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Abstract: The water and wastewater sectors of England and Wales (E&W) are energy-intensive.
Although E&W’s water sector is of international interest, in particular due to the early experience with
privatisation, for the time being, few published data on energy usage exist. We analysed telemetry
energy-use data from Thames Water Utilities Ltd. (TWUL), the largest water and wastewater company
in the UK, which serves one of the largest mega-cities in the world, London. In our analysis,
we: (1) break down energy use into their components; (2) present a statistical approach to handling
seasonal and random cycles in data; and (3) derive energy-intensity (kWh m−3) metrics and
compare them with other regions in the world. We show that electricity use in the sector grew
by around 10.8 ± 0.4% year−1 as the utility coped with growing demands and stormwater flooding.
The energy-intensity of water services in each of the utility’s service zone was measured in the
range 0.46–0.92 kWh m−3. Plans to improve the efficiency of the system could yield benefits in
lower energy-intensity, but the overall energy saving would be temporary as external pressures from
population and climate change are driving up water and energy use.

Keywords: water-energy nexus; energy use; energy intensity

1. Introduction

Water and wastewater systems in England and Wales (E&W) are highly energy-intensive, a topic
that has attracted increasing attention over the last decade or so. Driven by the rising cost of electricity,
as well as the greenhouse gas footprint associated with energy use, the sector has recognised energy as
a significant operational cost that needs to be managed. For instance, all water supply companies in
E&W are currently working towards achieving a voluntary target to reduce operational greenhouse
gas emissions to net-zero by 2030 [1]. However, despite the rapidly changing landscape of energy-use
in the water and wastewater sectors of E&W, few studies focusing on the region exist in the literature.
This study aims to contribute novel data and information from E&W to an already well-developed
and international body of literature focusing on understanding the energy-influence of water and
wastewater systems.
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Energy use in the water and wastewater sectors can be divided into two separate categories:
(1) electricity used in industry; and (2) electricity used by household and non-household consumers
for water-related provisions. Since the characteristics of water systems differ hugely between regions
based on the local water demands, climate and geography, the amount of electricity needed in each
function within the supply chain can be significantly different between regions [2]. In the first
category of water-related energy use, electricity is needed throughout a complex network of water and
wastewater operations, which include water abstraction, distribution, treatment, sewage transportation
and wastewater treatment [3]. The energy required for abstraction depends on whether the source
is ground water or surface water [4]. Energy use in ground water abstraction is linear to the amount
of lift (m) that must be overcome to raise water, where the mean energy-intensity has previously
been approximated as 0.004 kWh m−3 m−1 [5]. In surface water abstraction, electricity use mainly
depends on the conveyance distance and the local elevation profile, which has been estimated as
0.002–0.007 kWh m−3 km−1 using data from Spain, Australia and the United States [5]. Water treatment
plant operations such as filtration, oxidation and ultraviolet treatment comprise the major component
of the energy demand at water treatment facilities [6]. The energy requirements for these processes are
again dependent on the local system, where factors such as the raw water quality and demand can
dictate the unit operations needed. For instance, Plappally and Leinhard [5] reported energy intensities
associated with conventional water treatment methods of 0.01–0.20, 0.18–0.47 and 0.38–1.44 kWh m−3

in Australia, United States and Canada, respectively, despite the countries having similar treatment
standards on the water supplied. Desalination, which is a highly energy-intensive water treatment
process, is also being increasingly used across the world, including in E&W [7]. The method
employed in E&W involves desalting brackish water using Reverse Osmosis (RO), which has a
reported energy-intensity of 1.0–2.5 kWh m−3 [8] that is comparatively lower than other methods
such as RO of seawater (2.5–7.0 kWh m−3) and multistage flash distillation (2.5–7.0 kWh m−3) [9].
Recent advancements in desalination have decreased the energy requirements of the process [7] but it
remains highly energy-intensive when compared with conventional treatment, and its future use is
expected to grow in E&W and beyond. Once water has been used by household and non-household
consumers, the wastewater generated must be treated to remove pollutants before it is released back
into the environment. Substantial amounts of energy can be consumed by unit operations such as
sludge pumping in primary treatment (0.04–0.19 kWh m−3) and aeration in secondary treatment
(0.02–0.13 kWh m−3) [5]. The main driver for energy use in wastewater treatment is not only the
location but also the size of the plant, the types and levels of operational techniques employed,
effluent input and output quality and experience of the operations staff [10]. In the second category
of water-related energy use, water users require significant inputs of electricity, mainly for water
cooling and heating. This is usually the most energy-intensive portion of the whole water supply chain.
For example, Siddiqi and de Weck [11] reported urban end use energy use of 3.16 kWh m−3 in San
Diego, U.S., which was almost double the energy-intensity of the supply and treatment system. Data
on the energy-intensiveness of the water and wastewater supply chain in E&W are extremely scarce.

