
water

Article

Assessing Anthropogenic Impacts on Chemical and
Biochemical Oxygen Demand in Different Spatial
Scales with Bayesian Networks

Jing Xu 1,2, Guangqiu Jin 1,2,*, Yuming Mo 1,2, Hongwu Tang 1,2 and Ling Li 3

1 State Key Laboratory of Hydrology-Water Resource and Hydraulic Engineering, Hohai University,
Nanjing 210098, Jiangsu, China; xujinghhu@hhu.edu.cn (J.X.); yuming_m@hhu.edu.cn (Y.M.);
hwtang@hhu.edu.cn (H.T.)

2 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098,
Jiangsu, China

3 School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China; liling@westlake.edu.cn
* Correspondence: jingq@hhu.edu.cn; Tel.: +86-25-83787125

Received: 24 December 2019; Accepted: 11 January 2020; Published: 15 January 2020
����������
�������

Abstract: In order to protect the water environment in seriously polluted basins, the impacts
of anthropogenic activities (sewage outfalls and land use) on water quality should be assessed.
The Bayesian network (BN) provides a convenient way to model these complex processes. In this
study, anthropogenic impacts on chemical oxygen demand (COD) and biochemical oxygen demand
(BOD) were evaluated in the Huaihe River basin (HRB) considering dry and wet seasons and different
spatial scales. The results showed that anthropogenic activities had the most significant impacts on
COD and BOD at the catchment scale. In dry seasons, sewage outfalls played an important role in
organic pollution. Farmland became the most important source in wet seasons although it had a “sink”
process in dry seasons. Intensive human activities in urban made significant contributions to increased
COD levels. Grassland had a negative relationship with organic pollution, especially in dry seasons.
Therefore, governments should implement strategies to control organic matters transported from
urban and farmland regions. Increasing the efficiency of wastewater treatments and the percentage of
grassland in the riparian zone could improve water quality. These results can enhance understanding
of anthropogenic impacts on water quality and contribute to efficient management for river basins.

Keywords: chemical oxygen demand (COD); biochemical oxygen demand (BOD); anthropogenic
activities; spatial scales; Bayesian networks

1. Introduction

The intensive anthropogenic disturbance degrades water quality and causes many environmental
problems, such as eutrophication in rivers, hypoxic/anoxic episodes in bottom water, increased
toxicity to aquatic organisms and declines in aquatic biodiversity [1–3]. Water pollution has become
a global environmental problem and poses severe risks to human and aquatic ecosystem health [4–6].
Contaminants come from both point and nonpoint sources, which are discharged into receiving
water by sewage outfalls and transported to rivers by surface runoff from urban or agricultural
lands, respectively [7,8]. Consequently, many influence factors are related to the complex processes
between anthropogenic activities and water quality degradation. It is urgent to implement efficient
and effective strategies for better management of river basins based on scientific assessments of
anthropogenic impacts.

Researchers have analyzed the impacts of different human activities on water quality, such as
agricultural fertilization, loss of woodland and grassland, urbanization and contaminations from
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domestic and industrial wastewater [9,10]. Spatial variations of anthropogenic activities may cause
a different distribution of land use across the whole river basins [11]. Although some previous
studies only focused on a single spatial scale when analyzing the effects of human activities on water
quality [12–14], some other research took the different spatial scales, from local scales to the whole
catchment scale, into consideration [15–17]. Their results suggested that water quality indicators tend
to have the most significant correlation to land use in different spatial scales, which were caused by
various catchment characteristics and climate conditions between them [18–21]. Finding the spatial
scale at which human activities have the most significant effects on water quality is going to make it
more likely that we can identify the priority regions in the river basin and then guide the more efficient
water protection policies. Besides, when comparing previous researchers, their results implied that
one specific land use type may have various levels of effects even inversed influence on water quality
in dry and wet seasons [22–24]. Therefore, it is important to comprehensively considered different
spatial scales and seasons when assessing the effects of sewage outfalls and land use on water quality.

The Huaihe River Basin (HRB) is a highly polluted river basin in China due to rapid social
development and intensively anthropogenic activities [25,26]. As a result, several serious water
pollution incidents occurred in this area, which risked the drinking water safety of 10 million people
living alongside the rivers, especially in the 1990s [23,27,28]. The chemical oxygen demand (COD) and
biochemical oxygen demand (BOD) were selected to be typical water quality indicators to analyze,
while COD is an indicator of the mass of oxygen consumed by organic pollutants and BOD is the
amount of oxygen needed by aerobic biological organisms breaking down organic matters. The two
parameters reflect the levels of oxygen-consuming organic pollution in the water body and are used as
the main criteria for aquatic ecosystem resources assessment [29–31]. Moreover, COD was the most
severe water pollution in the HRB based on previous studies [32,33].

