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Abstract: Countries in arid regions are presently facing challenges in managing their limited water
resources. Assessing the evaporation losses from various sources of water is a daunting task that is
inevitable for the sustainability of water resource management schemes in these regions. Although
several techniques are available for simulating evaporation rates, identifying the parameters of various
evaporation equations still needs to be further investigated. The main goal of this research was to
develop a framework for determining the parameters influencing the evaporation rate of evaporation
pans. Four different equations, including those of Hamon, Penman, Jensen–Haise, and Makkink, were
chosen to estimate evaporation from the evaporation pans installed in the Qassim Region of Saudi
Arabia. The parameters of these four equations were identified by a state-of-the-art optimization
technique, known as the general reduced gradient (GRG). Three types of objective functions used for
optimization were tested. Forty-year monitoring records for pan evaporation, temperature, relative
humidity, and sunshine hours were collected from the Municipality of Buraydah Al Qassim, for the
period of 1976 to 2016. These data were mainly manually recorded at a weather station situated in the
Buraydah city. Preliminary data analysis was performed using the Mann–Kendall and Sen’s slope
tests to study the trends. The first 20-year (1976–1995) data were used for calibrating the equations by
employing an optimization technique and the remaining data were used for validation purposes.
Four new equations were finally developed and their performance, along with the performance of the
four original equations, was evaluated using the Nash and Sutcliffe Efficiency (NSE) and the Mean
Biased Error (MBE). The study revealed that among the original equations, the Penman equation
performed better than the other three equations. Additionally, among the new equations, the Hamon
method performed better than the remaining three equations.

Keywords: Penman equation; general reduced gradient; arid regions; evaporation pans; trend;
objective function

1. Introduction

Environmental, industrial, and climatic changes are affecting the hydrological cycle of different
regions, worldwide. Due to such changes, the shortage of water resources has become a serious threat
to arid environmental areas, such as the Gulf region. Evaporation loss is an important component of
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the hydrological cycle and precise estimation of the rate of evaporation from various sources of water
plays an important role in the planning, design, and operation of natural water resources, particularly
in arid regions. Therefore, the evaporation loss should be given appropriate attention while dealing
with water/energy budgets and climate change impacts [1–3].

Evaporation rate estimation in irrigated areas and other water bodies is highly complex due to the
nonlinear behavior of various physical processes that affect vaporization. Several equations exist for
calculating the evaporation rates of various water bodies and evaporation pans [2,4–8], and each one
of them provides different results. Therefore, selecting the most appropriate equation for estimating
evaporation rates remains a vital research topic [9–13]. The availability and accuracy of data is another
issue to be addressed. For arid regions, it is of utmost importance to compare and evaluate the
methods of estimating evaporation, in order to select the best evaporation equation for the future
planning of limiting water resources. Inaccuracies in estimated evaporation will directly affect the
design, operation, and maintenance of drainage facilities, irrigation schedules, and runoff estimations.
As equations based on physical principles require a lot of data and most of the empirical equations are
site-dependent, the empirical parameters of these equations must be determined with an acceptable
degree of certainty [11–13]. Identification of the parameters of the evaporation equations requires the
application of a suitable optimization technique. This aspect has not been frequently investigated in
past studies.

There are many meteorological factors affecting the rate of evaporation, including (i) the
temperature of the water and air, (ii) the difference in vapor pressure between water and air, (iii) the wind
speed, and (iv) solar radiation [14,15]. The evaporation rate is also influenced by the surrounding air
humidity. Humid air (moist air) has a comparatively smaller thirst for water vapor than drier air, while
an absence of wind also decreases the evaporation rate. During non-windy days, water evaporating to
the adjacent air remain close to the surface of the pond or reservoir and contribute to the local humidity.
The evaporation rate diminishes when the moisture content of the adjacent air reaches the maximum
limiting value. The existence of airflow removes the vapor of the air surrounding the water source,
which reduces the humidity and thus increases the evaporation rate [14,16].

The evaporation process needs sufficient energy for the latent heat of vaporization. The main
source of heat energy is solar radiation. [14,17–19].

