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Abstract: Global climate change not only affects the processes within the water cycle but also leads 

to the frequent occurrences of local and regional extreme drought events. In China, spatial and 

temporal characterizations of drought events and their future changing trends are of great 

importance in water resources planning and management. In this study, we employed self-

calibrating Palmer drought severity index (SC-PDSI), cluster algorithm, and severity-area-duration 

(SAD) methods to identify drought events and analyze the spatial and temporal distributions of 

various drought characteristics in China using observed data and CMIP5 model outputs. Results 

showed that during the historical period (1961–2000), the drought event of September 1965 was the 

most severe, affecting 47.07% of the entire land area of China, and shorter duration drought centers 

(lasting less than 6 months) were distributed all over the country. In the future (2021–2060), under 

both representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios, drought is projected to 

occur less frequently, but the duration of the most severe drought event is expected to be longer 

than that in the historical period. Furthermore, drought centers with shorter duration are expected 

to occur throughout China, but the long-duration drought centers (lasting more than 24 months) are 

expected to mostly occur in the west of the arid region and in the northeast of the semi-arid region.  

Keywords: SAD method; SC-PDSI; drought severity; drought center; CMIP5 model; multi-model 

ensemble 

 

1. Introduction 

Drought is a natural hazard with a complex mixture of magnitude, duration [1,2], and areal 

extent of precipitation deficit, and occurs in virtually all climatic regimes. Drought in China is 

extraordinarily prominent because of various climate types and its unique geographical location that 

gives rise to tremendous spatial and temporal differences in precipitation [3]. Statistics of the Ministry 

of Agriculture of China showed that the average area affected by drought in China was 

approximately 266,666.7 km2 per year in 2005–2015. During this period, the losses of grain production 

equaled 30 billion kilograms, ranking first among the economic impacts of all natural disasters. The 
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Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) [4,5] found 

that the average temperature in China had risen by 0.65–1.06 °C over the last 100 years, and this trend 

is set to continue, leading to more drought events in the future. Therefore, it is of practical significance 

to study the temporal and spatial patterns of drought and to predict future drought trends in China 

to improve forecasting and mitigation strategies [6]. 

Global climate models (GCMs) have become an essential tool for simulating climate change and 

have been widely used in simulating large-scale climatic elements. However, single climate models 

do not accurately simulate changes in temperature and precipitation in a given region due to less-

than-accurate calculation methods, discretization of numerical values, and inability to account for 

heterogeneity within the grid cells [7]. Thus, to improve the accuracy of simulation of future climate 

change, several studies [8,9] have attempted to overcome the systematic deviation of single climate 

models by using multi-model ensembles (MMEs) [10], such as simple model averaging (SMA) [11], 

Bayesian model averaging (BMA) [12,13], weighted ensemble averaging (WEA) [14], and reliability 

ensemble averaging (REA) [15,16]. Indeed, previous studies [17–20] have found that the simulation 

performance of multi-model ensembles is generally better than that of single models. 

Drought indexes, either based on single or multiple hydrometeorological factors, have been used 

to identify the causes and severity of drought [21–26]. The standardized precipitation index (SPI) [27], 

which is based on cumulative precipitation probabilities, has been used to analyze drought in several 

regions and can improve the detection of onset and closure of individual drought events [28–30]. In 

addition, De Oliveira-Júnior et al. [31] analyzed drought severity based on the SPI index and its 

relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the 

State of Rio de Janeiro, Brazil. 

The Palmer drought severity index (PDSI) [32] is the most widely used index because of its 

simple data acquisition and calculation requirements. While the PDSI can effectively identify the 

initiation and termination of drought, some studies have suggested that this approach involves 

subjective conjectures [33,34]. Wells et al. [35] produced a self-calibrating PDSI (SC-PDSI) to calibrate 

meteorological data for adopting local climate parameters thus that the SC-PDSI is more comparable 

across a wider range of contexts. 

