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Abstract: Forecasting of river ice breakup timing is directly related to the local ice-caused flooding
management. However, river ice forecasting using k-nearest neighbor (kNN) algorithms is limited.
Thus, a kNN stacking ensemble learning (KSEL) method was developed and applied to forecasting
breakup dates (BDs) for the Athabasca River at Fort McMurray in Canada. The kNN base models
with diverse inputs and distance functions were developed and their outputs were further combined.
The performance of these models was examined using the leave-one-out cross validation method
based on the historical BDs and corresponding climate and river conditions in 1980–2015. The results
indicated that the kNN with the Chebychev distance functions generally outperformed other kNN
base models. Through the simple average methods, the ensemble kNN models using multiple-type
(Mahalanobis and Chebychev) distance functions had the overall optimal performance among all
models. The improved performance indicates that the kNN ensemble is a promising tool for river ice
forecasting. The structure of optimal models also implies that the breakup timing is mainly linked
with temperature and water flow conditions before breakup as well as during and just after freeze up.

Keywords: river ice; breakup date; k-nearest neighbor; machine learning; ensemble learning

1. Introduction

As an important annual event in northern high-latitude regions, general public and water resources
managers are concerned about the river ice breakup every spring [1–4]. This is because breakup in
late winter may cause annual peak water levels and possible ice-associated flooding risks, which may
further result in extensive infrastructure damage and substantial financial losses [5,6]. Among the
variables of interest in winter flooding management, the breakup date is critical since its early accurate
forecasting is helpful to prepare emergency responses. Some progress was made on breakup date
forecasting through data-driven [7–10] and numerical methods [11,12] in the past decade. Compared
with numerical methods, data-driven methods rarely express the physical mechanism in an explicitly
manner, but they are useful tools for river ice forecasting. However, due to the complicated river
ice phenomena and limited capabilities in modeling tools, further performance improvements of the
breakup date forecasting models are desired.

The k-nearest neighbor (kNN) approach is a classic machine learning method. In this method,
when comparing with an unknown sample, the k nearest samples in the training set, as measured by
a distance function of features (inputs), are selected and usually the average of their corresponding
outputs (variable of interest) is used to represent the unknown one. The main advantages of kNN
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include simplicity or lazy learning (no explicit quantification between inputs and outputs) and
non-parameter (no assumption on the dataset distribution). The kNN has been applied to open
water hydrological studies [13–16] and received much attention recently [17–26]. The kNN is very
suitable for river ice forecasting because the difficulty in direct quantification of complex river ice
mechanisms described by scarce data can be avoided. However, few applications of kNN to river
ice forecasting have been reported since a single kNN may still fail to describe the similar breakup
patterns [27]. It is reported that the stacking ensemble of kNN models may improve the overall
classification performance [28–30]. Thus, application of such an ensemble paradigm of kNN models
with diverse performance to forecasting river ice breakup timing is desired.

The aim of this study was to propose a kNN-based stacking ensemble learning (KSEL) method
and to apply it to forecasting annual river ice breakup dates at a site in western Canada. The study
entailed: (1) developing the kNN base models with diverse features (inputs) and distance functions
(structures) for river ice breakup dates; (2) further using certain combinations of the outputs of kNN
base models with single or multiple types of distance functions as inputs of simple average methods
(ensemble models); (3) comparing the structures and performance of both base and ensemble kNN
models; and (4) applying the proposed KSEL method to a representative unregulated river in Alberta,
Canada, which is frequently prone to river ice related flooding.

