
water

Article

Climate Change Impacts on Hydropower in
Yunnan, China

Benxi Liu 1,2,* , Jay R. Lund 3, Lingjun Liu 1,2, Shengli Liao 1,2, Gang Li 1,2 and
Chuntian Cheng 1,2

1 Institute of Hydropower and Hydroinformatics, Dalian University of Technology, Dalian 116024, China;
liulingjun233@163.com (L.L.); shengliliao@dlut.edu.cn (S.L.); glee@dlut.edu.cn (G.L.);
ctcheng@dlut.edu.cn (C.C.)

2 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian
University of Technology, Dalian 116024, China

3 Department of Civil and Environmental Engineering, University of California Davis, Davis, CA 95616, USA;
jrlund@ucdavis.edu

* Correspondence: benxiliu@dlut.edu.cn; Tel.: +86-1347-847-3309

Received: 11 December 2019; Accepted: 6 January 2020; Published: 10 January 2020
����������
�������

Abstract: Climate change could have dire effects on hydropower systems, especially in southwest
China, where hydropower dominates the regional power system. This study examines two large
cascade hydropower systems in Yunnan province in southwest China for 10 climate change projections
made with 5 global climate models (GCMs) and 2 representative concentration pathways (RCPs)
under Coupled Model Intercomparison Project Phase 5 (CMIP5). First, a back propagation neural
network rain-runoff model is built for each hydropower station to estimate inflows with climate
change. Then, a progressive optimality algorithm maximizes hydropower generation for each
projection. The results show generation increasing in each GCM projection, but increasing more in
GCMs under scenario RCP8.5. However, yearly generation fluctuates more: generation decreases
dramatically with potential for electricity shortages in dry years and more electricity as well as spill
during wet years. Average annual spill, average annual inflow and average storage have similar
trends. The analysis indicates that a planned large dam on the upper Jinsha River would increase
seasonal regulation ability, increase hydropower generation, and decrease spill. Increased turbine
capacity increases generation slightly and decreases spill for the Lancang River. Results from this
study demonstrate effects of climate change on hydropower systems and identify which watersheds
might be more vulnerable, along with some actions that could help adapt to climate change.

Keywords: climate change; GCMs; hydropower; Lancang River; Jinsha River

1. Introduction

Hydropower, as a cleaner form of energy with merits of quick start and quick response to load
changes, has been developed in most countries as the largest sustainable energy source [1,2]. Worldwide
installed hydropower capacity has reached 1267 GW in 2017, with an estimated annual generation of
4185 terawatt hours (TWh), about 16.4% of the world’s electricity [3].

China has the world’s largest hydropower resources and hydropower system [2]. Installed
hydropower capacity in China grew to 352 GW in 2018, about 19% of installed capacity, producing
about 18% of the nation’s electricity and almost 70% of renewable electricity [4]. Hydropower has
become the most important part of renewable energy and is vital for clean energy displacement and
emission reduction [5]. With the strong growth of energy demand and pressure for emission reduction,
China is still developing hydropower quickly, which will continue in the foreseeable future.
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Most of China’s hydropower is in its southwest, including the Sichuan, Tibet, Yunnan, Guizhou,
and Chongqing areas, making up about two thirds of China’s exploitable hydropower [2]. With rapid
development in recent decades, China has built several huge cascade hydropower systems (CHSs) on
the main stems of large rivers. Wujiang CHS has an installed capacity of 8315 MW and Lancang CHS
an installed capacity of 16,770 MW. These plants have high dams (e.g., more than 200 m or 300 m) and
large units (e.g., 500,700, or even 1000 MW per unit) [6,7].

Climate change will significantly affect global and regional hydrology in the frequency and
intensity of precipitation, droughts, temperature, more uncertainty, and spatial and temporal change in
water availability [8–11]. Since hydropower generation depends on basin precipitation, climate change
can affect hydropower tremendously [12–14], especially for southwest China, where hydropower can
be more than 70% of installed electricity capacity (e.g., hydropower is about 70% and 76% in Yunnan
and Sichuan province’s power installed capacity).

