-dependent influx (depicted in red nodes in Model 4 in Figure 1) is simulated while balancing
the outflow in the capillary block layer and in the filter sand (depicted in yellow nodes in Model 4 in
Figure 1). The black nodes in Model 4 in Figure 1 portray a no-flow boundary condition. To account
for the large gradient expected during the simulation run, the model is relatively fine discretized into
21,221 nodes.

5.5. Model 5

Model 5 is a column of 2 m height and 1 m in width. The properties of the soil are described as
Soil 8 in Table 1, depicted in mistyrose in Model 5 in Figure 1. The model is infiltrated by a point source
on the top of the column, depicted in blue in Model 5 in Figure 1. Aside from this, there is a no-flow
boundary condition along the boundary of the model, depicted in black nodes in Model 5 in Figure 1.
It is a synthetic, medium-scale model whose purpose is mainly to check the scalability of the numerical
approach. It consists of 501,501 nodes.

5.6. Model 6

Model 6 simulates a mini sewage plant with two neighboring infiltration basins. One basin is for
the infiltration of treated sewage water, the other is for the infiltration of rain. The dimensions of the
model are 38 m in width and 12 m in height. The infiltration basins both have a width of 6.5 m. Under
the infiltration basin for the rain water, there is a layer of gravel of 1.5 m thickness which is modelled
with Soil 10 in Table 1, depicted in lightcyan in Model 6 in Figure 1. Under the infiltration basin for
the treated sewage water, there is a layer of gravel with a thickness of 0.5 m which is modelled with
Soil 10 from Table 1, depicted in lightcyan in Model 6 in Figure 1. Between these two basins, a barrier
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(Soil 11 from Table 1, depicted in brown in Model 6 in Figure 1) is installed to prevent immediate
mixing of the infiltrated waters. The rest of the model is modelled with the sandy Soil 9 from Table 1,
depicted in mistyrose in Model 6 in Figure 1. The model is infiltrated through both infiltration basins
with individual infiltration rates and following individual time patterns, depicted in green (for the
infiltration basin for the rain) and grey (for the infiltration basin for the treated sewage water) in Model
6 in Figure 1. On the vertical boundaries of the model, there are two constant pressure head boundary
conditions to simulate steady-state groundwater, depicted in blue in Model 6 in Figure 1. Aside from
these two boundary conditions and the infiltration basins, there is a no-flow boundary condition
along the boundary of the model, depicted in black in Model 6 in Figure 1. The model consists of
54,763 nodes.

5.7. Model 7

Model 7 is a rectangular cuboid of 2 m height, 1 m width, and 1 m depth. The properties of the
soil are described as Soil 12 in Table 1. The model is infiltrated by a circular source with a diameter
of 0.33 m on the top of the cuboid (portrayed in blue in Figure 2). On the bottom, there is a free
drainage boundary condition (depicted in cyan in Figure 2), and aside from this boundary condition
and the circular source, there is a no-flow boundary condition along the boundary of the model. It
is a synthetic, large-scale model whose purpose is mainly to check the scalability of the numerical
approach. It consists of 2,377,026 nodes.

6. Results and Discussion

6.1. Comparison of the Computational Running Time

In the comparison in Table 2, the median speedup of PCSiWaPro AMGCL over PCSiWaPro
Original is 16.8%. However, there is a huge variance in the speedup. Figure 3 shows the relationship
between the speedup achieved with PCSiWaPro AMGCL over PCSiWaPro Original in relation to the
number of nodes in the model. One clearly sees, that PCSiWaPro AMGCL outperforms PCSiWaPro
Original in models with 20,000 or more nodes in terms of speed. This can be explained in the following
way: The creation of the algebraic Multigrid costs computational time. Also, operations on the grids
cost computational time, but these costs are negligible for very coarse grids if the original grid is very
fine. In AMGCL, the coarsest grid has at most 3000 nodes, therefore, if the original equation system
has 10,000 nodes, operations on the coarsest grid cost one third of the computational cost of the same
operation on the finest grid. If the original equation system has 300,000 nodes, the operations on
the coarsest grid will cost one percent of the computational cost of the same operation on the finest
grid. Therefore, with growing size of the problem, the cost for operating on the coarser grids becomes
negligible. And this explains why the speedup of PCSiWaPro AMGCL over PCSiWaPro Original
grows with the number of nodes in the model. The last two columns in Table 2 support this reasoning
for models 1 to 3 and models 5 and 6: in the simulation runs of these models, PCSiWaPro Original
and PCSiWaPro AMGCL called the solver approximately equally often, however, there is the huge
difference in computational running time documented in the first two columns of Table 2. Since the
code of PCSiWaPro AMGCL is identical with the code of PCSiWaPro Original except for the solver,
this difference in computational running time can only be explained by the computational running
time that is spent with the respective solvers. Since BICGSTAB and the Conjugate Gradient algorithm
are similar in their computational complexity, the difference in computational running time can only
be attributed to the computational complexity of the preconditioner and the quality with which the
preconditioner approximates the inverse matrix.
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Table 2. Overview over the computational running time and the number of calls of the solver of the
simulations of models 1 to 7 with PCSiWaPro Original and PCSiWaPro AMGCL.