2. Study Area and Data

The Athabasca River originates from snow and glacial meltwater in the Columbia Icefields in
the southwestern Alberta, Canada [31–34]. It is the largest, unregulated, northward flowing river in
Alberta [35,36]. Fort McMurray is one of the largest towns along the Athabasca River and complicated
river channel conditions exist in its vicinity. Upstream of the town, there are a series of major rapids;
near the town, the river’s slope decreases by an order of magnitude; in the center of town, the
Clearwater River joins the mainstream; and downstream of the town, many sand bars and islands
exist in a widened channel. Due to these conditions, there is the frequent potential of ice-related
breakup flooding hazard for the Athabasca River at Fort McMurray (Figure 1). Every spring, for
northward flowing rivers such as the Athabasca River, due to warming weather, there are increased
flow discharges and possibly relative higher temperature water so broken ice sheets are carried down
from the upstream to the downstream. Ice jams frequently occur in the nearby reaches due to surges
and ice runs from upstream river ice breakup [36,37], which cause back water and related flooding
problems [38].
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To facilitate the forecasting model development, the historical breakup dates (BDs) for the
Athabasca River at Fort McMurray for 1980 to 2015 were collected from the official website of Regional
Municipality of Wood Buffalo (http://www.rmwb.ca/). These historical BDs range from early April
(Julian day: 100) to early May (123). These BDs are defined as the last date of breakup processes (open
channel) at Fort McMurray. Another conventional definition for BDs is the first significant movement
date of ice cover (i.e., onset of breakup [39] or the first date of breakup processes [40]). From the
perspective of emergency management, the last breakup date is used in this study because it indicates
that the town is no longer at ice-related flooding risk.

The potential indicators related to breakup dates were categorized as climate (e.g., air temperature
and antecedent precipitation) and river ice (e.g., river flows, water levels, and ice thickness)
conditions [41–43]. Due to data availability and record length, air temperature was chosen as a
potential indicator rather than water temperature. The climate indicators were calculated based on
the temperatures and precipitations of two Environment Canada Climate Change stations at Fort
McMurray (WMO ID: 71689 and 71585); the missing data gap at the station (71689) were complemented
by the other station (71585). The water flows and levels were collected at the Water Survey Canada
gauge of Athabasca River below McMurray (Station Number: 07DA001). These indicators were
pre-screened as the candidate inputs of the models based on two criteria: availability before breakup
and correlation with BDs.

3. Model Development

3.1. Data Preparation

To decrease the different scale effects, all of the data sets were converted into a range of (−1,1)
before usage in the models. After calculation, the predicted BDs were transformed back to the original
values. Because the river ice breakup dataset was relatively small due to the short period of historical
records, a two-step filter-wrapper method was proposed [44–46]. Firstly, both the linear correlation
coefficients (R) and the mutual information index (MI) between all available input variables and BDs
were calculated. A filter method was employed to narrow down the range of these inputs based on the
rankings of R and MI. A certain number of inputs with higher rankings were selected as candidate ones.
Secondly, based on candidate input variables, a wrapper method was used to determine the optimal
combinations of these inputs and inherent parameters of proposed models using a greedy search-based
leave-one-out cross validation (LOOCV) method. The average performance of proposed models during
LOOCV was evaluated under all possible combinations of inputs and internal parameters. Since the
dataset had 36 sets of samples, each model was calibrated using 35 samples and validated through a
single sample reserved for each run of LOOCV. The LOOCV ensured all samples be selected once in
the validation sets. Generally, since the forecasting performance was of most concern, the model with
the best average validation performance was considered the optimal one.

3.2. k-Nearest Neighbor (kNN)

In this study, the inputs of the kNN base models are the climate and river ice condition variables.
The output of the kNN model (the predicted BD) is the average of the observed BD values for the k
nearest neighbors (feature patterns). The kNN member models can be described as follows:

yα = kNN(xα) =
1
k

k∑
β=1

yβ (1)

β ∈ RD(xα, xβ, k) (2)

xα = [xα1, xα2, · · · xαn] (3)

http://www.rmwb.ca/
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where yα is the predicted BD; xα is the corresponding input variable correlated with BD; yβ is observed
BDs of the k nearest neighbors; RD is the ranking between xα and xβ based on a certain distance
function; and xαi is variable i for xα(i = 1, 2, . . . , n). Based on trial and error, two representative
distance functions, the Mahalanobis distance (MD) and the Chebychev distance (CD), were employed
to calculate the ranking. The MD was chosen since neither the standardization of input variables nor
the assignments of weights to variables are required [47]. The definition of MD between a vector (xα)
and a reference matrix (X) is as follows:

MD(xα, xβ) =
√
(xα − x)COV(X)−1(xα − x)T (4)

x = [x1, x2, · · · xn] (5)

where x is the averages for each column of X; xi is the average for column (variable) i of X; COV(X)−1

is the inverse for the covariance matrix of X [48], and T is the transpose of the vector. The CD between
one vector (xα) and the other vector (xβ) is defined as follows:

CD(xα, xβ) = max j

{∣∣∣∣xα j − xβ j

∣∣∣∣}, j = 1, 2, · · · , n (6)

xβ = [xβ1, xβ2, · · · xβn] (7)

3.3. Stacking Ensemble Learning

The KSEL for annual river ice breakup dates included base and ensemble models (Figure 2). In
terms of its functions, the kNN base models link the BDs with their affecting indicators; the simple
average method (SAM) ensemble models describe the relationship between the predicted BDs by each
base model and the observed BDs. The SAM can be defined as follows:

yc =
1
n

n∑
i=1

yi (8)

var(yc − yo) = σ2
c =

1
n
σ2

i,avg +
n− 1

n
σi, j,avg (9)

σ2
i,avg =

1
n

n∑
i=1

var(yi − y) (10)

σi,, j,avg =
1

n(n− 1)

n∑
i=1

n∑
j=1, j,i

cov(yi − y, y j − y) (11)

where yc is the output of SAM model, yi is output of base model i; y is the observed values; n is the
number of base models; σ2

c is variance of forecasting errors for the SAM; σ2
k,avg is the average of the

error variances (σ2
k) of member models; and σi, j,avg is the average of the covariance between each pair

of forecasts (σi, j). Based on Equation (4), σ2
c is simply equal to σ2

i,avg/n if the forecast errors of base
models are uncorrelated (σi, j,avg = 0).
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3.4. Model Evaluation

To evaluate the performance of the proposed models, two indices which were the most frequently
employed in the forecast models (correlation coefficient (R) and root mean squared error (RMSE)) were
selected, [49]. The performance became better with higher R (closer to one) and lower RMSE (closer to
zero). The evaluation indices are expressed as follows:

R =

n∑
j=1

(Ysj −Ys)(Y j −Y)√
n∑

j=1
(Ysj −Ys)

2
√

n∑
j=1

(Y j −Y)
2

(12)

RMSE =

√√√√√ n∑
j=1

(Y j −Ysj)
2

n− 1
(13)

where n is the sample number in the training or test set, Yj and Ysj are the observed and predicted
BDs in the jth sample, respectively; and Y and Ys are the mean of the observed and predicted BDs. In
LOOCV, the training performance of each model was evaluated using the averages of R and RMSE for
the training set in m runs. The m is the total number of LOOCV runs. The validation performance of
each model was assessed by RSEavg, (root of average squared errors (SEi)), which is defined as follows:

RootSEavg =

√√√√ m∑
i=1

(yi − ysi)
2

i

m
(14)

where yi and ysi are the observed and predicted BD values of the single sample in the validation set for
run i of LOOCV.
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4. Results analysis

4.1. Climate and River Ice Indicators

Figure 3 shows the 17 candidates climate and river ice indicators, which were obtained based on
the filter method. In other words, all of the indicators have higher absolute values of R or MI with
BDs. Meanwhile, these indicators are available before April 1 so that they are no later than the earliest
breakup date (April 6) in the historical record [50]. These indicators can be categorized as four periods:
previous fall (e.g., x5 and x7 in last September), during freeze-up (e.g., x3, x8, and x11 in last November
and x10 and x17 in last December), during middle winter (e.g., x1 in January), and before breakup (e.g.,
x2, x4, x6, x9, and x12 to x16 in March).The dominating negative correlation coefficients of these inputs
mean that higher daily temperatures and larger downstream water flows may bring about and be
corresponding to earlier BDs. The negative correlation coefficients range from –0.5060 to –0.1705; the
positive R values of X11 and X17 0.0119 and 0.0385, respectively, which are not significant. However,
their MI values are relatively higher among temperature indicators, indicating possible nonlinear or
interactive correlations. In addition, the MI values of the water flow indicators (3.8429 to 3.5651) are
higher than those of temperature indicators (1.8067 to 2.9256) while the difference in R values of both
categories are not large. It implies that water flow indicators have more nonlinear correlations with
BDs than the temperature indicators.
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4.2. kNN-M Base Model