Numerous methods exist for estimating evaporation from water surfaces [2,4–8,11–13,20].
These methods fall into four categories, namely, the (i) water budget, (ii) energy budget, (iii) method
of mass transfer, and (iv) combined techniques. In energy budget and water budget techniques,
the incoming and outgoing amounts are balanced. The equations obtained from this balance are solved
by keeping the evaporation rate unknown [20,21]. The most useful methods for estimating evaporation
calculate the evaporation rates by using meteorological records. The Penman equation [22] forms
the basis of derivation for most of these methods. Details of many other research publications on
assessing evaporation rates from the water surface or potential evapotranspiration (equivalent to
evaporation) can be found in the literature [11,16,17,20,23]. These evaporation estimation methods
can also be classified as direct techniques (eddy correlation techniques and large evaporation pan
techniques) and indirect techniques (water balance techniques, aerodynamic techniques, heat balance
techniques, etc.) [24]. Recent research has been done on the design and validation of evaporation
pans by Collison [25]. According to him, pans that are installed in a way that represent the actual
field conditions might produce accurate results, whereas the Class A Pan and other standard pans in
use usually provide slightly inaccurate measured evaporation. Tanny et al. [26] and Chu et al. [27]
conducted research related to the Class A evaporation pan and found that it is the least accurate method
of measuring and estimating evaporation. All such limitations must be considered while dealing with
evaporation estimates. It all depends upon the nature of the project one is dealing with. The estimation
of evaporation losses for various components of water resource planning and management includes
different aspects. For example, in case of runoff estimation from a catchment, the constants of
evaporation equations and data required for the development of the equations might be different from
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those used for evaporation estimation, while dealing with irrigation scheduling or reservoir operations.
Table 1 summarizes the data needed and limitations of some of more recent studies.

Table 1. Data requirements and review of publications regarding evaporation equations.

Reference
Data Required Identified Parameters

by OptimizationTemperature Humidity Wind Radiation

Yang and Roderick 2019 [2]
√

×
√ √

×

Stassen et al. 2019 [3]
√

×
√

× ×

Wang et al. 2019 [4]
√ √ √

× ×

Ahmadipour et al. 2019 [5]
√ √ √

× ×

Zolá et al. 2019 [6]
√

×
√

× ×

Al-Domany et al. 2018 [7]
√

×
√

× ×

Duan and Bastiaanssen 2017 [8]
√

×
√ √

×

Said and Hussein 2013 [10]
√ √

× × ×

Hussein 2015 [12]
√ √ √ √

×

Patel and Majmundar 2016 [13]
√

× ×
√

×

Majidi et al. 2015 [20]
√

× ×
√

×

Morton 1971 [28]
√ √

× × ×

Yao and Creed 2005 [29]
√ √

× × ×

Winter et al. 1995 & 2003 [30,31]
√ √

×
√

×

Moazed et al. 2014 [32]
√ √ √ √

×

Paparrizos et al. 2014 [33]
√ √ √ √

×

The water loss per unit time from a standard container is often measured at weather stations.
The most commonly used techniques for measuring evaporation rates are evaporation pans, which
are inexpensive and simple to operate. The US Weather Bureau Class A pan is one of the best-known
pans equipped with a level sensor. As the actual evaporation is less than the evaporation measured by
pans, the pan coefficient defines the ratio of actual pond evaporation and measured pan evaporation
rates [10,34].

Pan evaporation has been used in a number of research projects to choose the most appropriate
evaporation equation in various parts of the world [35–39]. Ali et al. [40,41] found a strong agreement
of the monthly average of Class A pan evaporation with the estimates of the Penman equation [42].
Tukimat et al. [43] compared a number of temperature- and radiation-based methods with the
Penman–Monteith equation to estimate evaporation. According to them, the methods based on
radiation simulated comparatively better results for evaporation and potential evapotranspiration.
Pan evaporation has been compared with the estimated values of evaporation from eight empirical
equations by Lee et al. [38]. They found comparatively better agreement between pan evaporation
and estimates of the Penman–Monteith equation [44]. Muniandy et al. [39] compared the estimates of
pan evaporation with the results of 26 empirical equations. According to them, the Penman equation
provided comparatively better estimates of evaporation compared to other methods.

A summary of the literature review shows that the identification of parameters of evaporation
equations using state-of-the-art optimization techniques has rarely been reported, whereas this aspect is
of the utmost importance for developing robust evaporation equations for a specific region. Therefore,
the main objectives of the present research were to (i) compare the results of some existing evaporation
equations with actually measured pan evaporation data and choose the best one, (ii) determine the
parameters of evaporation equations using state-of-the-art optimization methods, and (iii) compare
the results of different developed evaporation equations with pan evaporation data. Extensive data
were obtained from the Municipality of Buraydah, Qassim, Saudi Arabia, to achieve the above stated
objectives and to evaluate the practicality of our approach for estimating more accurate evaporation
losses from natural ponds in arid regions.
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2. Materials and Methods

The framework for the methodology is given in Figure 1. The most difficult task in this research was
to collect the extensive data required for the calibration, development, and validation of evaporation
equations on the basis of pan evaporation. These data were collected from the Municipality of
Buraydah, Qassim, Saudi Arabia, as mentioned above. A brief summary of evaporation and other
meteorological data measurement is described below.