In the research, the impacts of human activities (land use and sewage outfalls) on COD and
BOD in the HRB were assessed in dry and wet seasons and different spatial scales (from local to
catchment scales). In order to conveniently model the complex processes between anthropogenic
activities and water quality, Bayesian networks (BNs) were applied, which can decompose the global
model distribution of all variables into the local conditional probability distribution of each variable by
the directed acyclic graph (DAG) [34–36]. In this way, both quantitative variables (such as water quality
and land use data) and qualitative variables (different season scenarios) can be easily incorporated
into one model. Moreover, the DAG can provide the visual interpretation of model structures in the
complex system, which contributes to a more understandable model about influence factors on water
quality in river systems [37].

The main aims of this paper are to: (1) develop the BN models to describe anthropogenic impacts
(sewage outfalls and land use) on COD and BOD in dry and wet seasons in the HRB across different
spatial scales; (2) find out the spatial scale in which anthropogenic activities have the most significant
effects on COD and BOD; (3) assess the contribution of anthropogenic activities in both dry and wet
seasons. This study will improve the understanding of the anthropogenic impacts on water quality in
the HRB, which is crucial for efficient water environment protection.

2. Materials and Methods

2.1. Study Area and Monitoring Stations

2.1.1. Study Area

The HRB (longitudes 112–121◦ E and the latitudes 30–36◦ N) is a seriously polluted river basin in
eastern China, whose drainage area is about 270,000 km2 (Figure 1a). The origination of the HRB is
the Tongbai Mountain in Henan province, then the main section of the Huaihe River (MRHR) runs
from west to east before discharging into the Hongze Lake (Figure 1b). The annual precipitation is
about 900 mm which has unevenly intra-annual and interannual distribution, accordingly, about 74%
precipitation was observed in wet seasons [38–41].
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Figure 1. (a) The map of the People’s Republic of China. The red part is the location of the Huaihe
River Basin (HRB). (b) The locations of monitor stations and sewage outfalls in the HRB.

Due to rapid urbanization and industrialization, the constructions of environmental infrastructure
were not enough to match the socio-economic development in the HRB, specifically, the percentage
of treated wastewater was less than 50% by 2005 [42,43]. Therefore, large amounts of contaminants
from point sources were discharged into the waterbody, such as coal-fired power plants, industrial
runoff and domestic sewage outfalls. Besides, based on the climate condition and crop characteristics,
the dominant crops in the HRB include paddy, maize and wheat. The growth periods of paddy and
maize are similar, which are from April to October, while the growth period of wheat is from October to
May [44,45]. In order to increase crop yields, excessive fertilizer and pesticides were applied by farmers
during crop growth periods [46,47]. Thus, nonpoint sources resulting from agricultural fertilizers and
soil erosion have greatly degraded the water environment and caused serious pollution incidents in
this area [32,48,49].

2.1.2. Monitoring Stations

There are twenty monitoring stations included in the research area (Table 1). Six of them (S1–S6)
are lying in the MRHR, while the others are in tributaries. Eight stations (S9–S16) and three stations
(S18–S20) are lying in two major tributaries in the HRB, Shaying River (SYR) and Guo River (GR),
respectively. The other three stations are in the Shi River (SR), Hong River (HR) and Jialu River
(JLR), respectively.
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Table 1. The summary of twenty monitor stations in the manuscript.

Station Name Station Code Location Longitude (◦ E) Latitude (◦ N)

