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Abstract: In eutrophication management, many phosphorus (P) adsorbents have been developed to 

capture P at the laboratory scale. Existing P removal practice in freshwaters is limited due to the 

lack of assessment of the possibility and feasibility of controlling P level towards a very low level 

(such as 10 μg/L) in order to prevent the harmful algal blooms. In this study, a combined external 

and internal P control approach was evaluated in a simulated pilot-scale river–lake system. In total, 

0.8 m3 of simulated river water was continuously supplied to be initially treated by a P adsorption 

column filled with a granulated lanthanum/aluminium hydroxide composite (LAH) P adsorbent. 

At the outlet of the column (i.e., inlet of the receiving tanks), the P concentration decreased from 230 

to 20 µg/L at a flow rate of 57 L/day with a hydraulic loading rate of 45 m/d. In the receiving tanks 

(simulated lake), 90 g of the same adsorbent material was added into 1 m3 water for further in situ 

treatment, which reduced and maintained the P concentration at 10 µg/L for 5 days. The synergy of 

external and internal P recapture was demonstrated to be an effective strategy for maintaining the 

P concentration below 10 µg/L under low levels of P water input. The P removal was not 

significantly affected by temperature (5–30 °C), and the treatment did not substantially alter the 

water pH. Along with the superior P adsorption capacity, less usage of LAH could lead to reduced 

cost for potation eutrophication control compared with other widely used P adsorbents. 
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1. Introduction 

Phosphorus (P), largely derived from phosphate rock, is an essential nutrient for crop growth 

and hence for global food supply [1]. However, global P reserves are dramatically depleting due to 

the increasing demand for P-based agricultural fertilizers [2]. After the application of fertilizer to 

agricultural soils, substantial amounts of P can run away from agricultural land and enter natural 

waters, causing eutrophication, where harmful algal blooms (HABs), death of fish, degradation of 

aquatic macrophytes, and water quality deterioration are likely to occur [3]. Therefore, P removal and 
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recovery from surface waters is one of the most important, yet difficult objectives for eutrophication 

control [4]. 

There is no consensus yet on the threshold of P concentration for preventing eutrophication in 

natural waters, even though many studies have concluded the concentration of 100 µg P/L to be too 

high [5,6]. Various methods, such as constructed wetland systems, have been applied in attempts to 

remove P and safeguard rivers [7]. P concentrations can be reduced from the 4.5–19.7 mg/L level to 

around 23 µg/L before entering surface waters by means of such wetlands, [8]. However, recent 

studies show that HABs could happen even at P levels as low as of 30 µg/L [9]. The strictest regulation 

of P concentration for lakes and reservoirs has been set down by the US Environmental Protection 

Agency as 10 µg P/L [10]. Thus, the development of an effective approach to achieve ultra-low 

concentrations of P is needed. 

P removal techniques can be generally classified into physical, biological, and chemical methods. 

A combination of these methods has been reported to achieve less than 100 µg P/L [11], and 

sometimes even lower than 10 µg P/L [12]. Among these methods, P adsorption has been recognized 

as a promising technology for reaching such low P concentrations [13]. Many P adsorbents derived 

from natural minerals and biochars are not desirable because they are usually associated with high 

equilibrium P concentration at zero net P sorption (EPC0) due to negatively bound P [14,15]. 

Industrial byproducts used as P adsorbents are cheap; however, their application often alters the pH 

of the water and produce adverse effects [16]. Thus, synthetic P adsorbents such as Phoslock®  [17] 

have received growing attention, as their characteristics can be manipulated in order to maximize the 

P adsorption ability (Table 1). Even though Phoslock®  has been used for P removal in lakes, a 

relatively high solid dosage of 200:1 Phoslock:P weight ratio is necessary to reach the desired levels 

of less than 10 µg P/L [18]. Nevertheless, there is a demand for a highly efficient P adsorbent that can 

control P levels of natural waters at around 10 µg/L. 

Table 1. The material-based phosphorous adsorbent categories and their adsorption capacities. 

Category Name Adsorption Capacity (mg P/g) 

Natural materials 

Soil or sands 4.2–5.8 [19] 

Calcite 4.1 [20] 

Limestone 0.3 [21] 

Industrial byproducts 

Slags 2.0–2.3 [22] 

Fly ash 6.6 [23] 

Red mud 7 [23] 

Modified/synthetic products 

Phoslock®  7.2–75 [24] 

AlgalBLOCK®  50 [25] 

BaraClear®  25–55 [24] 

We previously developed an effective P adsorbent, lanthanum/aluminium hydroxide composite 

(LAH), which has a P adsorption capability 5–8 times higher than Phoslock®  [26]. However, like other 

new P adsorbent demonstration experiments [27], the P adsorption capability has been tested in 

small-scale experiments using water samples with high P concentrations of 30 mg/L or above [11,14]. 