Hydropower generation is vulnerable to climate change [15–18], and adapting to a new climate
and supplying energy demands is a common problem for hydropower globally [19,20]. Many studies
focus on climate change impacts on hydropower generation [21–23]. Some studies focus on the
impacts of climate change on hydrology and river runoff in southwestern China [24,25], and the
Mekong and Jinsha River Basin [26,27]. For example, Zhang et al. [28] use the Palmer drought severity
index to evaluate drought of Pearl River Basin in South China in future climate change scenarios.
Zhong et al. [29] evaluated the hydropower potential change in the second half of the 21st century
under climate change. Hecht et al. [30] reviewed hydropower dams’ impacts on river flows on Mekong
River, extending to concurrent climate changes. Feng et al. [31] evaluated climate change impacts
on hydropower generation on the lower Jinsha cascaded hydropower system. These studies mainly
focused on climate change on a single basin and evaluated climate change impacts on hydrology
or hydropower generation. However, different basins have different characteristics, so evaluating
climate change impacts and adaptations for hydropower systems extending over more than one basin
is helpful for addressing climate change from the overall area.

This study focuses on climate change impacts on the Lancang and Jinsha CHSs in southwest China,
the main power sources in Yunnan province. The climate change effects on hydropower generation
are extended to also evaluate spill and long-term drought with some adaptations for different basins.
The contributions of this paper are:

1. 10 change projections from 5 global climate models (GCMs) under two representative concentration
pathways (RCPs) are used to evaluate climate change effects on streamflow of Lancang River and
Jinsha River.

2. Hydropower potential, spill, and long-term drought under climate change are evaluated under
different projections in the combined hydropower system spanning both basins.

3. Different possible adaptations to climate change are evaluated with different conditions for the
studied CHSs.

The remainder of this paper is structured as follows. We first describe the study area and climate
change datasets, followed by describing meteorological change for different climate change projections.
Then, inflows are projected to each hydropower station and hydropower generation is maximized for
these hydropower systems. With the simulated results, we analyze hydropower generation change
and vulnerability under climate change, with some discussions on adapting to the climate. The last
section concludes and recommends some further research.

2. Materials

2.1. Study Area

Yunnan province is in southwest China. Its vertical terrain decreases from highest elevations
of more than 5000 m in the northwest to low elevations of less than 100 m in the south. As shown
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in Figure 1, Jinasha River, Lancang/Mekong River and Nu/Salween River travel across this province,
supplying extensive hydropower [32]. Yunnan’s installed hydropower capacity reached 66,660 MW
in 2018, about 19% of China’s total installed hydropower capacity, and about 71% of the province’s
total installed power capacity and 85% of its electricity generation. As a powerhouse of “West to East
Power Transmission”, about half of hydrogeneration is transmitted to eastern coastal provinces like
Guangdong and Guangxi. Hydropower is vital to Yunnan and other provinces receiving electricity
from Yunnan.
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Figure 1. Location of Yunnan and hydropower plants of Lancang cascaded hydropower system
(LCCHS) and Jinsha cascaded hydropower system (JSCHS).

With its geographic location and complex topography, Yunnan’s hydrology is controlled by the dry
continental monsoon in winter, and influenced by southwest and East Asian monsoons in summer [33].
It is sensitive to climate change [34]. Therefore, it is important to evaluate influences of climate change
on Yunnan’s hydropower generation.

Lancang cascaded hydropower system (LCCHS) and Jinsha cascaded hydropower system (JSCHS)
are the main power sources of Yunnan, representing more than 60% of Yunnan’s total installed
hydropower capacity and generation. They illustrate the effects of climate change on Yunnan’s
hydropower, so we mainly concentrate on these two CHSs in this study. The location and basic
information on hydropower stations in these two CHSs appear in Figure 1 and Table 1.