There are 19 privately-owned water and wastewater or water-only utility companies in E&W that
reportedly consume around 2–3% of the overall national energy supply [12]. This makes the sector
the fourth most energy-intensive industry [13]. In the water sector, electricity use was observed to
have increased by over 10% in the eight years between 2002 and 2010 [14], likely driven by changing
water quality standards given the amount of water supplied remained largely the same. In response,
water managers have acted quickly to manage energy costs. Operational assets are being optimised
and upgraded to better manage energy demands [13]. Meanwhile, several utilities in E&W have
already installed solar Photovoltaics (PVs) and wind turbines on-site, and many are also generating
bio-gas from sewage sludge at wastewater treatment plants. As an example, two of the largest water
and wastewater utilities, Thames Water Utilities Ltd. and United Utilities, self-generated 22%
and 21% of their total electricity consumption, respectively [15,16]. The self-generation capacity is
only expected to grow. For instance, analysis from the water regulator in E&W, Ofwat, suggests
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that energy-from-sludge schemes can be expanded and optimised to realise £1 billion of benefits
for customers [17]. Reductions in per capita demand for water and leakages are being targeted
across E&W. Although these are generally classified as water demand strategies, these schemes will
yield a co-benefit of lowered energy use as it decreases the requirements on pumping and treatment
systems [18–20]. However, the benefits would diminish in time if the overall population increases.

There is, therefore, a clear momentum to better understand and control electricity use in the
water and wastewater industries of E&W. However, for the moment the scientific literature is
lacking, in that there are few published data or regional scale case-studies reporting the influence
of water-related electricity use in the sectors of E&W. As studies from other parts of the world have
shown, local case-studies on water-related electricity can form a vital pre-requisite in designing energy
reduction policies for the sector in terms of their cost-effectiveness and efficacy [21–23]. For example,
in California, research on water-related energy use, such as that of Klein et al. [24] from the California
Energy Commission, as well as the studies that proceeded, led to policy-driven action to reduce
electricity use in the water sector. Reductions of around 1830 GWh in 2–3 years were reported,
which was mainly achieved by managing water demands [20]. However, as the literature evolved,
Kenway et al. [25] noted that the policy missed a much larger pool of electricity use associated with
the energy used for water provisions at the household level, which is significantly greater than the
energy used at the utility scale. For example, end-use at the household level was found to account
for 95% of all water-related energy use in California [26]. Meanwhile, in Australia, research such as
Kenway et al. [27] improved the understanding of the energy footprint associated with urban water
and wastewater processes. Research that followed has increasingly focused on electricity use at
the consumer-level of the water supply chain, where the greatest proportion of energy is used for
water provisions [28–30]. This state-of-the-art research indicates only water-energy efficiency measures
at the household level would impact the overall energy-intensity in the water and wastewater sectors.
However, operational energy management strategies are fundamental for the environmental and
economic sustainability of the water and wastewater sectors.

We have not identified any studies that publish high temporal resolution data on water-related
energy use in the water and wastewater systems of E&W. There have been numerous calls in
E&W to conduct integrated nexus analyses in the modelling of water-energy systems [31,32],
but this can be challenging to realise in the absence of accessible region-specific empirical data [33].
Additionally, the water sector in E&W is of international importance in research, particularly due to its
relative level of development and experience with privatisation. Therefore, evidence from the E&W
should form an important contribution to the literature seeking to understand the energy influence of
urban water and wastewater operations at a global scale, which for the moment does not report much
data from the E&W.

With this clear literature gap in mind, we present the first water-related energy use metrics for
the E&W through a novel case-study of the largest water and wastewater utility in the E&W, Thames
Water Utilities Ltd. (TWUL), which is also responsible for serving one of the largest mega-cities in
the world, London. To do so, we analysed five years of monthly data on electricity consumption
across the TWUL system, which were provided to us by the utility company. The purpose of this
work is: (1) to produce the first water- and wastewater-related energy metrics in the context of the
United Kingdom; (2) to present a statistical method to separate the trend, seasonal effect and random
component from the electricity use time series; and (3) to compare and contrast water and wastewater
electricity use in our study against those from other parts of the world. It is important to recognise the
system boundaries for analyses of water-related energy [25], and thus we note that this current study
considered the the energy use related only to water and wastewater industry operations, and did not
deal with electricity for water provisions at the consumer level.