Equilibrium adsorption studies are often conducted under conditions with relatively long contact 

time (hours or days) [28]. Runoff and river water represent a great challenge for P removal due to 

their high volume and flow rate, which makes some bench-scale results hardly applicable under up-

scaled field conditions. 

In this study, the P recapture capability of the P adsorbent LAH, previously demonstrated to be 

superior in lab-scale batch experiments, was further evaluated in a simulated pilot-scale river–lake 

system. The inflow of the system was designed as a more realistic situation, with an inflow rate of 57 

L/day and P concentration of 230 µg/L. In order to achieve the strict target of 10 µg P/L in natural 

waters, the concept of a combined approach of external P recapture by a P adsorbent column and 

further internal P removal inside the simulated lake (receiving tank) by directly applied adsorbent 

was investigated. Moreover, the feasibility of the LAH adsorbent for further implementation is 
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discussed against other widely used P adsorbents. The study aimed to explore an effective P 

adsorbent and a promising strategy for eutrophication management. 

2. Materials and Methods 

2.1. Experimental Setup 

Based on the concept of a combined approach of external–internal P adsorption, the simulated 

river–lake system (Figure 1) was set up with an inflow rate of 57 L/day for 14 days during the 

experiment. First, 0.8 m3 of simulated river water was flowed through the adsorption column (Ø  4 

cm and height 60 cm) in order to test the external P-capturing treatment. The columns were filled 

with LAH–zeolite-coated adsorbent. The water/adsorbent contact time in the adsorbent columns was 

16 min and the hydraulic loading rate was 45 m/day [29]. To simulate river water, the P concentration 

of the influent was set at the level of 230 µg/L [9]. The effluent water passed through the column and 

then flowed into the receiving tank. The receiving tanks (1 m3) were made of PVC and glass (panel 

only) with the dimension of 1 m × 1 m × 1 m in length × height × width. Additional P adsorbent was 

placed in the receiving tanks for in-lake P capturing. The treatment systems were designed in 

duplicate, and another system without any LAH adsorbent was run as the control. The size of the 

tank for the control system was 0.375 m3 (0.5 m × 0.5 m × 1.5 m) due to the unavailability of the same 

sized tank as was used with systems A and B. 

 

Figure 1. The conceptual arrangement (a) and picture (b) of the pilot scale experimental setup. 

2.2. P Adsorbents and Inflow Water Preparation 

The LAH adsorbent was prepared by precipitating lanthanum (La) with aluminium (Al) to 

obtain a La/Al hydroxide composite (5.3% La) following the procedure described by Xu [26]. In order 

to reduce the adsorbent loss through water flush in the column, the LAH adsorbent powders were 

coated onto zeolite particles (Ø  0.5–1 cm). In the adsorption column, 280 g of this modified adsorbent 

material (LAH mass percentage of 10.7%) was employed. At the beginning of the experiment, 836 g 

of LAH-modified zeolite material was placed in the bottom of receiving tank (a total of 90 g of LAH 

adsorbent in 1 m3 water). 

The simulated river water was prepared using tap water with a total phosphorus (TP) 

concentration of around 230 µg/L. To achieve this concentration, KH2PO4 and C6H6Na12O24P6 (sodium 

phytate) were used, resulting in a composition of 87% inorganic and 13% organic P. Additionally, 

NH4Cl, NaNO3, and NaCl were added and the ammonium, total nitrogen, and chloride 

concentrations were 0.65, 12, and 100 mg/L, respectively. The experiment was conducted at room 

temperature (around 28 °C). Receiving tanks for the duplicated treatment groups were filled with 

0.75 m3 tap water at the beginning of the experiment, while in the control system, the receiving tank 

was left empty as no further P adsorption treatment was applied. 

(b) (a) 
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2.3. Sampling and Analysis 

Water samples from inflow water, adsorption column outflow, and receiving tanks in the 

duplicated treatment groups were collected every day. Under the same daily sampling campaign, 

only inflow and receiving tank water samples were taken for the control system. All water samples 

were collected in triplicate using 100 mL sterilized glass bottles and stored at 4 °C before being 

analyzed within 48 h. The pH and electrical conductivity (EC) were measured using portable meters 

(Multi-Parameter Meter HQ40d, and Sension + EC5, HACH, Loveland, CO, USA). After sample 

digestion with potassium persulfate, the TP concentration was determined by the Mo–Sb anti-

spectrophotometer method [30]. Meanwhile, the TN concentration was measured by ultraviolet 

spectrophotometry following a digestion by potassium persulfate [31]. 