Changtaiguan S1 Main reaches of
Huaihe River 114◦4′ 32◦19′

Xixian S2 Main reaches of
Huaihe River 114◦44′ 32◦20′

Huaibin S3 Main reaches of
Huaihe River 115◦25′ 32◦26′

Wangjiaba S4 Main reaches of
Huaihe River 115◦36′ 32◦26′

Wujiadu S5 Main reaches of
Huaihe River 117◦22′ 32◦57′

Xiaoliuxiang S6 Main reaches of
Huaihe River 118◦8′ 33◦10′

Tanjiahe S7 Shi River 113◦58′ 31◦54′

Bantai S8 Hong River 115◦4′ 32◦43′

Gaocheng S9 Shaying River 113◦8′ 34◦24′

Huaxing S10 Shaying River 113◦40′ 33◦55′

Huangqiao S11 Shaying River 114◦27′ 33◦46′

Zhoukou S12 Shaying River 114◦39′ 33◦38′

Huaidian S13 Shaying River 115◦5′ 33◦23′

Jieshou S14 Shaying River 115◦21′ 33◦16′

Fuyang S15 Shaying River 115◦50′ 32◦54′

Yingshang S16 Shaying River 116◦17′ 32◦39′

Fugou S17 Jialu River 114◦24′ 34◦4′

Boxian S18 Guo River 115◦52′ 33◦48′

Guoyang S19 Guo River 116◦13′ 33◦31′

Mengcheng S20 Guo River 116◦33′ 33◦17′

2.2. Data Sources and Processing

The datasets of COD and BOD concentration and the amount of COD and BOD contaminants
from sewage outfalls (including domestic and untreated or partly treated industrial wastewater) were
collected from the Huaihe River Water Resource Protection Bureau. The water samples were collected
weekly or monthly to measure COD and BOD concentration from 2000 to 2013. All measurements of
water quality indicators were measured according to the national standard methods of water quality
testing [50,51]. The daily discharge datasets were provided by the hydrographic office of Huaihe River
Commission of the Ministry of Water Resources, P. R. C. The COD and BOD loads were calculated by
concentration data to multiply the discharge data in the same days. Based on the climate characteristics
in the HRB [52,53], the dry seasons were from October to March and the wet seasons were from April
to September. In order to assess the anthropogenic impacts on water quality in dry and wet seasons,
the annual average of COD and BOD loads in two seasons were calculated.

The spatial datasets, including the digital elevation model (DEM) at 90 × 90 m resolution and
map of land use types in 2005, 2010 and 2015, were collected from the Data Centre for Resources and
Environmental Science of the Chinese Academy of Sciences (see http://www.resdc.cn). Based on the
Gauss–Kruger projected coordinate system, the locations of monitoring stations, stream networks,
land use maps and DEM data in the HRB were transformed into spatial layers by ArcGIS (380 New York
Street, Redlands, ESRI Company, CA, USA). Each monitoring station was set to be the outlet point for
the corresponding sub-catchment. Therefore, based on stream networks, locations of monitor stations
and topographical features from the DEM, the research area was delineated into twenty sub-catchments
using ArcHydro toolset in ArcGIS (Figure 2a). Because water quality in the downstream stations was
affected by human activities in the upstream catchment, the whole upstream sub-catchments should
be taken into consideration when analyzing the downstream monitoring stations.

http://www.resdc.cn
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Figure 2. (a) The map shows the upper and middle reaches of the Huaihe River Basin. The different
colors represent different types of land use. The examples of spatial scales definitions were shown by
(b) the entire upstream catchment (EUC), (c) 50 km radii around the monitor station and (d) 20 km
radii around the monitor station. The definitions of 10, 15, 30 and 40 km radii scales were similar.

To find out the spatial scales in which the human activities (land use and sewage outfalls) have
the most significant impacts on COD and BOD pollution, seven spatial scales were considered in
the paper. The local spatial scales of each monitor station were defined as the overlapping area of
10, 15, 20, 30, 40 and 50 km radii around the station location and the corresponding sub-catchment.
The catchment-scale was defined as the entire upstream catchment (EUC) of each station [18,20].
The example of EUC, 50 km and 20 km spatial scales are shown in Figure 2b–d, respectively. Six types
of land use were included in the study, including farmland (FL), grassland (GL), rural resident land
(RRL), urban (UR), water (WA) and woodland (WL) (Figure 2a). The detailed inclusions in each land
use type are shown in Table 2.
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Table 2. Detailed inclusions of land use types in the study.

Land Use Type Inclusions

Farmland
Irrigated farmland

Dry farmland

Grassland
More than 50% coverage of natural or improved grass

20–50% coverage of natural or improved grass
5–20% coverage of natural or improved grass

Rural resident land Rural residence

Urban Built-up area for cities and counties

Water

Rivers
Lakes

Wetlands
Marshes

Woodland
Forests
Shrubs

Sparsely woodlands

The percentages of the six land use types had no significant change over the research periods
(Table 3), besides, land use maps were available only in 2000, 2005 and 2010. Therefore, the dataset
from 2000 to 2003, from 2004 to 2008 and from 2009 to 2013 were matched by land use maps in 2000,
2005 and 2010, respectively. Areas of the six land use types and the total amounts of contaminants
(COD and BOD) from sewage outfalls were calculated in the seven spatial scales [54]. The datasets in
the paper were collected from different sources, which had different physical units and large variations
in magnitudes. Therefore, all datasets were scaled following the standardized method before inputting
into the models [55].