Nonetheless, we need to pay more attention to the spatial and temporal continuity of drought 

development (such as spatially contiguous areas under drought) and analysis of their characteristics 

[36]. Andreadis et al. [37] created a severity-area-duration (SAD) analysis method, which regards 

drought as an individual event. This method combines severity, area (extent), and duration of 

drought events to effectively analyze changes in the drought characteristics of different regions (e.g., 

Xiao et al. [38]; Shao et al. [39]). For example, Sheffield et al. [40] used cluster analysis and the SAD 

method to analyze global and continental drought characteristics. Wang et al. [41] used the SAD 

method, based on soil moisture, to identify drought events between 1950 and 2006 in China. Zhai et 

al. [42] applied the intensity-area-duration method to analyze droughts in China between 1960 and 

2013. Liu et al. [43] used the SAD method to analyze the spatial and temporal evolution of drought 

events between 2000 and 2008 in the Colorado River basin, USA. Shao et al. [39] used SC-PDSI index 

and SAD method to analyze the drought characteristics of recent decades (1980–2015), and found that 

both methods can capture well the historical drought events of China. 

However, these former studies do not provide insight into the projected behavior of individual 

drought events across China. Therefore, in this study, we identified the projected extreme drought 

events in China under RCP4.5and RCP8.5 scenarios, based on SC-PDSI, a cluster analysis method, 

and the severity-area-duration method. Furthermore, the potential spatiotemporal distribution of 

those extreme drought centers in the whole of China was estimated by the SAD envelop curve. 

2. Data and Methods 

2.1. Datasets 

In this study, observational datasets of monthly precipitation and temperature with 0.5° spatial 

resolution were obtained from the Chinese meteorological data sharing service (http://data.cma.cn/) 
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(Figure 1). The historical period of CMIP5 models was 1961–2005, and the future projected year was 

beginning from 2006. For analyzing the decadal characteristics of drought events, we selected models 

and observed data for the period 1961–2000. We divided the historical period into 4 decades (the 

1960s, 1970s, 1980s, 1990s) in order to analyze comparatively the historical SAD envelope curves and 

drought centers. Various climate types and their unique geographical locations gave rise to 

tremendous spatial and temporal differences in drought characteristics. China spans many degrees 

of latitude and has complicated terrain, and, therefore, the climate varies sharply. For investigating 

the regional characteristics of drought across China, we followed the method of Fu et al. [44] to divide 

China into 4 climatic regions (arid, semi-arid, semi-humid and humid) based on the temporal and 

spatial distribution of precipitation in China (Figure 1), to analyze the characteristics of drought 

events over China. 

 

Figure 1. Four climate categorizations and annual mean precipitation (mm) in China produced using 

gridded data with 0.5° spatial resolution based on more than 2400 national meteorology stations. 

Limited by data availability, GCMs cannot represent well the characteristics of topography land 

surface over China, 9 CMIP5 (https://esgf-node.llnl.gov/projects/cmip5/) models were selected to 

project future monthly precipitation and temperature under the moderate emission path scenario 

(RCP4.5) and high emission scenario (RCP8.5) (Table 1). To improve the spatial resolution of different 

GCMs, data from the 9 climate models were downscaled and bias-corrected to a 0.5° × 0.5° resolution 

using the equidistant cumulative distribution function (EDCDF) quantile-based mapping method 

[45,46]. 

Table 1. Details of the nine climate models used in this study. 
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NO Model Name Country Institute 
Resolution 

(lat × lon) 

1 ACCESS1-0 Australia 

Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) and Bureau of 

Meteorology (BOM)  

1.25° × 1.875° 

2 CCSM4 Canada National Center for Atmospheric Research 0.9° × 1.25° 

3 CNRM-CM5 France 

Centre National de Recherches Meteorologiques 

and Centre Europeen de Recherche et Formation 

Avancees en Calcul Scientifique 

1.4° × 1.4° 

4 HadGEM2-AO 

United 

Kingdom

/South 

Korea 

Met Office Hadley Centre/National Institute for 

Medical Research 
1.25° × 1.875° 

5 MIROC5 Japan 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

1.4° × 1.4° 

6 MPI-ESM-LR Germany Max Planck Institute for Meteorology 1.865° × 1.875° 

7 MRI-CGCM3 Japan Meteorological Research Institute 1.12° × 1.125° 

8 NorESM1-M Norway Norwegian Climate Centre 1.9° × 2.5° 

9 NorESM1-ME Norway Norwegian Climate Centre 1.9° × 2.5° 

2.2. Modeling Methods 

2.2.1. Bias-Correction and Multi-Model Ensemble Method 

The EDCDF method [45] was used to bias-correct the CMIP5 model outputs over China to 