In the era of high technology, there are sophisticated methods available to directly measure
lake evaporation [6]. However, either data from advanced techniques that use sensors to measure
evaporation are not yet easily available in developing countries, or the available data are not sufficient for
statistical analyses and the development of equations. Pan evaporation is considered a reasonably good
indicator of the regional evaporation intensity that is usually used for estimations of lake evaporation
and water resource planning and management [14]. Pan evaporation and meteorological variables,
including solar radiation, sunshine duration, atmospheric pressure, vapor pressure, wind velocity,
air temperature, and relative humidity, were used in a study on lake evaporation by Yan et al. [14].
A monthly pan evaporation dataset was used for monitoring and estimating important aspects of
evaporation in various parts of the world [11–14].
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2.1. Data Collection

The records of evaporation and meteorological data, including relative humidity, temperature,
wind speed, and sunshine hours, were collected from the Municipality of Buraydah Al Qassim.
A manually operated pan was used for the collection of evaporation data. In this study, such data were
selected so that the equations developed could be based on long-term data. The Class A pan had a
height of 25.4 cm and a diameter of 120.7 cm. It was made of stainless steel and was installed on a
wooden platform placed on the ground in a location away from obstacles, including trees and bushes,
so that there was a natural airflow around the pan. Pan evaporation was measured on a daily basis in
terms of the depth of water (mm) evaporated from the pan. However, to take into account the actual
conditions of lakes, a pan coefficient was involved to convert the pan evaporation to lake evaporation.
The pan coefficient used to convert pan evaporation into lake evaporation in this study was taken as
0.75, as provided by the authority from which the data were collected. According to the data-providing
authority, the pan was changed only a few years ago but was also a Class A pan, so the results of
pan evaporation could be considered consistent with previous records. The other meteorological
data, including temperature, relative humidity, and wind speed, were measured by fully automated
devices that have been connected by a computer for the last about five years. The remaining data
were manually recorded. The fully computerized data were available for a short period. A thorough
comparison of the two types of data was not performed. However, there was hardly any difference
between the important values of temperature, like the average, maximum, and minimum temperature.
The relative humidity was recorded by a psychrometer, temperature was measured by minimum and
maximum thermometers, and wind speed was measured by an anemometer.

2.2. Study Area

The weather station was situated near the Buraydah City Center (Figure 2), which was used
to measure the evaporation from pan along with other meteorological data. The first data scrutiny
was conducted by visual inspection of the data, checking value by value. Abnormal values, like zero
evaporation against a temperature range of 30 to 40 ◦C, were removed. Relative humidity values
greater than 100% were also removed. The cells corresponding to these removed values were kept
blank for estimating the average values of various meteorological data elements, including evaporation
and relative humidity. The same station had rain gauges to measure rainfall. Rainfall in the Qassim
Region mostly occurs in winter. The one-day, two-day, and three-day maximum rainfall values for
Qassim were 86, 92, and 95 mm, respectively. The rainfall in the study area was mainly due to the
advection phenomenon. Advection is a common mechanism for heat transfer from a hot earth surface
to air masses in arid regions. It also had a great impact on the evaporation process, which should be
considered when developing equations for arid regions.

The second task was to analyze the data with respect to the trends. Then, the data were used to
estimate evaporation from various equations and to compare the results. Finally, the optimization
scheme was used to develop equations for accurate estimations of evaporation.
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2.3. Brief Description of Evaporation Equations

Many equations have been derived for the estimation of evaporation. Four common equations
were examined in this study and are explained in the next section.