Table 3. The proportion of the six land use types in 2000, 2005 and 2010 in seven spatial scales.

2000

Spatial Scale FL (%) GL (%) RRL (%) UR (%) WA (%) WL (%)

10 km 74.47 1.29 14.10 1.93 3.06 5.15
15 km 74.37 1.56 13.25 1.29 3.63 5.90
20 km 74.96 1.32 12.27 0.96 3.68 6.81
30 km 75.62 1.17 12.62 0.94 2.97 6.68
40 km 75.18 1.45 12.60 1.17 2.75 6.85
50 km 75.51 1.36 12.38 1.18 2.59 6.98
EUC 72.50 2.34 10.87 1.60 1.99 10.70

2005

Spatial Scale FL (%) GL (%) RRL (%) UR (%) WA (%) WL (%)

10 km 73.85 1.29 14.10 2.21 3.40 5.15
15 km 73.81 1.51 13.25 1.49 4.04 5.90
20 km 74.56 1.28 12.28 1.10 3.97 6.81
30 km 75.34 1.14 12.65 1.03 3.16 6.68
40 km 74.81 1.43 12.63 1.37 2.90 6.86
50 km 75.10 1.34 12.41 1.45 2.71 6.99
EUC 71.94 2.33 10.86 2.07 2.13 10.67

2010

Spatial Scale FL (%) GL (%) RRL (%) UR (%) WA (%) WL (%)

10 km 73.68 1.29 14.03 2.45 3.40 5.15
15 km 73.65 1.51 13.24 1.66 4.04 5.90
20 km 74.32 1.28 12.39 1.23 3.97 6.81
30 km 75.15 1.14 12.70 1.17 3.16 6.68
40 km 75.43 1.47 12.73 1.51 2.96 5.90
50 km 74.93 1.34 12.43 1.59 2.72 6.99
EUC 71.67 2.33 10.88 2.26 2.15 10.71
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2.3. Methods

The BN is a graphical method, in which the continuous or discrete variables were represented by
nodes and the conditional probability distributions were shown by arrows between nodes. The DAG
is used to demonstrate the structure of the BN model, in which the model probability distribution was
factorized into local conditional probability distributions of each variable by the Markov property
algorithm [34]. Thus, the complex interdependencies can be described in a simple way, accordingly,
each variable only depends on its direct parent variables. The BN model works in a two-step way. First,
it learns the model structure following the structure learning algorithms. Second, based on conditional
dependencies between variables, it estimates the conditional coefficients and conditional probabilities
for continuous variables and discrete variables, respectively. Thus, each variable could be analyzed
without knowing the precise information about global model distribution [6,36,37].

In the study, the BN was developed to model the complex processes between human activities
(land use and sewage outfalls) and oxygen-consuming organic matter indicators (COD and BOD)
in dry and wet seasons in the HRB (Figure 3). The six land use types, season scenarios and sewage
outfalls were factors that affected COD and BOD at the seven spatial scales. The natural logarithm
transformation was undergone on the two water quality indicators to ensure the datasets conform to
the Gaussian distribution. The data of water quality indicators, proportions of land use types and
amounts of contaminants from sewage outfalls were fed into the BN as continuous data, while season
scenarios were inputted as discrete data, namely, “dry season” and “wet season”, respectively. Based on
the seven spatial scales considered, the spatial data were extracted in all spatial scales, including six
land use proportions and amounts of contaminants from sewage outfalls. These data, together with
the datasets of water quality indicators, were input into the BN models to find out the spatial scales
in which the human activities had the most significant impacts on water quality. The BN model
was developed by the “bnlearn” package [56] in the R statistical computing software [57], which is
commonly used to do statistical analysis.
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The goodness-of-fit of the BN models were evaluated by Pearson’s correlation coefficients (Cor)
(Equation (1)) and Nash–Sutcliffe efficiency coefficients (NSE) (Equation (2)) [58,59]. Based on the
recommendation by Moriasi, et al. [60], the model can be viewed to be satisfactory with an NSE
higher than 0.5. The spatial scales at which human activities had the most significant effects could be
determined when the Cor and NSE coefficients obtain the largest values.