improve spatial resolution and accuracy. This method constructed the cumulative distribution 

function (CDF) of the simulated historical values and the future simulated values of different climate 

elements, respectively. It is efficient at improving the inherent errors of climatic model data. It 

improves on previous approaches based only on the historical CDF because it takes into account any 

changes in the future distribution [47]. Equation (1) is used to bias-correct the future GCMs 

simulations of the temperature, adopting the beta distribution with 4 parameters (Equation (2)): 

𝑥𝑚−𝑝_𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑥𝑚−𝑝 + 𝐹𝑜−𝑡
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝)) − 𝐹𝑚−𝑡

−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝)) (1) 

𝑓(𝑥; a, b, p, q) =
1

B(p,q)(b−a)p+q−1
(𝑥 − 𝑎)𝑝−1 ∙ (𝑏 − 𝑥)𝑞−1, 𝑎 ≤ 𝑥 ≤ 𝑏; 𝑝, 𝑞 > 0 (2) 

where B is the beta function, a and b are the range parameters as the extreme values from the data, 

extended by a certain percentage of the standard deviation, and p and q are the shape parameters 

determined by the maximum likelihood estimation method. 

Equation (3) is used to bias-correct precipitation, with a 2-parameter mixed gamma distribution 

(Equation (4)) considering the intermittent nature of precipitation:  

    𝑥𝑚−𝑝_𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑥𝑚−𝑝
𝐹𝑜−𝑡
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝))

𝐹𝑚−𝑡
−1 (𝐹𝑚−𝑝(𝑥𝑚−𝑝))

 (3) 

𝑓(𝑥; 𝑘, 𝜃) = 𝑥𝑘−1
𝑒−𝑥/𝜃

𝜃𝑘Г(𝑘)
         𝑓𝑜𝑟 𝑥 > 0 𝑎𝑛𝑑 𝑘, θ > 0 (4) 

where 𝑥𝑚−𝑝 is the model projection value; 𝑥𝑚−𝑝_𝑎𝑑𝑗𝑢𝑠𝑡 is the adjusted model projection value after 

bias-correction; 𝐹𝑜−𝑡
−1  and 𝐹𝑚−𝑡

−1  are the quantile functions corresponding, respectively, to the 

observations (o) and simulations (m) in the training period (t); and 𝐹𝑚−𝑝  is the CDF of model 

simulated fields. Further details about this method can be found in Yang et al. [46] and Li et al. [47]. 

In the EDCDF method, the parametric distributions are fitted to both temperature and precipitation 

fields for each grid point. 
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To better improve the reliability of future projections from GCMs’ outputs, multi-model 

ensemble (MME) methods have been proposed that distilled the uncertainty across models in 

simulating the climate [9]. The Simple Model Averaging (SMA) method was the simplest and widely 

used multi-model ensemble technique [48]. Therefore, we applied the SMA method to the 9 CMIP5 

models to form the 9-model ensemble (9ME). 

2.2.2. SC-PDSI 

The self-calibrating PDSI (SC-PDSI) [35] can be used to adopt local climatic parameters for 

different stations, making the PDSI spatially comparable across a larger area. The calculation of the 

SC-PDSI includes hydrological revenue, expenditure, and standardization. At the heart of the SC-

PDSI is the water balance equation under a suitable climate: 

𝑃̃ = 𝛼𝑖𝑃𝐸𝑇 + 𝛽𝑖𝑃𝑅 + 𝛾𝑖𝑃𝑅𝑂 − 𝛿𝑖𝑃𝐿 (5) 