Table 1. Characteristics of hydropower plant cascades (unit, elevation: m, installed capacity: MW,
storage: 108 m3).

Basin Plant Regulation Normal
Level

Minimum
Operating

Level

Power
Capacity

Total
Storage

Active
Storage

Lancang River
(annual flow mean:
318 × 108 m3, SD.:
48.2 × 108) m3 in

Gongguoqiao)

Gongguoqiao Daily 1307 1303 900 3.16 0.49
Xiaowan Multiyear 1240 1160 4200 149.14 99.00
Manwan Seasonal 994 982 1670 9.20 2.87

Dachaoshan Seasonal 899 882 1350 9.40 3.70
Nuozhadu Multiyear 812 765 5850 237.03 113.35
Jinghong Seasonal 602 591 1750 11.40 3.09

Jinsha River
(annual flow mean:
444 × 108 m3, SD.:
68.5 × 108 m3 in

Liyuan)

Liyuan Daily 1618 1605 2400 7.72 1.73
Ahai Daily 1504 1492 2000 8.82 2.38

Jinanqiao Daily 1418 1398 2400 9.13 2.87
Longkaikou Daily 1298 1290 1800 5.07 3.70

Ludila Daily 1223 1216 2160 17.18 3.76
Guanyinyan Weekly 1134 1122 3000 20.72 5.55
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2.2. Historical Data and Climate Change Data

In this study, monthly precipitation for 1961 to 2016 was obtained from China Meteorological
Data Service Center (https://data.cma.cn) and China Hydrology Data Project [35]. Historical inflow
data were collected by the hydropower stations.

Many GCMs provide projected climate change datasets. However, most models have coarse
spatial resolutions, and their results need to be downscaled for regional scale studies. However, lack of
sufficient historical data in China often hinders the use of these datasets. The US National Aeronautics
Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)
provide downscaled projected climate change data for Representative Concentration Pathways (RCP)
of RCP4.5 and RCP8.5 from 21 GCMs, which were produced and distributed under Coupled Model
Intercomparison Project Phase 5 (CMIP5). The high spatial resolution of 0.25 degrees (0.25◦ × 0.25◦,
about 25 km × 25 km) and daily temporal resolution makes this regional study feasible. Each climate
projection contains daily precipitation, maximum temperature, and minimum temperature. In this
study, 5 GCMs for both the low emissions scenario of RCP4.5 and the high emissions scenario of RCP8.5
were obtained from NEX-GDDP. These 5 GCMs are from different countries or institutes that have
relative independence and have been used in some studies for China [36,37], this study tries to use
these models to show the hydrology trends and analyze hydropower generation trends under climate
change scenarios. The basic information of these datasets appears in Table 2. This study focuses on
climate change effects to long term monthly hydropower operation, so daily climate change data is
aggregated to monthly values, then the grid data is transformed to meteorological station data by
bilinear interpolation.

Table 2. Climate change GCMs used in this study.

Abbr. Sponsor Temporal Resolution Spatial Resolution

GFDL-ESM2M Geophysical Fluid Dynamics
Laboratory (US)

Daily 0.25◦ × 0.25◦CCSM4 University Corporation for
Atmospheric Research (US)

IPSL-CM5A-LR Institute Pierre Simon Laplace (France)

MRI-CGCM3 Meteorological Research Institute
(Japan)

bcc-csm1 Beijing Climate Center (China)