In this manuscript, we firstly present the TWUL system, details of the company, the data that we
received from them, and how these data were processed and analysed (Section 2). We then present
the the temporal evolution of electricity consumption across the TWUL system by their functional
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category and how usage in the region compares with other parts of the world (Section 3). Finally, we
provide concluding remarks on our findings (Section 4).

2. Materials and Methods

The main purpose of this study was to derive the first energy-intensity metrics for the water
and wastewater systems in E&W. To do so, we analysed empirical data as follows: (1) time series
to understand the trends in energy use and breakdown usage by functions in the supply-chain;
(2) each time series was then decomposed using an additive model to understand the long-term trends;
and (3) energy-intensity statistics were derived and compared against other regions in the world.

2.1. Study Area

This work focuses on the water and wastewater system of TWUL, which is located in the Thames
catchment (Figure 1) in South East England. The catchment area covers approximately 16,200 km2 [34].
Within the entire region, TWUL is the largest water utility out of four and the only wastewater utility.
The company is also the largest water and wastewater utility company in the United Kingdom and has a
customer base of 10 million and 15 million persons in water supply and wastewater, respectively [15].
TWUL is privately owned and has an annual turnover of around £2 billion. We note that there are three
other water supply companies within the region shown in Figure 1 but these utilities are not studied in
this work.

N

Boundaries
Water resource zone
Wastewater

Elevation (m)
0
80
160
240
320

Figure 1. Map of the Thames Water Utilities Ltd. area showing the water supply catchments
(black boundaries) and the wastewater resource zone (dotted black line). Elevation is shown in
the background.

Water resources are sourced from a combination of groundwater and surface water [34].
Drinking water is supplied to customers through around 32,000 km of water mains, 97 water treatment
works, 26 raw water service reservoirs, 308 clean water pumping stations and 235 clean water service
reservoirs [35]. As with most of the UK, a combined system conveys both sewage and urban stormwater
runoff through the same sewer network. Post-use wastewater and stormwater drainage is captured
and transferred through 109,000 km of sewerage mains and 4780 wastewater pumping stations, and is
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eventually treated at one of 351 wastewater treatment works in the area [35]. After employee costs,
electricity represents the largest operational expense for TWUL at approximately £130 million per
year, which represents around 14% of the total operational cost. Of this total sum, around 42%
and 39% can be apportioned to the water and wastewater systems, respectively [36]. Given the
significance of the electricity expenditure, there have been concerted efforts from the utility to better
understand opportunities for efficiency gains. During the 2017–2018 business period, TWUL reportedly
self-generated a fifth of their total electricity demand, which is equivalent to 293 GWh and £30 million
in operational expenditures [35]. As is the case for many water and wastewater utilities, there are
a number of sources of inefficiencies across the ageing system such as old and inefficient pumping
stations and treatment plants. However, leakages in the water supply system is widely recognised as
the major inefficiency, reported to be around 26% of the total output from water treatment plants [37].
The utility plans to reduce the overall leakage in the network by 15% in the period between 2020 and
2025 [35]. Further, the process of replacing aging infrastructure and optimising process operations
is continuous. At the demand-side, TWUL plans to install 300,000 smart meters by 2020 (current levels
are around 250,000 [35]) to manage overall demand [34].

Figure 1 illustrates the Thames Catchment with the local elevation profile, as well as the major
cities within the area. The TWUL water supply area is divided into six Water Resource Zones (WRZs),
which represent a standard geographical unit for water resources planning. Descriptive statistics of
each WRZ can be found in Table 1. The UK Environment Agency [38] define a WRZ as “an area within
which the abstraction and distribution of supply to meet demand is largely self-contained... so that all
customers in the WRZ should experience the same risk of supply failure and the same level of service
for demand restrictions”. As can be observed in Figure 1, the largest WRZ is the area encompassing
Swindon and Oxford (SWOX), which is followed by the London WRZ encompassing the Greater
London region. Both of these regions are largely reliant on river-based abstractions. The other four
zones are Kennet Valley, Henley, SWA (comprising Slough, Wycombe and Aylesbury) and Guildford.
These WRZs are relatively smaller in area and are reliant on both groundwater and river abstractions.