Model
Computational

Running Time of
PCSiWaPro Original

Computational
Running Time of

PCSiWaPro AMGCL

Speedup of PCSiWaPro
AMGCL in Relation to

PCSiWaPro Original

Number of Calls of
the Solver in

PCSiWaPro Original

Number of Calls of
the Solver in

PCSiWaPro AMGCL

- s s % - -

1 168 258 −53.6 26,103 26,082
2 4 8 −100 370 370
3 1751 784 55.2 10,824 9459
4 5698 3696 35.1 239,754 126,298
5 1856 382 79.4 464 490
6 9318 7755 16.8 118,526 113,476
7 5730 4860 15.2 733 836
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Figure 3. Comparison of the speedup achieved with PCSiWaPro AMGCL over PCSiWaPro Original
in relation to the number of nodes in the model. One sees that PCSiWaPro AMGCL outperforms
PCSiWaPro Original for models with 20,000 or more nodes.

During the simulation of Model 4 however, PCSiWaPro Original called the solver almost twice as
often as PCSiWaPro AMGCL. One learns from Figure 4, that PCSiWaPro Original calls the solver more
frequently in the second half of the simulation period than PCSiWaPro AMGCL. Thus, PCSiWaPro
AMGCL achieves convergence easier than PCSiWaPro Original in the second half of the simulation
period in Model 4.

The columns considering the number of solver calls in Table 2 tell, that PCSiWaPro AMGCL has
problems with convergence in comparison with PCSiWaPro Original in Model 7 since PCSiWaPro
AMGCL needs 14% more solver calls than PCSiWaPro Original. This also shows, that the average
time spent with the solution of a given equation system arising from Model 7 is shorter in PCSiWaPro
AMGCL than in PCSiWaPro Original, since PCSiWaPro AMGCL computes faster in general in Model 7
while making more calls to the solver than PCSiWaPro Original.

Therefore, models 4 and 7 show, that there is no single best solver: whereas in Model 4 PCSiWaPro
AMGCL could achieve a speedup in comparison with PCSiWaPro Original due to its solver, in Model 7
the AMGCL solver achieves convergence with more solver calls than PCSiWaPro Original and thereby
limits the speedup.
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Figure 4. Comparison of the cumulative number of solver calls in Model 4. In the second half of
the simulation period, PCSiWaPro AMGCL (blue) calls the solver less frequent than PCSiWaPro
Original (red). This tells, that PCSiWaPro Original has greater problems with convergence than
PCSiWaPro AMGCL.

6.2. Comparison of the R2-Values between the Pressure Heads Computed with PCSiWaPro Original and
PCSiWaPro AMGCL

Table 3 shows, that PCSiWaPro Original and PCSiWaPro AMGCL basically compute the same
pressure heads. This means, that the speedup documented in Table 2 was not bought with a worsening
of the quality of the computational results.

Table 3. Overview over the R2-statistics between the pressure heads computed with PCSiWaPro
Original and PCSiWaPro AMGCL.

Model Minimal R2 Maximal R2 Mean R2 Median R2

- - - - -

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 0.9998 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0

6.3. Comparison of the RCMBE Computed with PCSiWaPro Original and PCSiWaPro AMGCL

In Table 4, a comparison of the RCMBE computed with PCSiWaPro Original and PCSiWaPro
AMGCL is given. As one can see from Table 4, the models were tuned quite well, which can be read
from the columns that represent the RCMBE statistics for PCSiWaPro Original, because this code was
used during the tuning of the models.
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Table 4. Comparison of the RCMBE computed with PCSiWaPro Original and PCSiWaPro AMGCL.