2.4. Adsorption Equilibrium Test 

To understand the effect of temperature on P adsorption equilibrium and the kinetics of the LAH 

adsorbent, adsorption isotherm experiments were conducted in 50 mL centrifuge tubes with 1 g/L 

LAH suspensions at an ionic strength of 0.01 M NaCl. A series of initial phosphate concentrations of 

100, 200, 300, 1000, 3000, 6000, and 10,000 µg/L were added and made up to a total volume of 30 mL 

in each tube. The centrifuge tubes were continually agitated for 24 h in a thermostatic shaker at 150 

rpm at different temperatures (5, 10, 20, and 30 °C). After completion, the suspensions were collected 

and the P concentrations were determined. Adsorption data were fitted by the Freundlich isotherm 

model using the following equation [32] 

qe = KFCe
1/n

 (1) 

where qe is the amount of phosphate adsorbed on the solid phase (mg/g), Ce (mg/L) is the equilibrium 

phosphate concentration, KF is the constant of the adsorption capacity, and 1/n is the constant of the 

intensity of adsorption. 

3. Results & Discussion 

3.1. External and Internal P Recapture 

In this study, the P concentrations of the outflow of the adsorption columns and in the receiving 

tanks decreased rapidly in the treatment systems (Figure 2a). However, the control system had no 

change in P concentration between the inflow and the effluent in the receiving tank. The P 

concentration of the adsorption column effluent decreased rapidly from 230 µg/L to around 20 µg/L 

in the first 2 days, and remained at this reduced level until Day 5. P concentrations then gradually 

increased until Day 14, reaching a concentration of approximately 100 µg/L. Based on the mass 

balance calculation for P, the adsorption was 56.1 mg P/g LAH adsorbent at Day 14. Even though the 

previously demonstrated equilibrium P-adsorption capacity of LAH was 76.3 mg P/g LAH in a batch 

experiment [26], the present study showed that the P-adsorption ability and rate was reduced around 

25%. The result agrees with the previous study that the column adsorption capacity for P could be 

negatively affected by high flow rate and low inflow P concentration [33]. The current flow rate (57 

L/day) was generally much higher than that in the reported column-mode studies [34]. Under such 

conditions, the adsorption capacity (56.1 mg P/g) still showed comparable value to other synthesized 

P adsorbents under the batch experiments. 

The reduced P-adsorption ability may also have been due to the possibility of the LAH powder 

loss from the coated zeolite during water flushing. The majority of the synthetic P adsorbent consists 

of small particles; thus, the techniques used in a granulating process or one that is used to coat them 

onto a substrate are important for their effective retention in the adsorption columns [35]. In order 

for the field implementation of the LAH P adsorbent, it is important to optimize the granulation 

technique in the production of LAH adsorbent particles. 

Geoengineered P adsorbent materials can be applied in situ in lakes for internal P recapture [36]; 

however, the target of 10 µg P/L in the water could hardly be achieved by a single operation. Previous 
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studies have reported that in-lake treatment by the application of a P adsorbent, such as modified 

zeolite, directly into the water, could only decrease the P concentration from 769 µg/L to 310 µg/L 

[37]. Phoslock® , a synthesized P adsorbent, has been recommended at a dosage at 200 g adsorbent 

per m3 lake waters with an initial 100 µg P/L in order to reach the final P concentration of 10 µg P/L 

[18]. In the present study, the simulated river water was first treated by the P-adsorption column and 

then subjected to further P recapturing in the receiving tank with 90 g LAH adsorbent per m3 water. 

The P concentration in the tank gradually decreased to 20 µg/L on Day 5, and generally remained 

below 10 µg/L after Day 10 (Figure 2a). The results indicated that the highly effective LAH adsorbent 

could be used to successfully recapture ultra-low P. 

 

Figure 2. The dynamics of total phosphorus (TP) (a) in the inflow and outflow from the adsorption 

columns and tanks. (b) Freundlich adsorption isotherm fitting plots of phosphorus adsorption by 

LAH adsorbent. 