Cor =

∑N
i=1 [(obsi − pred) × (predi − pred)]√∑N

i=1 (obsi − obs)
2
×

√∑N
i=1 (predi − pred)

2
(1)

NSE= 1−

∑N
i=1 (obsi − predi)

2∑N
i=1 (obsi − obs)

2 (2)

where N is the length of dataset; obsi and predi are the values of ith observed and predicted points;
obs and pred are the average values of observed and predicted points.

In order to properly evaluate the influence of land use and sewage outfalls, the contribution of
influence factors was calculated based on the predicted parameters from the BN models (Equation (3)).

Contributioni =
Parmi

n∑
i=1
|Parmi|

× 100% (3)

where Parmi is the predicted parameter of ith influence factor in the model. The numeric value of
Contribution presents the magnitude of influence levels while the plus–minus sign represents the
positive or negative relationship between the influence factors and the two oxygen-consuming organic
matter indicators.

3. Results

3.1. Variations of COD and BOD in Different Seasons

The two oxygen-consuming organic matter indicators had variations in dry and wet seasons in
the HRB (Table 4). The mean loads’ values of both COD and BOD at all monitor stations were larger in
wet seasons than in dry seasons. Accordingly, average COD loads in wet seasons were 2.1 times higher
than loads in dry seasons, while the mean loads of BOD in wet seasons were 2.4 times higher than that
in dry seasons. The standard deviation of COD in wet seasons was 1.9 times larger than that in dry
seasons, while the standard deviation of BOD in wet seasons was 2.7 times higher than in dry seasons.
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Table 4. Summary of COD and BOD loads in different seasons at each monitor station in the HRB.

Station Code COD_Dry (g/s) COD_Wet (g/s) BOD_Dry (g/s) BOD_Wet (g/s)

S1 155 ± 124 905 ± 998 24 ± 15 84 ± 51
S2 433 ± 194 1397 ± 911 62 ± 19 215 ± 105
S3 1272 ± 903 3674 ± 2723 174 ± 186 441 ± 424
S4 2731 ± 2734 5842 ± 4436 314 ± 332 566 ± 594
S5 8253 ± 6129 17548 ± 12744 1585 ± 1715 3527 ± 4447
S6 7871 ± 7303 18935 ± 12492 840 ± 822 2019 ± 2138
S7 18 ± 6 35 ± 61 3 ± 1 11 ± 9
S8 830 ± 509 2514 ± 2175 155 ± 83 372 ± 300
S9 39 ± 31 54 ± 66 12 ± 8 31 ± 39

S10 157 ± 96 185 ± 106 18 ± 11 29 ± 12
S11 370 ± 191 549 ± 139 166 ± 138 215 ± 93
S12 2861 ± 3395 4109 ± 2797 261 ± 235 726 ± 611
S13 4005 ± 4490 6580 ± 6601 748 ± 589 1907 ± 1936
S14 2523 ± 2208 5507 ± 6877 380 ± 403 948 ± 986
S15 3072 ± 2117 6965 ± 6903 408 ± 358 1179 ± 1194
S16 2926 ± 1974 5895 ± 3581 372 ± 402 759 ± 692
S17 645 ± 235 707 ± 247 101 ± 56 127 ± 68
S18 456 ± 375 718 ± 432 53 ± 94 63 ± 77
S19 827 ± 609 1713 ± 1389 111 ± 114 255 ± 267
S20 1827 ± 2388 4133 ± 4660 204 ± 219 908 ± 1570

The lowest COD and BOD were observed at S7, which is the station in tributary at the upper
reaches of the HRB (Figure 2b). Water quality indicators at S1 to S4 in upstream of the MRHR were
relatively lower than that at S5 and S6 in the downstream of the MRHR. Similarly, water quality at the
upstream stations was better than that at the downstream stations in the SYR and GR. As almost all
tributaries flowing into the MRHR before the location of S5 and S6, loads of COD and BOD in the area
reached the largest values among all monitor stations in the HRB.