𝛼𝑖 =
𝐸𝑇𝑙̅̅ ̅̅ ̅

𝑃𝐸𝑇𝑖̅̅ ̅̅ ̅̅ ̅
，𝛽𝑖 =

𝑅𝑖̅̅ ̅

𝑃𝑅𝑖̅̅ ̅̅ ̅
，𝛾𝑖 =

𝑅𝑂𝑖̅̅ ̅̅ ̅

𝑃𝑅𝑂𝑖̅̅ ̅̅ ̅̅ ̅
，𝛿𝑖 =

𝐿𝑖̅

𝑃𝐿𝑖̅̅ ̅̅ ̅
 (6) 

𝑑 = 𝑃 − 𝑃̃ (7) 

where 𝑃̃ is the number of precipitation events required to maintain a normal soil moisture level for 

a month; the values of 8 determinant weighting factors were evapotranspiration (ET), recharge (R), 

runoff (RO), water loss (L), potential evapotranspiration (PET), potential recharge (PR), potential 

runoff (PRO), and potential loss (PL); α, β, γ, and δ were the water-balance coefficients, which were 

used to achieve potential values that are climatically appropriate for existing conditions (CAFEC); 

and d is the moisture departure, which is the difference between actual precipitation and the 

computed CAFEC precipitation.  

Different values of d were ascribed to different times and locations, which prevent comparisons 

between them, used K, a climatic characteristic, to correct the moisture departure as follows: 

         𝐾′ = 1.5𝑙𝑜𝑔10

(

 

𝑃𝐸𝑇𝑖̅̅ ̅̅ ̅̅ + 𝑅𝑖̅ + 𝑅𝑂𝑖̅̅ ̅̅ ̅

𝑃𝑖̅ + 𝐿𝑖̅
+ 2.8

𝐷𝑖̅
)

 + 0.5 (8) 

𝐾 = {
𝐾′ (

−4.00

2𝑛𝑑
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) , 𝑑 < 0

𝐾′ (
4

98𝑡ℎ
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) , 𝑑 ≥ 0

 (9) 

where K’ is the PDSI approximation of the climate characteristic of a region; 𝑃𝐸𝑇𝑖̅̅ ̅̅ ̅̅ ,  𝑅𝑖̅̅̅̅ ,  𝑅𝑂𝑖̅̅ ̅̅ ̅,  𝐷𝑖̅̅̅̅  are the 

average potential evapotranspiration, recharge, runoff, and moisture departure; the 2nd percentile 

represents the possibility of extreme drought that corresponds to a PDSI of −4.00; the 98th percentile 

is defined as the possibility of extreme waterlogging in the case of a PDSI of 4.00. 

The moisture anomaly index Z is determined using d and K, as follows: 

𝑍 = 𝐾 × 𝑑 (10) 

2.2.3. Identification of Drought Using Cluster Algorithm and the SAD Method 

The clustering algorithm was used to identify spatial and temporal variations of drought [37]. 

In this study, the cluster algorithm combined spatially and temporally contiguous regions with SC-

PDSI below the specified (−2) value. It was noted that a drought event could break into several smaller 

droughts and that multiple droughts could merge into a larger drought for a specified minimum area 

(25,000 km2). Sheffield et al. [40] did an initial experiment with 25,000 km2 and 100,000 km2 area 

thresholds and found that droughts could shrink to a few cells and last multiple years through 

tenuous spatial connectivity. In order to avoid this situation, within the 150,000 km2 area, 

approximately 60 cells were selected as the minimum area threshold of drought events, and a drought 
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event with an area of less than 150,000 km2 was ignored. This threshold value was the same as that 

selected by Wang et al. [41] for China. 

Drought events occurred across a continuous area with a certain duration. The SAD method 

developed by Andreadis et al. [37] combined severity, area (extent), and duration of droughts to 

assess the characteristics of events with different durations and their development in time and space. 

The SAD method, which is based on the spatial proximity of grids, applies a simple clustering 

algorithm to identify drought events. Based on SC-PDSI, the severity (S) was calculated as: 

𝑆 = 1 −
∑𝑆𝐶 − 𝑃𝐷𝑆𝐼𝑛

𝑡
     (11) 

where t is drought duration. SC-PDSIn is the standardized SC-PDSI (SC-PDSIn=10
𝑆𝐶−𝑃𝐷𝑆𝐼

2 ). 