2.3.1. The Hamon Method

Hamon developed an equation to estimate potential evapotranspiration/evaporation with as few
climatic limitations as possible [45–47]. His equation can be applied for both dry and humid climatic
conditions. The equation was developed to determine the evaporation losses from precipitation for
the estimation of amounts of direct runoff from a rainfall storm over a catchment. According to the
Hamon method, daily evaporation E (mm) can be estimated by the following equation [28]:

E = 0.63 D210(
7.5 Ta

Ta+273 ), (1)



Water 2020, 12, 228 7 of 21

where Ta is air temperature and D represents the maximum sunshine duration ratio, which can be
estimated by the following equation:

D =
1

90
arccos

[
− tan(φ)· tan〈23.45◦ sin

( J − 80
365

)
360◦〉

]
, (2)

where φ represents the latitude and J is the Julian day.

2.3.2. Penman Equation

The Penman method can be used to estimate evaporation from water sources, including losses from
precipitation over a catchment, irrigation water, and potential evapotranspiration (usually considered
as evaporation). This equation is considered a robust one as it involves the physics of the vaporization
phenomenon. It is based on a combination of the mass-transfer and energy-budget techniques of the
estimation of evaporation. It can be used when detailed meteorological data, including temperature,
wind speed, relative humidity, and solar radiation, etc., is available. However, in the case of data
scarcity, it might involve some empirical coefficients. Therefore, there is a need for calibration for the
identification of empirical constants in such situations. According to this method, the daily evaporation
can be given as [48,49]:

E =
∆

∆ + γ
Rnet

λ
+

γ

∆ + γ
0.0026(1 + 0.54u)(1− r)esa, (3)

where Rnet represents the net radiation (J), λ is the latent heat of evaporation (2.46 × 106 J/kg), r is the
average daily relative humidity (≤1.0), u is the average daily wind velocity (m/s) for the given interval
(one day for daily, 30 days for monthly, 365 days for yearly, etc.), esa is the average daily saturated
vapor pressure (Pa), and ∆ is the average slope of the saturated vapor pressure and temperature curve.
The two terms related to the slope γ and ∆ can be given in the form of the empirical relations of air
temperature [50]:

∆
∆ + γ

= 0.439 + 0.0112 Ta, (4)

γ

∆ + γ
= 0.5495− 0.01119 Ta. (5)

The following Arden Buck formula [51] might be used to estimate the vapor pressure under a
saturation condition:

esa = 611.21 Exp
[
(18.678− Ta/234.5)Ta

257.14 + Ta

]
, (6)

Rnet = Rns −Rnl, (7)

where Rnet is the net radiation, Rns is the incoming net shortwave radiation, and Rnl is the outgoing net
longwave radiation [52,53].

2.3.3. Jensen–Haise Equation

The Jensen–Haise equation [29,31,54,55] was basically developed to estimate the potential
evapotranspiration/evaporation from irrigated grass. This equation is based on an energy balance
approach. Empirical constants are involved for simplification and to avoid requirements for a large
amount of data. The approach mainly involves temperature and radiation data. According to the
Jensen–Haise equation, the following can be used to obtain evaporation on a daily basis [29,31,32]:

E = [0.014(1.8 Ta + 32) − 0.5]
Rns

λ
, (8)

where Ta, Rns, and λ have been defined in a previous section.
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2.3.4. Makkink (MK) Method

The Makkink equation [56] might be used to estimate evaporation using air temperature data
and the fraction of sunshine–duration. This equation involves two coefficients that depend on locality.
Pan evaporation can be used to identify the empirical parameters of this equation [56]. Once the
equation is calibrated for a certain region, it can be used to simulate the pan evaporation. On the basis
of the results obtained, maps of each coefficient for the whole of Japan have been prepared. Daily
evaporation according to the Makkink method is given as follows [29,31,32]:

E = 0.61
∆

∆ + γ
Rns

λ
− 0.012. (9)

2.4. Development of Evaporation Equations Using Optimization

Four equations were developed on the basis of the above four methods by optimizing some of
the empirical parameters. Three parameters were selected to develop an equation similar to that of
Hamon for an accurate prediction of evaporation. In Equation (1) (Hamon’s equation), the constants
0.63, 2, and 7.5 were considered as parameters p11, p21, and p31, respectively, and the values of these
parameters were optimized to minimize/maximize the objective function using the general reduced
gradient (GRG). Three objective measures were tested, including the Nash and Sutcliffe Efficiency
(NSE), Mean Biased Error (MBE), and mean absolute error. The two parameters, p12 (constant 0.54) and
p22 (Albedo coefficient (0.23) used to estimate Rns), were selected for the Penman equation (Equation
(3)). For the Jensen–Haise equation (Equation (8)), the three parameters p13 (Albedo coefficient (0.23)
used to estimate Rns), p23 (constant 1.8), and p33 (constant 0.5) were optimized. For the Makkink
equation (Equation (9)), the two parameters, p14 (constant 0.61) and p24 (constant 0.012), were optimized.
The values of the constants mentioned above were given as the initial estimates of parameters in the
optimization process and the GRG optimization finally gave the optimized values of these parameters.
The results of new equations with these optimized parameters were compared with each other and
with the measured records were used for the validation of the equations.