3.2. Performances of BN Models at Different Spatial Scales

The spatial scales in which anthropogenic activities had the most significant impacts on water
quality were selected by the developed BN models which had the best performance between
observations and predictions. The Cor and NSE coefficients were used to evaluate model performance
(Figure 4). For COD, the goodness-of-fit of models had a huge increase from the 10 to 15 km scales and
then stayed relatively stable. When the analyzed scale reached the EUC, the coefficients reached their
maximum. For BOD, the Cor coefficient rose continuously from the 10 to EUC scales, while the NSE
coefficient started a significant increase at the 40 km scale. Both Cor and NSE obtained their largest
values at the EUC scale for BOD, which is consistent with the result from the COD analysis. Accordingly,
the land use and contaminants from sewage outfall in the whole catchment scale (EUC) can give the
best explanations for different patterns of COD and BOD. Thus, all analyses about anthropogenic
impacts in the research were focused on the EUC scale.
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The observed values of water quality indicators and predicted values from the BN model in the
EUC scales are shown in Figure 5. If the scatter dots spread exactly along the diagonals (red lines),
it means that the predictions from models were the same as observed values. Therefore, the model
performances for COD (Cor = 0.81, NSE = 0.65) and BOD (Cor = 0.79, NSE = 0.63) in the EUC scale
are satisfactory.
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3.3. Assessment of Anthropogenic Impacts on COD and BOD in Different Seasons

The parameters of all factors in the EUC scale for dry and wet seasons were shown in Table 5.
For COD, the effects of contaminants from sewage outfalls were both positive, which increased COD
pollution in two seasons. Considering the farmland and grassland, the effects on COD were negative in
dry seasons and became positive in wet seasons. Meanwhile, the woodland had a similar relationship
to COD when the scenarios transformed from dry seasons to wet seasons. The correlations between
rural residential land and urban land were always positive. The influence of water changed from
positive in dry seasons to negative in wet seasons.

Table 5. Parameters of influence factors on COD and BOD from BN models at the EUC scale.

COD_Dry COD_Wet BOD_Dry BOD_Wet

Sewage outfalls 0.265 0.068 0.244 0.248
FL −0.195 0.919 −1.137 2.524
GL −0.191 0.021 −0.712 1.141

RRL 0.076 0.486 −0.139 1.565
UR 0.331 0.483 −0.133 1.444
WA 0.007 −0.069 −0.345 −0.037
WL −0.103 0.349 −0.975 2.251

The contaminants from sewage outfall had a similar positive influence on BOD. The negative and
positive transformation of farmland, grassland and woodland were also implied by the parameters
from the BN model. However, the other types of land use (rural residential land, urban and water) had
the inverse impacts on BOD in dry seasons when comparing to the impacts on COD. The influence of
all factors became positive in wet seasons except the water area.

Based on all parameters predicted from the BN models (Table 5) and Equation (3), the contribution
of anthropogenic impacts on water quality could be calculated (Figure 6). In dry seasons, sewage outfalls
had significant positive contributions (22.7%) to COD loads, which decreased sharply (2.8%) in wet
seasons. The negative contribution of farmland (−16.7%) was in a similar magnitude to grassland
(−16.4%) in dry seasons. When comes to wet seasons, farmland became the biggest positive contribution
(38.4%) to COD. Thus, the “sink” and “source” processes of farmland depends on different seasons.
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The grassland and woodland also had similar patterns that changed from “sink” in dry seasons to
“source” in wet seasons, although the positive influence of grassland (0.9%) was very weak. The rural
residential land and urban land worked as pollution sources for COD in both seasons. The contribution
of the former one had a huge increase (from 6.5% to 20.3%) in wet seasons while the latter one decreased
a little (from 28.3% to 20.2%) at the same time. Besides, results suggested that the water area showed
no significant influence on COD, specifically, the contribution was 0.6% in dry seasons and −2.9% in
wet seasons. In general, the sewage outfalls and urban land had the most significant positive effects on
COD in dry seasons while the farmland had significant contributions to COD pollution in wet seasons.
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The positive contribution of sewage outfalls to BOD was less than that of COD, which was 6.6% in
dry seasons and 2.7% in wet seasons. The farmland, grassland and woodland had significant negative
effects on BOD in dry seasons and the contributions were −30.9%, −19.3% and −26.5% respectively.
However, the farmland (27.4%) and woodland (24.4%) both became the strongest positive contributors
to BOD in wet seasons. The rural residential land and urban land were the second-largest contributors
to BOD pollution, which was 16.9% and 15.8%, contribution respectively. The positive relationship
between water and BOD was negligible.