Table 1. Summary statistics related to the water supply system for each Water Resource Zone (WRZ) as
of 2014. Energy use and intensity were calculated in this study, whereas population and water demand
were obtained from Thames Water [39]. The final row shows a sum for the entire Thames Water system
with the exception of the ε column, where a mean value is shown.

Water Resource Zone Population (p) Water Demand (ML d−1) Energy Use (GWh Year−1) ε (kWh m−3)

Guildford 150,136 44.7 10.6 0.65
Henley 49,082 13.1 3.4 0.71
Kennet Valley 389,946 98.4 32.9 0.92
London 6,946,620 2048.1 389.2 0.52
SWA 507,627 135.7 31.4 0.63
SWOX 999,996 261.9 44.7 0.47
Thames Water 9,043,407 2602.0 512.2 0.65

2.2. Electricity Data

For this study, we analysed telemetry data that were provided by TWUL between September
2009 and 2016 (60 months). The data are aggregated electricity consumption statistics at monthly
time-resolution produced by a proprietary energy auditing system. The primary data (which were
not made available for this study) were generated by asset-level electricity meters at half-hourly to
daily resolution before being aggregated to the monthly timescales by the energy auditing system.
The sample covered 395 sites in total, including: (1) 139 water pumping stations; (2) 112 wastewater
pumping stations; (3) 98 wastewater treatment plants; (4) 40 water treatment plants; (5) 1 desalination
plant; and (6) 5 other sites including facilities, laboratories and properties.
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2.3. Time Series Analysis

Electricity consumption data (kWh month−1) for each asset were aggregated by functional
categories and converted into time series following a similar approach to previous studies [40,41].
By functional categories, we refer to following specific operations in the supply-chain: (1) wastewater
treatment; (2) wastewater networks; (3) water treatment; (4) water networks; (5) desalination; and
(6) other auxiliary functions. Time series of electricity use in water systems have previously been
observed to exhibit strong seasonality driven by seasonal patterns in demand [40]. The electricity
consumption data also show an overall trend in accordance with, for instance, growth in water
demands. Finally, abnormal fluctuations from the mean of the time series might also be observed
caused by upsurges in demand during events such as major holidays and sporting events, amongst
other factors including weather events. However, these cannot be captured within a long-term seasonal
or trend component, and so can be considered as a statistically random component within the time
series. Therefore, to understand the influence of such factors on the overall electricity consumption,
we use the Seasonal and Trend decomposition method using Loess (STL), which was developed by
Cleveland et al. [42] and decomposes the time series f into three components such that:

ft = αt + βt + γt (1)

where α represents the long-term trend in the time series, providing an understanding of the rate of
change in the series. The β component captures the seasonal effects in the data, which in the case
of water and wastewater flows could be linked to seasonal changes in demand and climate effects.
Finally, γ represents a stochastic irregular (random) component that would represent one-off events
that can result in unusual fluctuations in the time series. We used the STL procedure as it is a
versatile and robust additive time series decomposition method [43] and it has been successfully
demonstrated in a significant number of different applications, which includes analysis of electricity
consumption data [44]. A sequence of smoothing operations are applied using locally-weighted
polynomial regressions. Whilst STL can handle changes in seasonality in time, we assumed that the
seasonal phase in each of our time series was constant given the relatively short timescale of the data.
The STL technique can handle multiple types of seasonality, allows the user to define the smoothness of
the trend-cycle and is robust to outliers in its estimation of the trend and seasonal cycles [43]. A more
detailed description of this method, as well as other variants of this technique, can be found in the
work by Hyndman and Athanasopoulos [43]. The trend in electricity consumption was then evaluated
by applying a least-squares regression model on the α component and the slope (first-order derivative)
was computed, which allowed us to understand whether consumption was changing in time. All rates
of change reported in this work were obtained from the gradient estimation from the least-squares
regression model, where the uncertainty is taken as the standard-error in the model.