2.4.1. Mann–Kendall Test

For long records, it is always recommended that the data regarding trends and statistical behavior
should be analyzed before being used in a simulation. For the development of evaporation equations,
a long record of about 40 years was used in this study. Therefore, it was considered wise to check the
trends in data and remove the trends if these were of an undesirable limit. The following equation
represents the Mann–Kendall statistic S [57,58]:

S =
∑n−1

i=1

∑n

j=i+1
Sgn

(
E j − Ei

)
, (10)

where Ei represents the evaporation; i is the rank of evaporation from 1, 2, . . . , n − 1; and E j represents
the evaporation values ranked from j = i + 1, i + 2, . . . , n. Each of the evaporation values Ei was
assumed to be a reference point that was compared to the rest of the evaporation values E j, such that:

Sgn
(
x j − xi

)
=


+1 if

(
x j − xi

)
> 0 increased trend

0 if
(
x j − xi

)
= 0 no trend

−1 if
(
x j − xi

)
< 0 decreasing trend

. (11)

The variance of evaporation data could be given as

Var(s) =
n(n− 1)(2n + 5) −

∑m
i−1 ti(i)(i− 1)(2i + 5)

18
, (12)
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where ti is the number of ties up to evaporation data sample i. The Zc was computed as

Zc =
S− 1√
Var(s)

for s > 0, (13)

Zc = 0 for s = 0, (14)

Zc =
S + 1√
Var(s)

for s < 0, (15)

The value of the Z-statistics in the range of ±1.96 represented no trend. Positive values of the
Z-statistics above 1.96 showed an increasing trend in evaporation, whereas the values that were
negative and below −1.96 showed a decreasing trend in evaporation.

2.4.2. Sen’s Slope Estimator Test

The trend magnitude could be estimated by Sen’s slope [59–62]. The slope (SSi) of all data pairs
for i = 1 to n could be estimated by the following equation:

SSi =
Ei − Ek

j− k
, (16)

where Ej and Ek are taken as evaporation values at time j and k, respectively, given that j> k. The median
of “n” values of SSi could be determined by Sen’s estimator (SEi) of the slope, given as

SEi =


SS n+1

2
For odd n values

1
2

(
SS n

2
+ SS n+2

2

)
For even n values

. (17)

The positive values of SEi showed an increasing trend, whereas a decreasing trend in evaporation
was shown by negative SEi values.

2.4.3. General Reduced Gradient (GRG) Method of Optimization

Using the abovementioned data, the ability of existing evaporation models to predict evaporation
was examined and evaluated. Moreover, calibration of the adapted methods (Hamon, Penman,
Jensen–Haise, and Makkink) was conducted based on actual measurements (20-year data), for a
better evaporation modeling. Subsequently, validation of the developed evaporation equations was
performed using different sets of actual evaporation measurements (the remaining 20 years of data).

There is a long history of using optimization techniques for solving nonlinear problems in
hydrology. However, in the field of vaporization, its application is limited. One of the most common
research methods includes finding the best values of hydraulic/hydrological parameters by searching
for the global minimum value of an objective function (OF). The objective function might be estimated
on the basis of common types of errors between the observed and simulated variables, such as
evaporation in the present study. Usually, a search might result in multiple minimum values of an
objective function, which are termed local minimums. However, the success of any optimization
technique depends on finding the global minimum. In general, optimization can be summarized as
maximizing or minimizing the OF:

OF = f (E) =
∑(

Ca
i

)(
Eb

i

)
, (18)

where C1, C2, C3, . . . , Cn are the objective function coefficients; E1, E2, E3, . . . , En, or, in general, (Ei),
are the decision variables (evaporation values); and ‘a’ and ‘b’ are any number. For example, if OF is
the sum of squared errors between the simulated (s) and measured (m) values of evaporation (Em(i) −

Es(i)), then b = 2, C(i) = 1, and a = 1. The user might set a range of parameters used in the evaporation
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equation to estimate Es(i). Another equation of the objective function might be in the form of any
model-performance indicator, like the Nash–Sutcliffe efficiency, as explained below.