3. Meteorological Change under Climate Change

3.1. Projected Changes of Precipitation in Lancang River Basin

Figure 2a shows precipitation change between the projected 2020–2100 annual average and
the historical 1961–2016 annual average. Figure 2b shows monthly precipitation change between
the projected 2020–2100 monthly average and the historical 1961–2016 monthly average. To show
climate trends, Figure 2a shows the 5-year rolling average value of yearly precipitation. Prospective
precipitation in Lancang River basin is near the historical average in the early years, but all GCM
projections show clear increases in later years, especially for projections of scenario RCP8.5. Moreover,
all GCMs projected significant changes in precipitation, the fluctuating interannual precipitation
indicates long-term droughts and wet years, which can affect water management. Figure 2b shows
monthly average precipitation decreasing a little in most GCMs during October to April, but increasing
more in most GCMs during wet season (May to September). Precipitation increase concentrates in July
in scenario RCP4.5 and increases more evenly from May to September in scenario RCP8.5. Precipitation
in IPSL-CM5A-LR and MRI-CGCM3 may decrease in some months.

https://data.cma.cn
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3.2. Projected Changes of Precipitation in Jinsha River Basin

Figure 3a shows precipitation change between the projected 2020–2100 annual average and the
historical 1961–2016 annual average, and Figure 3b shows monthly precipitation change between
the projected 2020–2100 monthly average and the historical 1961–2016 monthly average in Jinsha
catchment. These two figures show similar changes with the Lancang River.
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4. Streamflow Change Simulation

4.1. Model Training and Validation

Backpropagation neural networks (BPNN) are black-box models and have no physical properties.
However, they do not require a lot of physical property data and are easy to use, and have been
widely used in forecasting streamflow [38,39]. The runoff in both Lancang River and Jinsha River is
mainly from rainfall and groundwater, with little glacier and snowmelt runoff for the middle and
lower reaches of these rivers [25,40,41]. Therefore, this paper takes the monthly precipitation of each
meteorological station in the upstream of each hydropower station and the previous monthly inflow as
inputs, without considering temperature change effects on seasonal streamflow. A three-layer BPNN
precipitation-runoff model is built for each hydropower station to forecast streamflow under each
GCMs. Observed data from 1961 to 2000 is used to calibrate, and observed data from 2001 to 2016 is
used to test these models. Widely used statistical indicators are adopted to evaluate model performance:
coefficient of correlation (R), Nash Sutcliffe efficiency (NSE), and mean absolute percentage error
(MAPE), as defined in Equations (1)–(3).

R =

∑n
i=1

(
Qi

o −Qo

)(
Qi

m −Qm

)
√∑n

i=1

(
Qi

o −Qo

)2
√∑n

i=1

(
Qi

m −Qm

)2
(1)

NSE = 1−

∑n
i=1

(
Qi

m −Qi
o

)2

∑n
i=1

(
Qi

o −Qo

)2 (2)

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣∣Qi
o −Qi

m

Qi
o

∣∣∣∣∣∣ (3)

where n is the sample size, and Qi
o and Qi

m are the observed inflow and the predicted inflow of sample
i, respectively. Qo and Qm are the mean value of observed inflow and predicted inflow, respectively.

The training and validation statistical values of each station appear in Table 3. The values show
high R (about 0.95) and NSE (0.9), and good MAPE (about 15%) in each station.

Table 3. The training and validation statistical indicators of each station.

Basin Plant Items R NSE MAPE

Lancang River

Gongguoqiao Calibration 0.96 0.93 12.60
Validation 0.95 0.89 15.12

Xiaowan
Calibration 0.97 0.93 12.28
Validation 0.95 0.89 15.87

Manwan
Calibration 0.96 0.93 12.77
Validation 0.93 0.85 18.98

Dachaoshan
Calibration 0.97 0.94 12.41
Validation 0.93 0.86 16.48

Nuozhadu
Calibration 0.97 0.94 13.16
Validation 0.94 0.88 17.20

Jinghong Calibration 0.98 0.96 11.57
Validation 0.94 0.86 18.95

Jinsha River

Liyuan Calibration 0.97 0.93 12.62
Validation 0.96 0.91 14.10

Ahai
Calibration 0.97 0.93 12.56
Validation 0.94 0.88 14.91

Jinanqiao Calibration 0.97 0.93 12.86
Validation 0.96 0.92 13.07

Longkaikou Calibration 0.97 0.93 12.91
Validation 0.96 0.91 13.04

Ludila
Calibration 0.97 0.94 11.71
Validation 0.96 0.95 12.71

Guanyinyan Calibration 0.97 0.94 12.99
Validation 0.96 0.91 13.93
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4.2. Simulated Runoff under Climate Change