3.2. P Equilibrium Adsorption Capacity and Potential Interaction with Water Quality 

Natural water body treatment of P usually requires long-term and stable performance under 

multi-environmental changes such as pH and temperature. A previous study investigated the effect 

of pH on LAH performance and indicated adsorption stability against pH changes between 4 and 10 

[26]. In this study, the P adsorption isotherm results (Figure 2b) fitted well with the Freundlich model 

(R2 range of 0.91 to 0.96, Table 2). The equilibrium achieved a stable P adsorption capacity from 34 to 

40 mg P/g, which supported that LAH adsorbent maintained a relatively stable P adsorption 

performance within the temperature range of 5–30 °C. This may be due to the wide temperature 

stability of the La and Al hydroxide in LAH, which could lead to a relatively stable positive charge 

of LAH surface to attract the negatively charged PO43− [26]. Comparatively, the P adsorption capacity 

of Phoslock®  can be significantly inhibited by low environmental temperatures [38]. The stable 

performance of the LAH adsorbent indicated long-term P adsorption effectiveness and a wider 

application than P adsorbents that can be easily affected by temperature fluctuation. 

Table 2. Freundlich isotherm nonlinear curve fit parameters. 

Temperatures qe = kCe^1/n Standard Error R2 

5 °C 
k = 16.8 2.39 

0.96 
1/n = 0.41 0.49 

10 °C 
k = 22.4 4.89 

0.91 
1/n = 0.29 1.56 

20 °C 
k = 21.7 2.35 

0.96 
1/n = 0.31 0.61 

30 °C 
k = 20.1 2.69 

0.96 
1/n = 0.45 0.41 

(a) (b) 
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Figure 3a shows the similar pH values (p > 0.05) between the tank outflow (range of 7.6–8.0) and 

the inflow (pH = 7.5), which support the idea that the LAH adsorbent exhibited limited aquatic 

environmental disturbance. Besides P, the accumulation of nutrient N in water is also a significant 

factor that could cause water eutrophication [39]. In this study, TN concentrations generally remained 

at the same level (average of 12 mg/L) throughout the experiment (Figure 3b). This result agrees with 

the previous study on LAH, where the adsorbent had slight or no significant effect on the 

concentration of N [26]. When considering future engineering applications, improvements in coating 

materials could be made so that N may be removed simultaneously. For example, materials such as 

resins could be considered as a coating material, instead of zeolite, which may provide an additional 

function for N removal [40]. 

 

 

Figure 3. The dynamics of pH (a) and total nitrogen (TN) (b) in the inflow and outflow from the adsorption 

columns and tanks. 

Notably, in real applications adsorbents will always be affected by the comprehensive 

surrounding factors, e.g., sediment, organism, vegetation, etc. As the first scaled-up study, this 

investigation focused on stoichiometric capacity, regardless of the complexity mentioned before. The 

results revealed the stable and high stoichiometric P-adsorption capacity of the LAH in a pilot study, 

which will be the foundation for further development into real applications. Synthetic investigations 

including sediment, organisms, and vegetation in lakes should also be conducted in further research. 

3.3. Implementation Feasibility 

The current study demonstrated the high P adsorption capacity of the LAH adsorbent under a 

realistic inflow rate and P concentration. Such adsorption ability could, in turn, decrease the applied 

dosage, which might contribute to a reduced cost for practice and La release potential. Currently, P 

adsorbents are often directly applied into water bodies for in situ P recapture. This study 

demonstrated that inducing runoff or river water flow through a P-adsorbent column can achieve 

significant P removal externally on land prior to the internal P recapture. Moreover, the P desorption 

of the LAH was reported in a previous study with a rate of 0.22%–4.05% when the pH changed within 

4 to 8.5 [26]. The coated material improved the LAH from powder shape into granules, which makes 

the recycling and reutilisation of the adsorbent after desorption possible. 

4. Conclusions 

A pilot-scale system was used to simulate a river–lake system from the stoichiometric standpoint 

and to evaluate the approach for eutrophication control regardless of sediment, biology, and other 

environmental factors, based on the concept of combined external P removal from river water and 

internal P recapture from receiving lakes. After the treatment with the P-adsorption column equipped 

with the LAH adsorbent and direct application of LAH adsorbent into receiving tanks, the final P 

concentration could be reduced from 230 µg/L to below 10 µg/L. The synergy of external and internal 
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phosphorus recapture proved to be an effective strategy for potential eutrophication management 

under mesotrophic P waters input. The results also demonstrated that the application of LAH 

adsorbent could reduce the cost for geoengineering for eutrophication management. Further research 

before application should be conducted, considering the synthetic effect of sediment, organisms, and 

vegetation in lakes. 
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