Nonlinear problems are inherently more difficult to solve than linear problems. There are a number
of methods used in engineering to solve constrained nonlinear programming problems. This work
used the GRG algorithm. The main reason for the use of this technique is that it is user-friendly and
can efficiently converge to the global minimum solution [63]. The Generalized-Reduced-Gradient
algorithm is one of the most robust methods. It is based on nonlinear programming [63]. A flowchart
explaining the optimization is shown in Figure 3.
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2.5. Performance Evaluation of Evaporation Equations

The accuracy of the equations was checked by the Nash–Sutcliffe efficiency (NSE) [64]:

NSE =

1−

∑n
i=1(Eoi − Esi)

2∑n
i=1

(
Eoi − Eoi

)2

, (19)

where Eoi is the observed evaporation value of the ith data point, Esi is the simulated evaporation of the
ith data point, Eoi is the average value of Eo, and n is the total number of observations used to develop
the equation.

The other indicator used for testing the performance of the developed evaporation equations was
the mean biased error (MBE):

MBE =

(∑n
i=1(Esi − Eoi)

n

)
. (20)

The mean absolute error was also used in some cases.

3. Results and Discussion

3.1. Data Analysis

The records of evaporation and meteorological data/parameters, including relative humidity,
temperature, wind speed, and sunshine hours, were processed and are presented in graphical
form in Table 2. Before using the data for evaporation estimation, they were analyzed for trends.
The Mann–Kendall and Sen’s slope tests were applied to investigate any trends in the evaporation data.
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Table 2. Daily/monthly evaporation and average daily temperature (average for the period 1976–2016).

Evaporation Temperature

Month
Daily

Maximum
(mm)

Daily
Minimum

(mm)

Daily
Average

(mm)

Monthly
(mm)

Average
of Daily

Maximum
(◦C)

Average
of Daily

Minimum
(◦C)

Daily
Mean (◦C)

Jan. 8.15 2.06 4.21 129.06 19.92 6.45 13.18
Feb. 9.55 3.18 6.14 171.33 22.88 8.45 15.67
Mar. 12.49 3.78 8.13 250.82 27.16 12.45 19.81
Apr. 16.31 4.73 10.72 322.82 32.94 17.46 25.20
May. 19.56 8.18 14.60 451.45 39.10 22.90 31.00
Jun. 20.75 12.95 16.88 504.02 42.55 24.99 33.77
Jul. 20.72 12.90 16.87 520.10 43.53 25.36 34.45

Aug. 19.27 12.22 15.80 485.51 43.77 25.59 34.68
Sep. 17.91 9.94 13.91 412.40 41.47 22.90 32.19
Oct. 14.94 6.61 10.56 322.62 35.91 17.93 26.92
Nov. 11.68 3.08 6.48 190.70 27.15 12.50 19.83
Dec. 8.08 2.23 4.28 131.94 21.70 8.32 15.01

3.2. Data Analysis Results

The main data regarding evaporation estimation are presented in Section 3.1 in Table 2. It was
observed that the mean daily evaporation was the maximum from May to September. The temperature
was also the maximum during these months. The average daily evaporation ranged from 4.2 mm/day
in January and December (winter) to 16.9 mm/day during summer. The maximum daily evaporation
(mean of maximum daily evaporation for 40 years, from 1976 to 2016) ranged from 8.2 mm/day (winter)
to 20.8 mm/day (summer).

The trend analysis results are given in Table 3 and Figure 4. It was noticed that there was a positive
trend in evaporation for the months of January, February, November, and December. There was no
trend in the months of high evaporation during summer, so the data could be used for estimations of
evaporation. The trends of only a few months would not affect the results of the evaporation equations.
It is worth mentioning here that the equations would have limitations for producing high accuracy
results during the months of January, February, November, and December, because the whole data
from all months over the calibration and validation periods were used without removing the trend
component of the data. However, the results related to the months of high evaporation could be
considered to be reasonably accurate, as there was no trend in evaporation for these months.

Table 3. Trend analysis results for evaporation (Z values).