The inflow for each station under each GCM and scenario is projected with the trained model
and the meteorological data. For the first stations of each CHS (Gongguoqiao on LCCHS, Liyuan on
JSCHS), Figures 4 and 5 show the monthly inflow change between the projected 2020–2100 monthly
average and historical 1961–2016 monthly average; Figures 6 and 7 show the projected yearly inflow.
Figure 4 shows that inflow of Gongguoqiao increases during May to July in GCMs of RCP4.5 and
increases during May to October in RCP8.5. Meanwhile, Figure 5 shows that inflow at Liyuan station
increases from March to June and decreases from July to September. Since both stations are the first
station of each CHS, the inflow changes are not exactly the same as the basins’ average precipitation.
Figures 6 and 7 show that streamflow varies greatly for different projections, but most projections show
growth trends consistent with trends of precipitation. Moreover, Table 4 shows the statistical values of
historical yearly inflow and projected yearly inflow, showing that the standard deviation (SD.) and
coefficient of variation (C.V) of yearly inflow also tend to be larger in most GCMs, indicating more
variable inflow in the future.

Table 4. The statistics for yearly inflow at typical stations (unit: 108 m3).

Station Scenario GCM Mean Max Min SD. C.V

Gongguoqiao

Historical 318.5 426.6 233.7 48.2 0.151

RCP4.5

CCSM4 328.3 478.6 226.1 51.7 0.157
GFDL-ESM2 M 344.5 569.3 220.3 76.4 0.222
IPSL-CM5A-LR 335.8 490.6 236.0 50.7 0.151

MRI-CGCM3 329.7 660.8 203.1 68.5 0.208
bcc-csm1 322.4 579.6 209.5 69.4 0.215

RCP8.5

CCSM4 373.5 613.3 208.5 84.4 0.226
GFDL-ESM2M 372.3 559.1 222.5 79.3 0.213
IPSL-CM5A-LR 349.8 624.4 235.5 62.3 0.178

MRI-CGCM3 334.3 572.8 235.6 63.5 0.190
bcc-csm1 356.0 550.8 208.4 79.1 0.222

Liyuan

Historical 444.0 572.0 304.8 68.5 0.154

RCP4.5

CCSM4 470.1 739.3 308.6 80.1 0.170
GFDL-ESM2 M 469.4 733.7 299.6 89.6 0.191
IPSL-CM5A-LR 484.2 667.6 365.0 65.4 0.135

MRI-CGCM3 444.4 746.4 301.0 85.8 0.193
bcc-csm1 458.6 691.4 325.5 72.5 0.158

RCP8.5

CCSM4 513.4 765.4 341.0 93.0 0.181
GFDL-ESM2M 491.9 649.4 337.1 79.4 0.161
IPSL-CM5A-LR 505.9 821.8 359.2 95.7 0.189

MRI-CGCM3 445.4 576.2 302.6 69.3 0.156
bcc-csm1 475.1 677.5 315.7 72.9 0.153
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5. Hydropower Generation Model

This section describes a progressive optimality algorithm to estimate CHSs generation under
different climate change projections.
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5.1. Mathematical Model

The main function of most reservoirs in southwest China is to generate electricity. The operating
objective is set to maximize long-term power generation with a monthly time step while satisfying
various constraints. The overall objective is:

maximize F =
T∑

t=1

M∑
m

Nm,t∆t (4)

where F is the total electricity generation with the unit of kWh. T is the number of periods. M is the
number of hydropower plants. ∆t is the time length of period t with the unit of hours. Nm,t is the
power output of plant m at period t with the unit of kW, which can be expressed as:

Nm,t = γH
m·qm,t·Hm,t (5)

where γH
m is the generation efficiency of plant m at water head Hm,t, which is obtained by interpolation

of the water head generation efficiency curve of the hydropower plant offered by the power dispatching
department. qm,t and Hm,t are the sum turbine flow and head of plant m at period t, respectively.