The performance of kNN base models depends on data quality of BDs and indicators, selection of
distance functions, combination of indicators, the number (k) of nearest neighbors, and the dataset
division strategy. Firstly, the Mahalanobis distance function was employed in the kNN base models
(kNN-M). Then the greedy search-based LOOCV method was used to identify the optimal combination
of inputs and the internal parameter k. Based on this wrapper method, the k of kNN-M was searched
from 2 to 6 and the maximum number of inputs was searched from two to seven. Table 1 lists
representative kNN-M models with top performance. All of the kNN-M models had good and diverse
performance of training and validation. In terms of validation performance, the kNN-M3 model with
four inputs has the lowest RSEavg. As for training performance, the kNN-M3 also had the highest Ravg

and the lowest RMSEavg. Thus, the kNN-M3 model is considered the optimal one among all the kNN
base models using the Mahalanobis distance function.

Table 1. Select kNN models using Mahalanobis distance functions.

Model Inputs k Output
Training Validation

Ravg RMSEavg RSEavg

kNN-M1 x3, x12 6 - 0.7014 3.697 4.296
kNN-M2 x3, x12, x15 3 y1 0.8513 2.724 3.718

kNN-M3 * x1, x2, x3, x12 2 y2 0.9187 2.049 3.649
kNN-M4 x1, x2, x6, x10, x15 6 y3 0.7884 3.299 3.800
kNN-M5 x2, x10, x11, x12, x15, x16 3 y4 0.7872 3.254 3.702
kNN-M6 x1, x6, x10, x13, x15, x16, x17 3 y5 0.8345 2.997 3.717

Note: * represents the optimal kNN base model using Mahalanobis distance functions.

4.3. kNN-C Base Models

Similarly, the exhaustive-search-based LOOCV method was employed to evaluate the effects of
combinations of inputs and k on the performance of kNN base models with the Chebychev distance
function (kNN-C). The input numbers were searched from 2 to 8 while the number (k) of nearest
neighbors was searched from 2 to 6. Table 2 lists representative kNN-C models with top performance.
In terms of validation performance, the kNN-C5 with six inputs has the lowest RSEavg. As for the
training performance, the kNN-C4 with five inputs has the highest Ravg while the kNN-C6 with seven
inputs has the lowest RMSEavg. Meanwhile, the kNN-C5 has very close training performance to the
kNN-C4 and kNN-C6 in terms of Ravg and RMSEavg. Since the average validation performance is of
most concern, the kNN-C5 is the optimal one among all kNN-C base models. It is also noted that the
optimal kNN-C5 share four of the same inputs (x1, x2, x3, and x12) with the optimal kNN-M3.

Table 2. Select kNN models using Chebychev distance functions.

Model Inputs k Output
Training Validation

Ravg RMSEavg RSEavg

KNN-C1 x4, x14 4 - 0.7185 3.595 4.259
KNN-C2 x6, x12, x14 2 y6 0.8951 2.342 3.868
KNN-C3 x1, x2, x3, x12 2 y7 0.8812 2.446 3.524
KNN-C4 x1, x3, x6, x8, x12 2 y8 0.9134 2.134 3.416

KNN-C5 * x1, x2, x3, x6, x8, x12 2 y9 0.9129 2.125 3.346
KNN-C6 x1, x2, x3, x4, x6, x8, x12 2 y10 0.9127 2.123 3.574

Note: * represents the optimal kNN base model using Chebychev distance functions.