2.4. Calculating Energy-Intensity

Energy-intensity ε, measured as the unit energy use per unit of water demand or wastewater
treated (kWh ML−1), is a common metric used globally for assessing the energy intensiveness of a
water system [3,27,45]. Previous works have tended to present ε metrics per functional category in a
water or wastewater system [27,40]. However, since we did not have time series data on water flows
through each of the 395 sites analysed in this work, we could not compute energy-intensity metrics
for each site or by functional units. Therefore, ε metrics in this work were computed for each of the
six water resource zones in the Thames catchment, which are presented in Figure 1. For each water
resource zones, ε was calculated following Lam et al. [22] as:

εz =
ϕz

ζz
(2)
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where ϕ is the electricity consumption per capita (kWh p−1), ζ is the water use per capita (m3 p−1)
and z denotes the specific water resource zone. The per capita use of water and energy are calculated
respectively as:

ϕz =

n
∑

t=1
ft,z

Pz
(3)

ζz =

n
∑

t=1
wt,z

Pz
(4)

where f is a time series of electricity consumption (kWh) of a specific water resource zone z, ω

represents the total water used across the water resource zone within the same time period (m3) and P
is the total population (number of persons). Values for the total water used ω and population P in each
water resource zone were obtained from Thames Water [39] and originally estimated from internal
TWUL modelling based on metering data. The total water use equivalent is the total quantity of water
produced, which is the sum of residential and non-household demand, as well as system leakages.
These data are summarised in Table 1. The derived metrics for energy-intensity were then compared
locally to understand regional spatial variations. We note that this current investigation did not
consider wastewater energy-intensity as the required data were not available.

3. Results and Discussion

3.1. Temporal Evolution of Electricity Use

Figure 2 shows the time series of total electricity consumption ft across the TWUL system between
September 2009 and 2014 per functional category. Across the 60-month time-period, the total electricity
use in the system was 4426 GWh, which is equivalent to 870 GWh year−1 of consumption. This electrical
input facilitated the delivery and treatment of 2.5×106 m3 day−1 of water and 3.4×106 m3 day−1 of
wastewater, respectively. In descending order, the main contributors to the total energy consumption
over the study period were observed to be water networks (33%), wastewater treatment (32%), water
treatment (24%), wastewater networks (6%) and desalination (2%). The remainder of consumption (1%)
was in other operations such as laboratories, properties and maintenance work, and is not discussed
any further in this work due to the negligible overall contribution of this category. Although the total
number of assets in the TWUL system per functional category exceeds the assets for which we have
data for (see Section 2.1), we note that those sites that are not considered in this work are relatively
small facilities, and their energy consumption is not considered material in the context of this study.

In observing the temporal evolution of the total electricity consumption, a consistent increasing
trend in electricity usage is evident across the system during the study period. Between the first and
last time-period, monthly electricity consumption grew from 56 to 86 GWh. In Figure 3, we can see the
observed time series f , trend α, seasonal phase β and random component γ, which are shown in Rows
1–4 of the panel plot, respectively. To ensure the model has adequately captured each phase, we further
analysed the γ-phase and observed a random distribution with no autocorrelation. We observe the
mean contribution from seasonality β and random effects γ as minor components of the time series f at
0.10% and 0.12%, respectively. Given the relatively short timescale of our case-study, we assumed the
seasonal cycle remained constant in our analysis but we note this assumption could lead to erroneous
representation of the seasonal phase. Future studies that employ this method should calibrate the
model to better capture the seasonal cycle, particularly if the influence of climate change on energy-use
in water and wastewater operations is an important aspect of the study. The random component
of the model shows a generally consistent pattern during 2010–2013, after which more variability is
exhibited, which suggests that an exceptional event might have occurred that could have led to an
increase from usual levels of electricity use. Once the time series has been adjusted for seasonality and
random effects, we observe a strong growth in the long-term trend component α during the study
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period, with an equivalent rate of change of 67 ± 0.3 GWh year−1 (10.8 ± 0.4% year−1). The rate was
estimated by fitting a linear regression model to α and computing the slope of the model, where the
error is assumed as the standard error in the model estimation. More recent statistics from TWUL
public reports suggest this growth continued: total electricity consumption across the network was
reported to be 941 GWh in 2017–2018 [46]. This later reported consumption exceeds the expected value
if we were to extrapolate using the rate of change observed over the time slice of the data in this study.
This might be attributed to a number of factors including: (1) a significant increase of pumping into
reservoirs to meet a sudden increase in summer demand; (2) an unexpected cold wave and increased
pipe bursts in February 2018; and (3) the exceptionally hot and dry summer of 2018 [46].
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Figure 2. Observed electricity consumption (GWh) between 2009 and 2014 across the Thames Water
Utilities Ltd. system. Time series are categorised by different operations within the utilities’ network.