The constraints are:

(1) Mass balance constraint

Vm,t+1 = Vm,t + 3600·∆t·(Im,t +
∑
j∈Um

R j,t − em,t −Rm,t), m ∈ [1, M], t ∈[1, T] (6)

where Vm,t is the storage of reservoir m at period t. Im,t is the inflow of reservoir m at period t,
and em,t is the evaporation at period t. Um is the direct upstream hydropower plant set of plant m.
Rm,t (or R j,t) is the total release of reservoir m (or j) at period t, which can be expressed as:

Rm,t = qm,t + sm,t, m ∈ [1, M], t ∈[1, T] (7)

where qm,t and sm,t are turbine flow and spillage of reservoir m at period t. In this model, spillage
occurs when total discharge is greater than the maximum value of all turbines or greater than the
required flow when generating by installed capacity.

(2) Reservoir initial storage constraint

Vm,0 = Vm,beg, m ∈ [1, M] (8)

where Vm,beg is the initial storage of reservoir m.

(3) Expected final storage constraint

Vm,T ≥ Vm,end, m ∈ [1, M] (9)

where Vm,end is the expected final storage of reservoir m. This constraint means that the final
storage should be equal or greater than the expected final storage, which is usually set by the
power dispatching department.

(4) Storage constraints
Vm,t ≤ Vm,t ≤ Vm,t, m ∈ [1, M], t ∈[1, T] (10)

where Vm,t and Vm,t are the lower and upper storage of bounds of reservoir m at period t.

(5) Turbine flow constraints
q

m,t
≤ qm,t ≤ qm,t, m ∈ [1, M], t ∈[1, T] (11)
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where q
m,t

and qm,t are the lower and upper turbine discharge bounds of reservoir m at period t.

(6) Minimum ecological streamflow constraint

Rm,t ≥ qe
m,t

, m ∈ [1, M], t ∈[1, T] (12)

where qe
m,t

is the minimum ecological streamflow constraint of plant m at period t. This constraint

is set to meet the water demand required to maintain the dynamic stability of the ecosystem.
(7) Cascaded hydropower minimum output constraints

M∑
m=1

Nm,t > Ns (13)

where Ns is the required minimum output of the cascaded hydropower system. This constraint is
set to avoid power shortages.

5.2. Progressive Optimality Algorithm for Cascaded Hydropower System Operation

Dynamic programming (DP) can guarantee global optimal solutions to multi-stage decision
problems and is widely used in water resources problems [42,43]. However, its computation burden
increases exponentially with the problem scale, and so can only approximately solve large-scale
problems. The progressive optimality algorithm (POA) is a variant of DP, which divides the multi-stage
decision problem into a sequence of two-stage subproblems to reduce computation burden [44–46].
This paper uses POA to calculate operation scheduling under climate change. The POA for this
operation problem is as follows:

1. Generate an initial solution. For optimal operation of CHS, an initial solution (water level of each
station at each period) can be found by setting the water level of each station to be constant and
generated by the incoming water. Set the current stage as t.

2. Fix the decision values of t − 1 and t + 1, solve the subproblem of stage t with Equation (14). Then
update the state values of stage t with the optimal value of the subproblem.

F(St
∣∣∣St−1, St+1) = Opt

{
F(St−1, St) + F(St, St+1)

}
, t ∈ [1, T] (14)

where St is the state vector at period t, F∗(St
∣∣∣St−1, St+1) means the optimal value given state vector

St−1 and St+1.
3. Set t = t − 1, if t > 0, go back to step 2, otherwise, go to step 4:
4. If the termination condition is met, stop the algorithm, and the current trajectory is the optimal

solution of the problem. Otherwise, set t = T and go back to step 2.