Month Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Z values 2.97 2.79 1.92 0.65 0.69 0.43 0.74 0.84 1.44 1.75 2.52 2.84
Trend Yes Yes No No No No No No No No Yes Yes
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Figure 4. Trends of evaporation data in the month of: (a) January; (b) February; (c) March; (d) April;
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3.3. Comparison of Evaporation Simulated by Various Equations

A comparison of the four equations on the basis of pan evaporation is presented in Figure 5a,b
and Figure 6a,b. The blue line in Figure 5a,b represents the 45◦ line. The results closest to this line are
the best results. Points below this line represent the underestimated results and the overestimated
values are displayed above this line. This shows that the performance of the Penman equation was
better than the other three equations. These results match the results found by Said and Hussein in
2013 [10]. Merit-wise, these equations can be placed as Penman (merit number 1), Jensen–Haise (2),
Makkink (3), and Hamon (4). The results of simulated evaporation were only close to the 45◦ line for the
Penman equation. The results from the other equations were far from the 45◦ line. The Nash–Sutcliffe
coefficients for the Penman, Jensen–Haise, Makkink, and Hamon equations were 0.74, 0.15, −0.84,
and −1.57, respectively. The MBE values for the Penman, Jensen–Haise, Makkink, and Hamon
equations were –1.16, −3.93, −5.57, and −7.06 mm, respectively (Figure 6). Acceptable NSE values
were taken as greater than 0.5. This means that only the Penman equation met the accuracy criteria,
although it also slightly underestimated evaporation compared to the measured values, as shown by
the MBE values. The reason for the better performance of the Penman equation is that it involves,
to some extent, the physics of the evaporation phenomenon. It includes temperature, wind speed,
sun shine hours, and net radiation as input data. It combines the fixed bulk surface resistance and vapor
aerodynamic (combines the mass-transfer and energy-budget approaches), which implicitly generates
a strong theoretical basis [43]. It is worth mentioning here that the merit of equations determined in
this research is on the basis of specific pan evaporation and other meteorological data.

All four equations are of an empirical nature and the accuracy of their output depends upon
the closeness of the data to that on the basis of which these equations were developed. According
to Lu et al. [65], for hot and dry areas, the differences in estimated evaporation obtained by various
methods exceeded 700 mm/year. Other researchers have also reported that the performance of
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these equations depends on the nature of the data. Nagai [56] estimated pan evaporation by the
Makkink equation and found that the results are very close to those of the Penman equation. However,
he concluded that for the best results of the evaporation estimation, there is a need to calibrate the
empirical constants of the equations on the basis of the data for a specific region. In other research [66],
it was concluded that the Makkink equation produces better results of estimation of evaporation
compared to those of the Jensen–Haise equation. Fernandes [67] also found similar results. He [67]
compared simple equations based on only temperature and found an acceptable performance for the
Hamon equation.
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Figure 5. Comparison of the observed and simulated values of evaporation obtained from the four
equations: (a) Original equations—half data; and (b) original equations—second half data.
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Figure 6. Error values for simulated evaporation obtained from various original equations: (a) Nash
and Sutcliffe Efficiency (NSE) for data used in calibration, (b) Mean Biased Error (MBE) for data used
in calibration, (c) NSE for data used in validation, and (d) MBE for data used in validation.

3.4. Calibration and Validation of the Developed Equations

The results of optimization on the basis of three objective functions were checked and it was
found that the objective function based on NSE gave better results compared to the results produced
by using the MBE as the objective function. The NSE value was 27% higher in the case of maximizing
the NSE, compared to the NSE value obtained by minimizing the MBE. However, optimization using
the objective function based on the mean absolute error produced values of optimized parameters and
performance indicators similar to those produced by using NSE as the objective function. The objective
function based on the NSE was finally used to identify the parameters for developing new evaporation
equations. The Albedo coefficient used to estimate Rns in the case of the Penman Equation (Equation
(3)) and Jensen–Haise Equation (Equation (8)) played an important role in the calibration process.
Its initial value was provided as 0.23 to start the calibration and the final value was obtained as 0.163,
for this coefficient.