In identifying drought events, severity was first calculated for each grid cell, and the grid cell 

with the maximum severity to be the center of the drought. The presence or absence of drought 

conditions in the neighboring grid cells of the drought center was then assessed. If drought conditions 

applied to a neighboring cell (i.e., where SC-PDSI < −2), these two cells were regarded as the new 

drought center. The average severity of these two cells was then applied for the new drought center, 

and the area of two grids was also averaged. This process was then repeated until no drought 

conditions were detected in neighboring cells. This procedure was used to identify all other drought 

events occurring in the study period. 

When identifying drought events, the average drought severity of an event with different 

intervals (3, 6, 9, 12, 24, and 48 months) and areas can be determined. The SAD envelope curves of all 

drought events were also be formed by choosing the maximum severities of all events for each area 

increment, which reflected the largest drought severity in different drought-affected areas. 

3. Results 

3.1. Performance of Climate Models 

We used the Taylor diagram to evaluate the performance of the 9 individual models and 9ME 

(Figure 2). Taylor diagrams make full use of the transformation relationships of the correlation 

coefficient (CC), normalized standard deviation (NSD), and root-mean-square error (RMSE). The 

closer CC and NSD are to 1, the more similar the simulation and observation data are. The smaller 

the RMSE, the smaller the deviation between simulation and observation data. Figure 2 shows that 

the CC values of the uncorrected models were similar to the bias-corrected models, but the NSD and 

RMSE performances of the uncorrected models were worse than that of the bias-corrected models. It 

indicated that overall the corrected models performed better. For further evaluating the performance 

of 9ME, the spatial distribution of simulated bias was shown in Figure 3. The uncorrected 9ME data 

had extremely large biases of more than 150 mm/month and 10 °C for precipitation and temperature, 

respectively, in northwest China (Figure 3a,b). In contrast, the bias-corrected 9ME simulation data 

(Figure 3c,d) contained biases mostly in the range of −0.8 to 0.8 mm/month. The largest bias (up to 

0.8 mm/month) was located in the southwest part of the Qinghai–Tibet Plateau, for which the 

temperature bias was less than 0.1 °C. 
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Figure 2. Taylor diagrams of uncorrected (a) and bias-corrected (b) precipitation and temperature of 

9 CMIP5 models and 9ME. 

 

Figure 3. The distribution of bias between observed and uncorrected 9ME (a,b) and bias-corrected 

9ME (c,d) monthly mean precipitation (mm/month, upper panel), and temperature (°C, lower panel) 

in China. 

It should be noted that the accuracy of the bias-corrected single model and the 9ME was higher 

than that of the uncorrected models. This demonstrated that the bias-corrected 9ME had a good 

capability in simulating precipitation and temperature over China and that it effectively captured the 

spatial characteristics of climatological elements. 

3.2. Spatial and Temporal Characteristics of Drought Events 

3.2.1. Historical Period 

Based on the SAD method, 49 drought events were identified in China between 1961 and 2000, 

17 of which lasted more than 12 months, and 4 of which lasted more than 48 months. Table 2 presents 

the 6 most severe drought events according to ranked duration, area extent, severity, and 

comprehensive index. The comprehensive index (CI) was calculated as the area affected by drought 

multiplied by the average severity of the drought-affected area for each month. The most severe 
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drought occurred in April 1963, with a severity value of more than 0.9. The longest duration drought 

was 121 months, lasting from 1964 to 1974, closely followed by the 1982 to 1991 drought (lasting 112 

months). The drought of September 1965 and September 1986 occurred across a large area 

(approximately 45% of China), while the area affected by other droughts was lower (approximately 

25% of China). Two of the major drought events we identified (1974–1979 and 1961–1964) agreed 

with previous assessments [41]. 

Table 2. Six most severe drought events in terms of duration, spatial extent, average severity, and 

comprehensive index from 1961 to 2000. In the second column, the maximum monthly area of drought 

and corresponding dates are given in parentheses. In the third column, the monthly maximum 

severity and corresponding date are given in parentheses. In the fourth column, the maximum 

comprehensive index and corresponding date are given in parentheses. Top four prominent drought 

events in terms of the ranked comprehensive index and durations (Bold type) were selected for 

further analysis. 