4. Discussion

The research implied that anthropogenic activities had the most significant impacts on the
oxygen-consuming organic matter indicators (COD and BOD) at the EUC scale in the HRB. It was
consistent with previous research that focused on other river basins, such as the Dongjiang River
basin in China, the Adour-Garonne basin in southwestern France and the Córrego Água Limpa in
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Brazil [16,19,61]. However, some studies suggested that the land use in relative finer scales had
more effects on water quality [62,63]. One possible reason was that the local scales were delineated
by different methods, which induced different areas of land use types [19]. Besides, different water
quality parameters tend to have different dominant spatial scales. For example, based on our previous
research, the most significant spatial scale for ammonia nitrogen (AN) and dissolved oxygen (DO) in
the HRB was the local scales within 20 km radii around monitor stations [53]. It was caused by the
various chemical properties of these water contaminants. As a result of long water residence time
in the HRB, the nitrification and denitrification processes were intensive in groundwater adjacent
to the riparian zone [64]. Thus, nutrients contaminants were more significantly correlated to land
use at local scales. Besides, for DO, given a certain contact time, the reoxygenation processes
could reach oxygen equilibrium again in the water body under normal conditions. In this way,
the contaminants transporting from long distances would not play an important role in determining
the DO levels in rivers. However, COD and BOD, which are indicators of oxygen-consuming organic
matters, are relatively stable, thus the degradation of organic compounds needs more time. Moreover,
studies found that COD was positive correlated with sediment levels, which means that sediment
particles could work as carriers of COD contaminants from land to rivers by flush processes across the
catchment scale [61,65,66]. Therefore, the human activities in the whole catchment scale played the
most important role in organic pollution in water body.

The percentage of different land use types are various from local to catchment scales. Besides,
the total amount of contaminants discharged from sewage outfalls also has huge differences across
the seven spatial scales (Table 6), which were about 30 times higher in the EUC scale than those in
the 10 km radii scale. It is the main reason why human activities in the catchment scale could give
the best explanation to variations of COD and BOD in the HRB. The results suggested that efficient
strategies for better water environment protection should consider different spatial scales based on
different characteristics of contaminants matters. Accordingly, for unstable water quality indicators,
more attention should be paid in local scales around monitor stations, while for stable contaminants,
management on the whole catchments should be implemented.

Table 6. The total amount of COD and BOD from sewage outfalls in seven spatial scales over the
research period.

Spatial Scale COD (Ton/Year) BOD (Ton/Year)

10 km 203.3 49.9
15 km 243.5 57.7
20 km 301.6 75.6
30 km 488.2 121.0
40 km 720.1 199.8
50 km 1072.6 315.2
EUC 5329.4 1555.7

Impacts of human activities on water quality include two parts: point sources of contaminants
emitted from domestic or industrial outfalls and nonpoint sources transported by soil erosion and
surface runoff from lands [67]. As contaminants from point sources had no necessary correlation to land
use types, taking the influence of sewage outfalls into consideration helps to improve the assessments
of human impacts on the water environment [68]. Based on previous results, the contribution of point
sources to COD and BOD have overwhelmed the contribution of nonpoint sources, which highlights
the importance of sufficient wastewater treatments in improving water quality in river basins [69–71].
In our research, the contaminants from sewage outfalls were main contributors to water pollution,
especially in dry seasons. Since controlling contaminants from sewage outfalls could be easier
than controlling contaminants from nonpoint sources, for example, from farmlands or urban areas,
attention should be paid to increasing the percentage of treated wastewater. Because the amounts of
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wastewater were emitted from sewage outfalls continuously and stably under normal conditions in the
HRB, their contribution were decreased because of dilution by the increasing discharge in wet seasons.

Farmland is the main influence factor of COD and BOD, which works as a “sink” for organic
pollution in dry seasons and “source” in wet seasons. Similar patterns had been observed by our
previous study, which focused on nutrients and DO in this area [53]. One potential reason is that the
surface runoff in the HRB had huge variations between dry and wet seasons (Table 7). Based on the
T-test, discharge values had a significant difference, accordingly, three times higher in wet seasons than
that in dry seasons. As organic matters from farmland were transported by sediment particles [61,65,66],
the organic contaminants possibly could not be moved to receiving water and therefore were stored in
farmland due to lacking enough surface runoff in dry seasons. When wet seasons occurred, increased
surface runoff caused soil erosion and sediment transportation. The larger transportation capacity
carried more pollution into rivers, including contaminates reserved in the former dry season and
produced by agricultural activities in the current wet seasons. The transformed “sink” and “source”
processes in farmland were a potential reason for the phenomenon that COD and BOD loads were both
higher in wet seasons than those in dry seasons, which was similar to several previous studies [29,72,73].
Since the farmland had the largest proportion in the HRB and played an important role in water
degradation, it is urgent to take measures to reduce organic matters transported from farmland,
such as controlling the use of agricultural fertilizers, establishing a “field–ditch–pond” structure and
constructing wetland detention ponds near riparian areas [65,74,75].