Figure 4 shows the derived trend components from the time series decomposition of each
functional category, which have been plotted as the relative change (%) using the first value in
the time series as the base value. Here, we can clearly observe a strong growth in the electricity
requirements for wastewater treatment. Between 2010 and 2012, electricity use in wastewater treatment
works grew by approximately 10%, after which it increased dramatically by ∼110% to the end of the
time series. After conferring with operations managers from TWUL, we learned that this sudden
growth can be attributed to major modifications in five of the utility’s largest wastewater treatment
works, where the following unit operations were added: (1) 12 aeration plants; (2) 2 picket fence
thickeners; (3) 2 activated sludge thickeners; (4) 24 final settlement tanks; (5) 5 primary settlement tanks;
and (6) 2 inlet pumps. Furthermore, exceptional levels of flooding within this period resulted in larger
than normal volumes of stormwater entering the sewer system, which led to additional levels of
associated pumping. Across the other functional categories (i.e., water networks, water treatment
and wastewater networks), we do not observe any statistical significance trend in the relative energy
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consumption, and thus we conclude the increases in electricity consumption observed across the
TWUL system are mainly attributed to the modifications in wastewater treatment operations, as well
as increased volume of wastewater pumping induced by flooding.
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Figure 3. Decomposition of total electricity consumption (GWh) in the Thames Water Utilities Ltd. system:
(a) the observed time series f ; (b) the trend α; (c) the seasonal phase β; and (d) the random component γ.

Some of the increasing trends in electricity use can also be attributed to the commissioning of the
Beckton Desalination Plant, which is first desalination facility in the United Kingdom and became fully
operational in late 2010 [47]. The plant was designed to treat brackish water, which has a lower saline
content than seawater, and hence requires less treatment. Beckton is only used at times of drought.
Whilst desalination is typically synonymous with high electricity consumption—e.g., Sydney’s
desalination plant consumed 257.7 GWh of electricity in 2010 [48]—the single desalination plant
in the Thames catchment is not used frequently. The Beckton Desalination Plant has on average
only processed around 23% of its capacity (150 ML day−1) since it came online, and yet a notable
electricity footprint can be observed associated with its use in Figure 2 between 2011 and 2014,
contributing around 2% to the total electricity use. The energy-intensity of the plant was estimated
as 2.26 kWh m−3, which is within the upper-range of 1.0–2.5 kWh m−3 reported for brackish water
RO in previous studies [5,8]. As water scarcity pressures enhance in the future, the use of the Beckton
Desalination Plant could potentially increase if other water resource options with lower energy needs
are not developed, which would translate into a higher water-related electricity footprint. Outside of
the Thames catchment, there are suggestions that additional desalination plants might be required
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in the UK [49,50], which would enhance the electricity footprint of water supply across the country,
although the feasibility of desalination as a solution elsewhere in England and Wales remains uncertain.
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Figure 4. Derived trend components (α) for each functional category: water networks, water treatment,
wastewater networks and wastewater treatment. Shown as relative change (%) using the first term in
the time series as the base value.

3.2. Electricity Use by Function

The three most electricity-consumptive functions in the TWUL system were observed to be water
networks (33%), wastewater treatment (32%) and water treatment (24%). In water supply networks,
electricity consumption is primarily a function of water demands, as well as network conditions with
respect to hydraulic properties of the pipe (i.e., velocity, pressure head, frictional losses, etc.), asset
age and topography. Post-treatment leakages within the TWUL system are currently reported to be
26% of the total demand and the company is targeting to reduce this number by 15% during the
period 2020–2025 [35]. This would theoretically result in decreased electricity consumption within the
water distribution network as sources of water losses are removed and older assets are replaced [51].
In addition, reducing losses in the water network would also lower the throughput needed in water
treatment plants, and so reduce the associated electricity use. However, any benefits that are potentially
realised here would be offset by population growth.

Analysis from TWUL predicts an increase in overall water demands at a rate of 0.25–0.75% year−1,
which is associated with population growth scenarios [39]. However, plans to implement smart meters
and relatively more water-efficient technologies such as modern dishwashers, washing machines
and low volume toilet cisterns will help to temporarily offset the increases in water demands,
by reducing per capita consumption [39].