Durations (months) Spatial extent (%) Severity (0–1)  
CI 

(Area × Average severity) 

1964–1974 (121) 1964–1974 (47.07%, 09/1965) 1962–1963(0.92, 04/1963) 1964–1974 (29.97, 06/1966) 

1982–1991 (112) 1982–1991 (42.40%, 09/1986) 1963–1964 (0.89, 05/1963) 1982–1991 (28.58, 08/1986) 

1976–1985 (103) 1961–1964 (28.77%, 06/1963) 1980–1980 (0.86, 03/1980) 1961-1964 (20.13, 06/1963) 

1994–1998 (50) 1994–1998 (25.33%, 09/1994) 1980–1981 (0.84, 03/1980) 1994–1998 (13.49, 09/1994) 

1974–1978 (45) 1998–2000 (24.13%, 09/2000) 1969–1970 (0.80, 12/1969) 1991–1993 (13.17, 11/1992) 

1978–1981 (37) 1974–1978 (21.97%, 07/1975) 1961–1964 (0.78, 04/1963) 1978–1981 (11.57, 08/1978) 

Table 2 also summarizes the top four prominent drought events based on the comprehensive 

index and durations. Figure 4 shows the three-dimensional spatial distribution of drought area and 

severity of most prominent events for every ten months of the data record. During its early stages, 

the drought event of 1964–1974 was mainly distributed across northwest China (western and 

southeastern Xinjiang, Gansu, and Inner Mongolia) before becoming widespread throughout the 

whole of China. Towards the end of this drought event, the affected area and severity had decreased 

significantly.  

 

Figure 4. Spatial and temporal evolution of the most serious drought events in China between 1961 

and 2000. 

3.2.2. Future Period 

For the future period (2021–2060) under RCP4.5, 31 drought events were predicted for China 

(Table 3), including 9 events with a duration of more than 12 months and 3 with a duration of more 

than 24 months. The longest duration event of 2021–2042 (253 months) would occur across 68.99% of 

China. Meanwhile, the most severe drought was projected to occur in February 2026, with a severity 
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value of more than 0.86. Under the RCP 8.5 scenario (2021–2060), 39 droughts were identified (8 more 

events than projected under RCP4.5). The longest duration projected drought was 230 months (2021–

2041), which was extraordinarily similar to the 2021–2042 events modeled under RCP 4.5. The area 

of this drought would cover approximately 72.58% of China and would have a severity above 0.9. 

The modeled duration, area, and severity of all other drought events were significantly reduced 

relative to this single event. 

Table 3. Six most severe drought events in terms of duration, spatial extent, average severity, and 

comprehensive index from 2021 to 2060 under RCP4.5 and RCP8.5 scenarios. The top four prominent 

drought events in terms of ranked comprehensive index and duration (bold type) were selected for 

further analysis. 

RCPs Durations (month) Spatial extent (%) Severity (0–1)  
CI 

(Area × Average severity) 

RCP4.5 

2021–2042 (253) 
2021–2042 (68.99%, 

08/2024) 

2021–2042 (0.86, 

02/2026) 
2021–2042 (55.46, 08/2024) 

2055–2060 (66) 
2055–2060 (20.85%, 

07/2057) 

2027–2027 (0.85, 

06/2027) 
2048–2049 (10.34, 11/2048) 

2043–2045 (27) 
2048–2049 (15.64%, 

10/2048) 

2022–2023 (0.79, 

12/2022) 
2055–2060 (7.80, 08/2057) 

2050–2052 (21) 
2051–2052 (14.23%, 

11/2051) 

2053–2053 (0.79, 

06/2053) 
2051–2052 (5.33, 11/2051) 

2048–2049 (18) 
2055–2056 (12.64%, 

07/2055) 

2023–2023 (0.73, 

11/2023) 
2054–2055 (5.21, 09/2054) 

2034–2035 (16) 
2054-2055 (8.76%, 

09/2054) 

2046–2046 (0.72, 

08/2046) 
2046–2047 (5.18, 09/2046) 

RCP8.5 

2021–2041 (230) 
2021–2041 (72.58%, 

08/2033) 