Table 7. The T-test of discharge in different seasons at all monitor stations in the HRB.

Station Code Dry (m3/s) Wet (m3/s) p Value

S1 12.04 ± 34.39 49.83 ± 157.43 <2 × 10−16

S2 49.50 ± 94.22 161.72 ± 385.20 <2 × 10−16

S3 70.95 ± 99.03 238.82 ± 498.41 <2 × 10−16

S4 127.94 ± 178.16 343.16 ± 510.42 <2 × 10−16

S5 423.33 ± 469.93 1223.20 ± 1587.28 <2 × 10−16

S6 453.25 ± 527.52 1250.87 ± 1661.13 <2 × 10−16

S7 1.15 ± 3.23 3.77 ± 16.17 4 × 10−12

S8 32.73 ± 77.31 103.82 ± 249.90 <2 × 10−16

S9 1.76 ± 3.57 3.45 ± 5.37 <2 × 10−16

S10 7.93 ± 11.38 15.43 ± 14.40 4 × 10−16

S11 24.76 ± 27.78 35.38 ± 56.68 1 × 10−8

S12 67.97 ± 93.69 130.52 ± 280.72 <2 × 10−16

S13 83.35 ± 105.03 159.65 ± 313.23 <2 × 10−16

S14 84.50 ± 111.88 171.39 ± 327.40 <2 × 10−16

S15 114.37 ± 146.15 244.21 ± 396.42 <2 × 10−16

S16 109.92 ± 133.53 209.07 ± 354.49 <2 × 10−16

S17 7.47 ± 11.08 20.18 ± 15.06 <2 × 10−16

S18 21.69 ± 14.81 34.78 ± 43.70 <2 × 10−16

S19 26.70 ± 34.70 51.29 ± 113.30 <2 × 10−16

S20 52.87 ± 61.73 119.02 ± 201.65 <2 × 10−16

Grassland and woodland had significant negative effects on COD and BOD in dry seasons which
could work as a pollution buffer around rivers. It was because that denser vegetation could reduce
runoff volumes and intercept contaminants [76–79]. Therefore, woodland and grassland could have
better water and soil conservation functions to reduce water pollution from nonpoint sources [80–84].
However, the woodland became a source of organic contaminants in wet seasons due to largely
increased surface runoff.

Urban had a significant positive contribution to COD in both seasons, which was related to the
high percentage of impervious surface coverage in the area. Without the infiltration process happening
on the soil surface, the overland runoff on the impervious ground could be generated under even
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slight rainfalls in dry seasons. Therefore, the contributions of urban areas were insensitive to the
variations of the surface runoff between dry and wet seasons when comparing to farmland’s soil
surface, which experienced the transition between the “sink” and “source” processes. Although urban
areas had a slightly weak negative contribution to BOD in dry seasons, it became a fundamental
source of BOD contaminants in wet seasons. In general, the urban areas made significant contributions
to increasing the organic pollution in the HRB. The results were consistent with previous studies,
which highlighted that intensive anthropogenic activities, such as food waste, stocked garbage and
domestic wastewater, played an important role in water quality degradations [13,37,52,85].

5. Conclusions

To assess anthropogenic impacts on COD and BOD in dry and wet seasons in the HRB, the BNs
were applied to model the complex processes. The most significant effects of land use and sewage
outfalls on COD and BOD were at the catchment scale. Key results are as follows:

(1) The sewage outfalls played an important role in organic pollution in dry seasons, while farmland
became the most important source in wet seasons although it showed the “sink” process in
dry seasons.

(2) Intensive human activities in urban areas always played an important role in increasing COD
levels in the HRB.

(3) Grassland had a negative relationship to organic pollution, especially in dry seasons, thus it could
be used as a river buffer based on its capacity to intercept and retain contaminants.

The results highlight the significance of comprehensively considering different spatial scales in
assessing the anthropogenic impacts on water degradation, especially for different water indicators.
In order to better improve water quality in the HRB, more attention should be paid by governments to
controlling organic matters transported from farmland and urban to the waterbody. Increasing the
efficiency of wastewater treatments and the percentage of grassland in the riparian zone could help to
protect the water environment. For comprehensive assessments of the influence factors on the water
environment, the BN model could provide a convenient way to model complex processes in river
systems, which could be applied not only in the HRB, but also in other river basins over the world.
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