4.4. kNN-M versus kNN-C Models

The kNN-M and kNN-C with two to seven inputs (12 kNN base models) were further compared.
Figure 4 shows a comparison of their performance index distributions. For training sets, the R
distributions of kNN-C models except kNN-C1 are generally higher and their RMSE distributions
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are lower than those of kNN-M models; in other words, when the number of inputs are larger than
two, the performance of the kNN-C models becomes better than those of the kNN-M. The R and
RMSE distributions of kNN-M models appear to have diverse positions. The index distributions of the
kNN-M2 with two inputs are the worst among kNN-M models while those of kNN-M3 with three
inputs are in the optimal position. As for validation sets, the SE distributions for the kNN-C models
except kNN-C1 are generally lower and their RMSE distributions between the 25th and 75th percentiles
become narrower than those of the kNN-M models. Among the kNN-C models, although the kNN-C5

has the lowest mean SE values, the extreme SE values of kNN-C3 and the median SE values of kNN-C4

are the lowest; among the kNN-M models, although the kNN-M3 has the lowest mean SE values, it
has relatively wider distributions between the 25th and 75th percentiles than most of kNN-M models.
Meanwhile, the extreme SE values of the kNN-M4 are slightly lower than those of the kNN-M3. Based
on this comparison of the diverse performance, ten kNN based models (kNN-M2 to kNN-M6 and
kNN-C2 to kNN-C6) were chosen as the representative base models for further combination in the
ensemble models.
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4.5. kNN Ensemble Models Using Single-Type Distance Functions

To evaluate the performance of ensemble kNN models using single-type distance functions,
the outputs of the selected kNN-M models (kNN-M2 to kNN-M6) as well as the selected kNN-C
models (kNN-C2 to kNN-C6) were combined as inputs for the SAM-M and SAM-C ensemble models,
respectively. Both SAM-M and SAM-C with all possible combinations of inputs (i.e., the outputs
of kNN-M or kNN-C) were evaluated through the exhaustive-search-based LOOCV method. The
numbers of base models were searched from two to five. The SAM-M and SAM-C models of top
performance are listed in Table 3. It can be seen that compared with the kNN base models, both
SAM-M and SAM-C improved upon the corresponding kNN-M and kNN-C. Meanwhile, the training
performance of the SAM-C models was slightly better than those of the SAM-M models while the
validation performance of the former was slightly worse than those of the latter. Especially, the Ravg

values of the SAM-C models (0.9328 to 0.9191) were slightly higher than or almost equal to those of the
SAM-M models (0. 9308 to 0.9201), the RMSEavg values of the former (1.903 to 2.054) were lower than
the latter (2.112 to 2.283). However, the former had higher RSEavg values (3.247 to 3.319) than the latter
(3.161 to 3.202). Overall, the performance differences of all these SAM models were relatively small.
Among them, the SAM-M3 and SAM-C3 models are the optimal SAM ensemble models with each type
of distance function. The distributions of performance indices for the selected kNN-M and kNN-C
were further compared in Figure 5. The distribution locations of training performance indices (R and
RMSE) for the kNN-M were generally higher and lower than those of the kNN-C, respectively. The
distributions of validation performance indices (SE) for the former were generally lower than those of
the latter; this was especially true for the extreme value forecasting.

Table 3. Select kNN-based stacking ensemble models using single-type distance functions.

Model Inputs Distance Function
Training Validation

Ravg RMSEavg RSEavg

SAM-M1 y2, y4 Mahalanobis 0.9201 2.154 3.181
SAM-M2 y1, y2, y4 Mahalanobis 0.9262 2.112 3.170

SAM-M3 * y1, y2, y4, y5 Mahalanobis 0.9308 2.136 3.161
SAM-M4 y1, y2, y3, y4, y5 Mahalanobis 0.9249 2.283 3.202
SAM-C1 y8, y9 Chebychev 0.9191 2.054 3.319
SAM-C2 y6, y7, y9 Chebychev 0.9328 1.913 3.262

SAM-C3 * y6, y7, y8, y9 Chebychev 0.9326 1.903 3.247
SAM-C4 y6, y7, y8, y9, y10 Chebychev 0.9306 1.918 3.282

Note: * represents the optimal ensemble model of each type.