2021–2041 (0.91, 

10/2025) 
2021–2041 (65.57, 10/2025) 

2051–2056 (61) 
2051–2056 (15.46%, 

06/2053) 

2021–2022 (0.91, 

01/2022) 
2051–2056 (7.67, 07/2054) 

2041–2043 (25) 
2056–2057 (10.58%, 

04/2057) 

2023–2024 (0.87, 

11/2023) 
2041–2043 (7.08, 10/2042) 

2039–2041 (22) 
2041–2043 (10.48%, 

10/2042) 

2024–2024 (0.83, 

08/2024) 
2056–2057 (5.44, 04/2057) 

2045–2046 (18) 
2045–2046 (7.12%, 

08/2045) 

2029–2030 (0.79, 

01/2030) 
2039–2041 (4.34, 07/2040) 

2056–2057 (15) 
2045–2046 (6.89%, 

10/2045) 

2056–2057 (0.78, 

09/2057) 
2023–2024 (3.78, 01/2024) 

3.3. SAD Envelope Curve of Drought in China 

The SAD envelope curve represents the maximum bounds of severity from all drought events 

of each duration and area increment. For comparative analysis of decadal variation of drought events 

across China, we divided 1961–2000 into 4 decades, namely the 1960s, 1970s, 1980s, and the 1990s 

[49]. Figure 5 plots the SAD envelope curve of all drought events with durations of 3, 6, 9, 12, 24, and 

48 months within these periods. The severity of drought events weakened with an increase in the 

spatial extent. Furthermore, the drought events in the 1960s were the most serious on the basis of 

severity and spatial extent, followed by those occurring in the 1980s. 
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Figure 5. Decadal-scale severity-area-duration (SAD) envelope curves for drought events in China 

with a duration of 3, 6, 9, 12, 24, and 48 months for the period 1961–2000. 

It was noted that the drought events in the 1960s dominated the SAD envelope curves for areas 

up to 5 × 106 km2. This was also observed by Wang et al. [41], who analyzed soil moisture drought in 

China based on using the SAD method. For drought areas of less than 1 × 106 km2, the most serious 

events lasting 3 to 12 months occurred in the 1980s. The SAD envelope curves of the 1970s and 1990s 

events showed relatively small areal extents and lower severity, but the slopes of these envelope 

curves were significantly steeper than for the other decades. 

Figure 6 shows the SAD envelope curves and drought events for the historical period and for 

the future period based on the two RCPs. The envelope curves under the two RCPs were above the 

historical envelope curves for all durations, and their spatial extents were also larger than those of 

the historical period. However, the slopes for the two RCPs were smaller than for the historical 

period. This indicates that future droughts (under both RCP scenarios) would be more severe than 

those that occurred during the historical period. 
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Figure 6. SAD envelope curves for droughts with durations of 3, 6, 9, 12, 24, and 48 months during 

the historical period (1961–2000) and under future RCP4.5 and RCP8.5 scenarios. 

3.4. Distribution of Drought Centers 

The drought centers of all historical drought events (1961–2000) with different durations are 

shown in Figure 7. We found that during the early decades of the study period, drought centers were 

mainly distributed in the northwestern and northern regions of China. This was in line with Zhai et 

al. [42], who analyzed the spatial distribution of drought centers for different durations (1, 3, 6, 9, 12, 

24 months) in China for the period 1960–2013. Meanwhile, most drought centers for the late 20th 

century were located in the semi-arid and southeast parts of the humid regions. 



Water 2020, 12, 230 12 of 17 

 

 

Figure 7. Distribution of drought centers with different durations in China during the period 1961–

2000. 

Furthermore, the short-duration (less than 6 months) drought centers were distributed 

throughout China. The drought centers for events with 9- and 12-month durations principally 

occurred during the 1970s and the 1980s, and these were mostly located in the middle of the semi-

arid region and the southwest of the arid region. The longer-duration (more than 24 months) drought 

centers occurred at the boundary of the semi-arid and arid regions, and there were fewer of these 

compared with short-duration drought centers. 