The most common method for sewage collection across England and Wales is through combined
sewage systems, in which sewage from domestic, industrial and commercial sources is combined
with surface runoff and distributed to local wastewater treatment plants. Combined sewer overflows
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(CSOs), which is when the total inflows into a combined sewer exceed its capacity causing the discharge
of untreated wastewater into local water bodies, have been long recognised as an environmental and
public health risk in the Thames catchment, and indeed in other catchments across England and
Wales [52,53]. As such, TWUL have targets to reduce overflow events in certain areas. One such
project to deal with this issue is the Thames Tideway Tunnel—a 25-km long and 7.2-m diameter sewer
that is being bored under the River Thames expected to be completed by 2024 at an estimated cost
of £4.9 bn [54]. The sewer has been designed to reduce the frequency of overflow events from 50–60
to 3–4 per year, which will facilitate the UK Government becoming compliant with the EU Urban
Wastewater Treatment directive [55]. This project will immediately yield significant public health,
environmental and aesthetic benefits [53,55,56] as overflows events are reduced and more wastewater
is directed to local treatment plants. With more water being pumped out of the tunnel and increased
inflows into wastewater treatment plants, the electricity use in the wastewater supply chain will
increase as a result. It is important to track the energy influence such major implementations as this
would form a useful planning guide for other similar projects globally.

3.3. System Energy-Intensity

Figure 5 shows water-related energy use (kWh p−1 year−1) against water use (L p−1 d−1) in the
TWUL system (in colour) compared against other regions in the world (grey) for the review period.
We note that this chart shows data for water supply only and energy for water use at the household
level is not included. Dashed lines in the plot, which indicate linear functions of energy-intensity
between 0.5 and 2.0 kWh m−3 have been shown for reference. We observe that the per capita water
demands in the Thames catchment are within the average range of the other cities reported. Whilst the
observed energy-intensities are generally above the average of all the cities plotted (0.6 kWh m−3), both
SWOX and London, where the greatest populations are served, are below this average value. Further,
altthough we recognise the potential for differences in drinking water quality standards globally and
hence treatment requirements, the energy-intensity values derived are higher than those calculated
for similarly developed cites, such as Melbourne, Berlin, Sydney and San Francisco. It should be
recognised, however, that the regions studied in this work are water resource zones, and so the spatial
extents might vary in comparison to the other regions in the plot, which consider only the city-scale or
are an aggregate of all encompassing water supply zones.

Factors that influence the energy-intensity of water-related energy use are known to include
climate, topography, water use patterns and operational efficiency [22,41]. In addition, the initial raw
water quality as well as the required water quality parameters of the final product also influence the
electricity requirements of the system. The energy-intensity values derived for the TWUL system
can likely be explained by two factors: (1) the volume of pumping in the system; and (2) low system
efficiency attributed to relatively high leakage rates. The TWUL system requires relatively high
amounts of pumping to convey water between process operations, which is likely due to little
topographical variation within water resource zones. Secondly, the energy intensiveness of the
TWUL system could also be explained by system leakages, which are known to be relatively high
across the network [57]. Sections of the supply network are among the oldest in the world and date
back to the Victorian era. Further, recent network maintenance reviews revealed the annual asset
replacement rates in the network are small-scale in comparison to other parts of the world [58]. Age of
a network has been known to correlate with higher leakages in a water distribution network [59],
which could explain the relatively high levels of leakages in the TWUL system. Leaks in the system
are well-known to increase the energy consumption in a water system in two ways: (1) by increasing
the need to abstract, treat and output larger volumes of water into the distribution network; and
(2) through greater dynamic losses that result from restoring equivalent service [51]. The utility has
targets to reduce leakage rates by fixing or replacing assets within the network, which would yield
savings in electricity consumption in the short-term.
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Figure 5. Water-related energy use (kWh p−1 year−1) against water use (L p−1 day−1) in the Thames
Water Utilities Ltd. system in 2012 compared against other regions in the world (grey). The dotted lines
are plotted for reference and indicate 0.5–2.0 kWh m−3 energy intensities. Data for other regions were
obtained from Lam et al. [41].