4.6. kNN Ensemble Models Using Multiple-Type Distance Functions

Similarly, the performance of ensemble kNN models using multiple-type distance functions
(kNN-MC) was evaluated based on the outputs of the ten selected kNN-M and kNN-C models (y1

to y10). The possible combination numbers of base models were searched from two to eight through
the exhaustive-search-based LOOCV method. The SAM-MC models with top performance are listed
in Table 4. It is noted that the validation performance of these SAM-MC models was substantially
better and better than those of kNN base and SAM-M or SAM-C models, respectively. Except for the
SAM-MC1 model, the training performance of the other SAM-MC models was better than those of
kNN base and SAM-M as well as slightly better than those of SAM-C models, respectively. Especially,
the Ravg (0.9357 to 0.9416), RMSEavg (1.900 to 1.999), and RSEavg (3.062 to 3.077) values of the SAM-MC2

to SAM-MC7 models were respectively higher, lower and lower than those of almost all kNN base and
SAM-M (or SAM-C) models. Overall the SAM-MC4 with the lowest RSEavg (3.062), the highest Ravg

(0.9416), and the lowest RMSEavg (1.900) is the optimal kNN ensemble model. The distributions of
performance indices for the selected kNN-MC were further compared in Figure 6. The distributions of
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training performance indices for most of the kNN-MC models except the kNN-MC1 were generally in
good positions. The distributions of their validation performance indices for these kNN-MC models
were also in similar good positions. It implies the robustness of the proposed KSEL method.
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Table 4. Select kNN-based stacking ensemble models using multiple-type distance functions.

Model Inputs
Number of Distance

Functions Training Validation

Mahalanobis Chebychev Ravg RMSEavg RSEavg

SAM-MC1 y4, y9 1 1 0.9105 2.205 3.131
SAM-MC2 y2, y4, y9 2 1 0.9357 1.918 3.065
SAM-MC3 y2, y4, y5, y9 3 1 0.9392 1.977 3.075

SAM-MC4 * y2, y4, y5, y8, y9 3 2 0.9416 1.900 3.062
SAM-MC5 y1, y2, y4, y5, y8, y9 4 2 0.9401 1.925 3.063
SAM-MC6 y1, y2, y3, y4, y5, y8, y9 5 2 0.9386 1.924 3.071

SAM-MC7
y1, y2, y3, y4, y5, y7, y8,

y9
5 3 0.9385 1.999 3.077

Note: * represents the optimal ensemble model of all models.
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4.7. Optimal Ensemble kNN Model

Figure 7 shows the further comparison of the validation performance in each run of the LOOCV
method among the optimal kNN ensemble and base models. Compared with the optimal kNN base
model, the SAM-MC4 has obviously closer distances between the data dots and the equal-value line,
which indicates improved performance compared to kNN-M3 and kNN-C5. Compared with the
optimal kNN ensemble model with the single-type distance functions, deviations of the SAM-MC4

model decrease slightly from the equal-value lines than SAM-M3 and SAM-C3. These improvements
are especially true for the lower and middle ranges of the BD. In terms of RSEavg values, the
SAM-MC4 improves upon SAM-M3, SAM-C3, kNN-M3, and kNN-C5 by 3.13%, 5.70%, 16.09%, and
8.49%, respectively.
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Figure 8 illustrates the structure of the SAM-MC4, which combines the outputs from five base
models (y2, y45, y5, y8 and y9). These base models have totally twelve inputs. All of the inputs can be
categorized as temperature and water flow conditions just before breakup (e.g., x2, x6, x12, x13, x15,

and x16 in March), during freeze-up (e.g., x3, x8, and x11 in last November and x10 and x17 in last
December) and during middle winter (e.g., x1 in January). From the data-driven perspective, the
inclusion of certain inputs as well as their numbers in the optimal models can reveal some hints of
potential mechanism on ice breakup. The twelve inputs of the optimal SAM-MC4 may indicate that
the breakup timing is mainly linked with temperature and water flow conditions before breakup.
However, the breakup timing is also related to conditions during and just after freeze-up due to the
upstream and downstream relations. Previous studies have reported the breakup flooding maybe
affected by a combination of conditions during freeze-up and breakup [39,51].
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5. Discussions