Model Relative Cumulative Mass Balance Error

-
%

PCSiWaPro Original PCSiWaPro AMGCL

Minimal Maximal Mean Median Minimal Maximal Mean Median

1 0.0006 0.1621 0.0322 0.031 0.0004 0.7444 0.0164 0.013
2 0.0001 0.0043 0.0015 0.0013 0.0 0.0123 0.0027 0.0022
3 0.3390 0.70 0.4189 0.3983 0.4113 0.8826 0.6628 0.6623
4 0.0 0.0451 0.0037 0.0028 0.0004 0.2962 0.0192 0.0131
5 0.0116 0.9663 0.5696 0.6197 0.0055 1.8195 1.0265 1.1373
6 0.0 0.0373 0.0226 0.0201 0.0 0.2589 0.2097 0.223
7 0.0008 0.1787 0.0674 0.0602 0.0003 0.3137 0.1332 0.155

According to Table 4, only Model 5 needs to be investigated, since the RCMBE computed with
PCSiWaPro AMGCL surpasses the threshold of 1%. In all the other models, this threshold is not
violated by the computational results computed with PCSiWaPro AMGCL.

Figure 5 shows the RCMBE computed with PCSiWaPro Original (red) and with PCSiWaPro
AMGCL (blue) in Model 5. In the first quarter of the simulation period, PCSiWaPro AMGCL violates
the rule of keeping the RCMBE below 1%.
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Figure 5. The RCMBE in Model 5 computed with PCSiWaPro Original (red) and PCSiWaPro AMGCL
(blue). The results computed with PCSiWaPro Original do not violate the aim of a RCMBE of at most
1%. However, the results computed with PCSiWaPro AMGCL violate this rule in the first quarter of the
simulation period.

Figure 6 shows the relationship between the computed influx and the computed RCMBE in both
programs PCSiWaPro Original (red) and PCSiWaPro AMGCL (blue) for the first 10% of the simulation
period in Model 5. PCSiWaPro solves Equation (1) for the pressure heads, therefore, since the boundary
condition that creates the influx is a constant pressure head boundary condition, the computed pressure
heads near this boundary condition must be very similar in both programs, otherwise the computed



Water 2020, 12, 286 15 of 18

influx would not be identical in both programs. Therefore, the difference in the RCMBE computed with
PCSiWaPro Original and PCSiWaPro AMGCL can only be explained by different computational results
for the pressure heads of nodes that are not near the constant pressure head boundary condition. The
existence of such nodes can be seen in the R2-statistics in Table 3.Water 2020, 12, x FOR PEER REVIEW 17 of 20 
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Figure 6. The relationship between the RCMBE computed with PCSiWaPro Original (red) and
PCSiWaPro AMGCL (blue) and the computed influx for the first 10% of the simulation period in Model
5. Since the computed influx is identical in both programs, the difference in the mass balance must be
explained by differently computed pressure heads.

This comparison of RCMBE shows that PCSiWaPro AMGCL performs slightly worse than
PCSiWaPro Original.

7. Conclusions

The comparisons above show, that PCSiWaPro AMGCL computes results that are of similar
quality as the results computed with PCSiWaPro Original while being faster for larger models (20,000+

nodes). In all cases considered in this paper, the R2-values between the pressure heads computed with
PCSiWaPro Original and PCSiWaPro AMGCL were in most models 1, and always greater than 0.999.
Yet in one case, PCSiWaPro AMGCL computed results that violate against the rule to keep the RCMBE
under 1%.

Also, for smaller models (<20,000 nodes), PCSiWaPro AMGCL computes slower than PCSiWaPro
Original. Therefore, for larger models, PCSiWaPro Original may be replaced with PCSiWaPro AMGCL
in order to speed up the computation.

The comparison of the number of calls of the solver showed, that the slower computational
speed of PCSiWaPro AMGCL in comparison with PCSiWaPro Original in smaller models can only be
explained by the numerical complexity of computing the algebraic Multigrid preconditioner. Therefore,
for smaller models, the ILU-preconditioned Conjugate Gradient algorithm is a more efficient choice
than BICGSTAB with algebraic Multigrid preconditioning.

This study only considered seepage flow that is modelled by Equation (1), but since BICCGSTAB
can also deal with non-symmetric matrices [28], BICGSTAB preconditioned with an algebraic Multigrid
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with Smoothed Aggregation and SPAI0 relaxation may be tested on transport problems in the
vadose zone.

Another direction for future research is to evaluate whether further tuning of the models can
increase the quality of the computational results computed with PCSiWaPro AMGCL while still being
faster than PCSiWaPro Original.

Since PCSiWaPro uses the numerical discretization of the Richards’ equation that is also used in
SWMS and HYDRUS, the findings of this study should also hold for SWMS and HYDRUS.

However, one finding of this study is the poor speedup caused by AMGCL with the 3-dimensional
Model 7. The speedup of 15% is too little to be of practical relevance. Therefore, the performance of
PCSiWaPro AMGCL has to be further evaluated for larger models. Unless more promising results are
produced, we can only recommend to apply AMGCL in the simulation of small and medium scale
problems (20,000 to 500,000 nodes).
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