The distributions of drought centers under RCP 4.5 and RCP 8.5 scenarios are shown in Figure 

8. The modeled drought centers with short durations (less than 6 months) were distributed 

throughout China, similar to the observed droughts during the historical period. However, the 9- and 

12- month drought centers modeled under two RCPs showed different spatial patterns. Under 

RCP4.5, drought centers mainly occurred in the northwest of the arid region and in the northeast of 

the semi-humid region and were more concentrated than under RCP8.5. By comparison, the historical 

drought centers with the same durations were mostly located at the boundary of the arid and semi-

arid regions, and in the southwest of the humid region. This indicates that the frequency of drought 

events would increase over northeastern China in the future. In this respect, we achieved the same 

result as Zhai et al. [50] who analyzed the drought trends using the PDSI and the SPI. Drought centers 

with 24- and 48-month durations were predicted to occur mostly during the 2030s and the 2040s, and 

the distribution of these drought centers under the two RCPs was roughly similar to the moderate 

duration events (9- and 12- month), although this was clearly different from the historical period. 
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Figure 8. Distribution of drought centers with different durations in China under two RCP scenarios 

for the period 2021–2060. 

4. Conclusions and Discussion 

Using bias-corrected 9ME simulations, we applied the SC-PDSI index and the SAD method to 

identify drought events and analyze the potential spatiotemporal distribution of those extreme 

drought centers over China. The primary purpose of this study is to provide a historical perspective 

when planning for future drought mitigation. We found that historical drought events with short 

durations occurred throughout China, while the long duration droughts were more frequently 

located in the boundary region of the semi-arid and arid regions and the southwest of the arid region. 

The 1970s and the 1990s events showed relatively small areal extents and lower severity than did 

other decades. It demonstrates that more drought events in the late-20th-century affected a smaller 

area than in the mid-twentieth century. This is similar to Chen et al. [49] that droughts over China 

exhibited a well-defined decadal variation during the past 50 years, with more frequent droughts 

occurring before the 1980s and in the 2000s and fewer droughts in the 1980s and 1990s. 

Furthermore, our findings indicate an overall increasing risk of droughts over China during the 

historical period, which hints that climate change and the East Asian monsoon play an important role 

in drought events. The East Asian monsoon has weakened in terms of land-ocean pressure gradients 

over the past 30 years [51], and the precipitation rain belts are shifting southward. Therefore, further 

studies are needed to predict the effects of East Asian monsoon on future drought characteristics in 

China. 
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In the future, drought events are projected to occur less frequently than the historical period. 

The longest modeled drought duration, lasting 253 months during the period of 2021–2042, would 

affect 68.99% of China under RCP4.5, followed by the drought of 2021–2041 under RCP8.5. It indicates 

that a drought would occur with a long duration and strong severity in the 2020s–2040s. The projected 

middle-duration drought centers under two RCPs were mainly located in the northwest of the arid 

region and the northeast of the semi-humid region of China. 

In this study, based on bias-corrected CMIP5 models, we used the SAD method to assess 

whether future climate change trends are changing (or have the potential to alter) the severity of 

drought occurrence across China. Our results indicated that the outputs of the bias-corrected multi-

model ensemble had high accuracy in simulating precipitation and temperature in China. However, 

climate models have uncertainty for the theoretical understanding of climate change remains 

incomplete with certain simplifying assumptions [52,53]. Therefore, future research, particularly 

regarding drought projections using more climate models and an analysis of narrowing models 

uncertainties, is essential for a better understanding of future drought characteristics changes. In 

addition, large-scale teleconnection patterns, such as El Niño–Southern Oscillation (ENSO), have an 

effect on drought occurrence [54–56], which may also affect the drought prediction over China. For 

example, Zhang et al. [57] found that more frequent drought struck in southern China during autumn 

in the two most recent decades and the increasing autumn drought is largely attributed to an ENSO 

regime shift. Future studies need to pay more attention to the effects of teleconnection and the 

occurrence of drought. Furthermore, we used 150,000 km2 [41] as the minimum area threshold of 

drought events for China. Due to the threshold selection that has direct effects on the identification 

of drought events [40], the later application for other regions needs caution when selecting the 

threshold. 
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