Many numerical methods have been applied to simulating river ice breakup processes [11,12]
or to forecasting breakup dates [52,53]. When numerical methods are employed, it is usually critical
for modelling breakup dates through distinguishing between thermal and mechanical breakup. In
comparison, the proposed kNN-based stacking ensemble learning (KSEL) method is able to handle
both breakup types simultaneously. This is because the kNN avoids quantification of complex river
ice breakup mechanisms described by scarce data. As long as different types of relations between
indicators and breakup dates exist in the historical data, the KNN can be implemented based on the
similarity with previous relations, which is quantified using the selected distance functions. Thus, the
KSEL is especially useful for the unchanged climate conditions. When new data are available under
climate change conditions, these new data can be easily added into the training dataset so that the
KSEL can be adjusted accordingly.

Some data-driven methods have been applied to simulating river ice breakup processes [54–56]. In
particular, the Bayesian regularization back-propagation artificial neural network (BRANN), adaptive
neuro fuzzy inference systems (ANFIS), the classification and regression tree (CART), and M5 models
as well as their ensembles have all been proposed for forecasting breakup dates [57,58]. Compared with
these models, the kNN has the simplest calculation strategy with comparable computing performance.
In addition, if new data are available, the training stage for the kNN is minimal while some of other
machine learning models may need more training time for parameter calibration. Nevertheless, it was
reported that the kNN cannot predict well the highest and lowest extreme values since the output is
the average of the k nearest neighbors [27].
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Besides the advantage of kNN, the performance of the proposed KSEL has been improved over
each optimal kNN base model because of the ensemble structure. The multiple distance functions
employed in multiple kNN base models do bring diversity to the ensemble framework. The stacking
ensemble learning is a simple but effective manner to combine kNN models since other ensemble
methods, such as boosting and bagging, have limited ability to improve kNN performance. To further
bring diversity to the KSEL, different types of machine learning methods with different structures
and performance can be introduced [59–61]. Combining other machine learning methods with the
kNN may further improve the overall performance of the ensemble framework [62]. The promising
application of the ensemble framework to various river ice forecasting problems is expected.

6. Conclusions

A kNN-based stacking ensemble learning (KSEL) method was developed and applied to forecasting
annual river ice breakup dates (BDs) for the Athabasca River at Fort McMurray. The kNN base models
with diverse inputs and distance functions were developed. The outputs of kNN base models with
single or multiple types of distance functions were further combined through the simple average
methods. The historical BDs and corresponding climate and river conditions in 1980–2015 were
collected to facilitate the model development. The performance of these models was examined using
the LOOCV. The major findings are as follows: (1) the kNN models are able to build nonlinear
relationships between indicators and BDs with different performance. For the investigated river ice
data, the kNN with the Chebychev distance functions (kNN-C) generally outperformed the one with the
Mahalanobis distance functions (kNN-M) in terms of validation and training performance; (2) based on
the simple average methods, the kNN ensemble models using single-type distance functions (SAM-M
and SAM-C) outperformed the corresponding the kNN base models. The ensemble kNN models
using multiple-type distance functions (SAM-MC) further improved the overall performance. In terms
of RSEavg values, the optimal SAM-MC improved upon the optimal kNN-M, kNN-C, SAM-M, and
SAM-C models by 3.13%, 5.70%, 16.09%, and 8.49%, respectively; (3) from the data-driven perspective,
the twelve inputs of the optimal SAM-MC may indicate that the breakup timing is mainly linked with
temperature and water flow conditions before breakup as well as during and just after freeze up; and
(4) this study, for the first time, applied the KSEL methods to forecasting of river ice breakup timing.
Combining diverse abilities of machine learning models through stacking ensemble learning appears
promising for river ice forecasting problems.
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