Identifying and reducing leakage across the water distribution network has benefits towards an
energy efficient system. However, this can come at a significant cost. Figure 6 shows the relationship
between capital cost investments and leakage reductions, which is based on an analysis by TWUL [60].
The curve assumes an exponential relationship between leakage reduction and capital cost, in that
significant reductions could be realised cost-effectively in the first instance but the economic case
decreases after a turning point. The dashed line in Figure 6 represents the targeted leakage reduction
by the utility up to 2020: 85 ML d−1 with an expected cost of around £340 million. For relative context,
this volume of water could meet 96% of the daily demands of the Guildford, Henley and Kennet Valley
water resource zones (589,164 people) [39]. There are a number of benefits of reducing leakages that
regulators and utilities in the UK have recognised, and whilst energy savings are also acknowledged
they have not yet been quantified in terms of potential reductions in operational expenditure. That is,
what would be the unit cost saving for each unit of water leakage prevented? Using the metrics for
energy-intensity (kWh m−3) derived in this work, we have expressed this relationship in terms of the
energy cost savings that could be realised for every unit reduction in leakage (calculation shown in
Appendix A). Should the utility reach its target, this could result in a theoretical reduction of 85 ML d−1,
which is approximately equivalent to operational expenditures due to electricity consumption of
∼£2.1 million year−1. This number accounts for around 2% of the total operational expenditure
associated with importing grid electricity. However, there is a caveat to this theoretical value as it is
derived in the absence of other external pressures such as population growth and demand changes
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in time. Discourse on the motivations for leakage reductions primarily focus on the environmental
benefits of reduced water withdrawals from rivers, as well as the improvement in political and public
perception, and less often focuses on the energy-related co-benefits.
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Figure 6. Curve expressing the relationship among capital cost (£ millions), leakage reductions
(ML day−1) and reductions in operational expenditures due to electricity consumption (£1000s day−1)
for the Thames Water Utilities Ltd. system. The dashed red lines show the company’s leakage reduction
targets to 2020 [60].

4. Conclusions

Electricity consumption in the TWUL network increased consistently during the period 2009–2014,
which was mainly driven by expansions in wastewater treatment works to achieve higher effluent water
quality standards and periods of heavy rainfall, which led to more stormwater pumping and treatment,
as well as the use of a new desalination plant. As the utility continues to invest in more water supply
technologies to meet increasing demands, as well as upgrade its sewer and wastewater treatment
capacities, we can reasonably expect this growth in electricity consumption to continue. However,
some of this growth could be managed should the planned improvements to water infrastructure
efficiency (e.g., leakage reductions) be realised. However, the temporary nature of these benefits should
be recognised as external pressures such as stricter water quality standards and population growth
would offset the potential benefits. With regards to energy use in wastewater operations, regulatory
changes require utilities to reduce overflow events in combined sewage networks. Whilst this will
reduce the number of discharges of untreated wastewater into local water bodies, it will result in
increased pumping of wastewater and larger volumes for wastewater plants to handle, which might
increase the associated electricity usage. However, implementation of source control measures for
stormwater runoff in urban areas could potentially mitigate the energy consumption impacts. This
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highlights the fact that increasing stringency in mandatory effluent standard regulations will generally
be associated with higher energy requirements.

When analysing the derived energy-intensity metrics for each water resource zone in the water
utility’s system, we discovered that energy-efficiency of water supply, in terms of the electricity
usage per unit of water delivered, is within the average range when compared against similarly
developed cities across the world. Given that TWUL has plans to improve the efficiency of
their system through management schemes such as leakage reduction, the energy-intensity of
the network and the operational expenditures associated with electricity could decrease in the
short-term as a result, although the benefits would erode in time as a result external factors such as
population growth. This study did not deal with the energy used for water provisions at the household
level. However, it has been estimated that customers of TWUL use seven times more electricity for
water-related services as compared to the utility’s electricity use for their operations, which is also the
case for many other regions across the world. It is therefore also important to target opportunities
for water-related efficiency improvements at the consumer level. State-of-the-art frameworks used to
understand and improve water-related energy use should be clearly separated to define energy use in
industry from that at the household level.

Temporal studies of the energy influence of water-related operations are rare. Through this
study, we have have seen that such studies can be useful in better understanding the energy-related
characteristics of a water and wastewater systems. This is particularly important in relation to
understanding long-term electricity consumption trends, which can reveal insights on the energy
impacts of infrastructure and effectiveness of policy development, and to understand the exogenous
seasonal and random influence from the local environment. The information that can be gleaned
from such analyses are an important basis for effective energy management programmes in water and
wastewater operations.
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Appendix A. Cost–Benefit Analysis

In this section, we discuss the methodology used in the calculations for Figure 6. Data on the
capital cost required per megalitre reduction in leakages were produced by TWUL [60]. The benefit in
operational expenditure b per unit reduction in leakage was calculated as:

b = L · ε̄ · c (A1)

where L is the leakage reduction (m3 d−1), ε̄ is the mean energy-intensity across the Thames network
(kWh m−3) and c is the cost of electricity (£ kWh−1) for TWUL. The ε̄ value was calculated in our
analysis as 0.65 kWh m−3. The value of c could be calculated based on reports from TWUL, which
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state that 160.6 GWh of electricity consumption is equivalent to £30 million in operational expenditures
to the utility [35].
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