The results from the four developed equations are presented in Figures 7a,b and 8. It can be
seen that the application of optimization resulted in improved equations. The evaporation estimated
by all four newly developed equations was highly accurate, i.e., the results were very close to the
45◦ line. It is worth noting that such results are hardly reported in the literature (see [2,5,8,10,31,32]).
Figure 8a–d shows the calibration and validation results for both the original and newly developed
equations in terms of NSE and MBE. These results indicated that the developed equations performed
much better than the original equations. The NSE, MBE, and an additional indicator (mean absolute
error) presented in Table 4 showed that the NSE values for all of the developed equations were greater
than 0.5 (i.e., an acceptable value). In the case of calibration, the NSE values were 0.91, 0.84, 0.91,
and 0.88 for Equation (1) (Hamon), Equation (2) (Penman), Equation (3) (Jensen–Haise), and Equation
(4) (Makkink), while the MBE values were found to be 0.02, 0.29, −0.02, and 0.0 for the same equations,
respectively. For the validation process, the NSE values were 0.8, 0.79, 0.81, and 0.78 for Equation (1)
(Hamon), Equation (2) (Penman), Equation (3) (Jensen–Haise), and Equation (4) (Makkink), and the
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MBE values were −0.52, −0.67, −0.71, and −0.81 for these equations, respectively. The calibration
process revealed that the equations depending upon a single variable or just a few variables (e.g.,
temperature only or temperature and humidity only) were easy and more efficient. For instance,
the Hamon equation only depends on temperature and its calibration and validation results were
found to be more reliable in comparison to the other equations. However, such equations are not robust
and are highly data-dependent. The original form of the same equation produced the worst results,
as it was developed using a certain set of data. The final developed equations using optimization are
given below.
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Minimum Absolute Error 
(mm) 
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Average Absolute Error 
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Figure 7. Comparison of the observed and simulated values of evaporation obtained from the four
developed equations: (a) Calibration; and (b) Validation.
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Figure 8. NSE and MBE values for simulated evaporation from the various developed equations:
(a) Calibration NSE; (b) Calibration MBE; (c) Validation NSE; and (d) Validation MBE.

The developed equation on the basis of the Hamon method:

E = 2.38 D1.75 10(
6.86 Ta
Ta+273 ). (21)

The developed equation on the basis of the Penman method with an Albedo coefficient equal
to 0.23:

E =
∆

∆ + γ
Rnet

λ
+

γ

∆ + γ
0.0026(1 + 0.728u)(1− r)esan. (22)

The developed equation on the basis of the Jensen–Haise method:

E = [0.016(2.2 Ta + 32) − 0.53]
Rns

λ
. (23)

The developed equation on the basis of the Makkink method:

E = 1.86
∆

∆ + γ
Rns

λ
− 4.97. (24)

Table 4. Absolute error in the case of calibration and validation.

Error Hamon
Method

Penman
Method

Jensen–Haise
Method

Makkink
Method

Maximum Absolute Error (mm) 5.66 6.66 5.76 6.48
Minimum Absolute Error (mm) −6.25 −4.41 −5.07 −5.11
Average Absolute Error (mm) 1.75 1.80 1.75 1.84
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4. Summary and Conclusions

Extensive records of pan evaporation, temperature, relative humidity, and sunshine hours were
used in the present research for the analysis and development of evaporation equations. Data analysis
using the Mann–Kendall and Sen’s slope tests found a specific trend for evaporation in the Qassim
Region, for the months of January, February, November, and December (i.e., primarily the winter
season). The summer months, with the maximum evaporation, showed no trends based on the
measured evaporation records.

Evaporation was estimated using four different methods: The Hamon, Penman, Jensen–Haise,
and Makkink equations. The results of these four equations were compared on the basis of extensive
measured data regarding pan evaporation, temperature, relative humidity, and sunshine hours. It was
concluded that the Penman equation was robust and provided estimates of pan evaporation with
a reasonably acceptable accuracy. Its performance was found to be better than that of the other
three equations.

Optimization using three different objective functions was applied to develop a more accurate set
of evaporation equations. The objective function based on NSE gave much better results, compared to
the objective function based on MBE (NSE value 27% higher). The objective function based on the mean
absolute error produced values of optimized parameters and performance indicators similar to those
produced by NSE. Four equations on the basis of the Hamon, Penman, Jensen–Haise, and Makkink
equations were developed for the Al Qassim Region. The parameters of the four equations were
optimized using the GRG optimization method. The optimization helped to find equations to estimate
evaporation in Qassim with a high accuracy (NSE in the range of 0.8–0.9).

An important conclusion of this research was regarding the Albedo coefficient. Its value had a
significant impact on the estimated values of evaporation obtained from various equations. The Albedo
coefficient found with the help of optimization was 0.163 for the Qassim Region.

It might be noted that a general methodology was developed for parameter optimization for
evaporation equations in this research. Although the methodology was applied to the case of the
Qassim Region, it could be used anywhere in the world with similar conditions, if sufficiently long
records for evaporation and meteorological data are available for model calibration and verification.
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