This approach quickly provides a locally optimal solution and is widely employed for this region’s
hydropower operations [44,45,47,48].

6. Results and Discussion

Using the above-mentioned POA, this section analyzes long-term monthly simulation results
under different climate change projections compared with historical (based on observed inflow data
from 1961–2016) model output.

6.1. Hydropower Generation

Figure 8 and Table 5 show maximized generation and output for the LCCHS and JSCHS. Both
show hydroelectricity generation increases in all climate change projections and show some features:

1. Generation increases in all projections, but increases more in scenario RCP8.5, for both CHSs.
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2. Figure 8a,b shows that the output of both CHSs is large during the flood season, especially from
July to September. However, Figure 8c,d shows that the output increases less in these months,
this may be because the inflow increases little or even decreases during this period. In addition,
these CHSs can generate with full capacity during the flood season, with abundant inflow, and
increased inflow can increase generation and reduce spill in other periods.

3. Table 5 shows that the SD. of yearly generation increases in both CHSs in most cases, so yearly
generation is prone to fluctuate more under climate change.

4. Table 5 and Figure 8e,f show that both CHSs have much less power generation in extreme drought
years. For example, the generation of LCCHS in the driest year is only 51.79 TWh in MRI-CGCM3
of RCP4.5, which is 10% less than the driest year in history and only about 69% of the historical
yearly average. JSCHS shows a similar change: generation of the driest year in GFDL-ESM2M
of RCP4.5 is about 78% of the historical yearly average. Both CHSs show that hydropower
generation is prone to more vulnerability with climate change. Figure 8e,f shows that generation
in JSCHS has milder outlier means, being more vulnerable than LCCHS; LCCHS’ large reservoirs
can reduce vulnerability.

5. These two CHSs have similar changes in most GCMs under the same scenario, but some show
differences. For example, generation of LCCHS increases 0.37% in bcc-csm1 of RCP4.5, while
JSCHS increases 8.17% for the same case, because meteorological conditions change differently in
different areas and with different basin characteristics.

Table 5. The annual generation statistics under each projection and historical model simulation (unit:
TWh).

CHS Scenario Model Mean Anomaly Anomaly pct (%) Max Min SD.

LCCHS

- Historical 75.26 - - 93.66 57.12 9.37

RCP4.5

CCSM4 77.56 2.30 3.06 97.63 56.81 8.77
GFDL-ESM2M 78.39 3.14 4.17 98.74 55.02 10.72
IPSL-CM5A-LR 79.16 3.90 5.18 100.83 59.31 8.78

MRI-CGCM3 75.78 0.52 0.69 101.23 51.79 10.33
bcc-csm1 75.54 0.28 0.37 101.63 52.13 11.57

RCP8.5

CCSM4 83.55 8.29 11.02 107.64 55.07 11.23
GFDL-ESM2M 81.28 6.02 7.99 95.85 56.57 9.08
IPSL-CM5A-LR 80.77 5.51 7.32 97.82 58.13 9.31

MRI-CGCM3 78.10 2.84 3.78 102.71 58.53 10.65
bcc-csm1 80.83 5.57 7.40 103.69 52.24 11.80

JSCHS

- Historical 60.46 - - 70.30 47.58 4.83

RCP4.5

CCSM4 66.19 5.73 9.48 81.60 49.99 5.82
GFDL-ESM2M 64.79 4.32 7.15 74.77 46.93 5.18
IPSL-CM5A-LR 68.26 7.80 12.90 79.96 58.03 4.37

MRI-CGCM3 63.26 2.80 4.62 74.86 47.66 6.36
bcc-csm1 65.40 4.94 8.17 77.78 52.54 5.60

RCP8.5

CCSM4 68.57 8.11 13.41 80.85 53.48 5.71
GFDL-ESM2M 67.27 6.80 11.25 77.31 52.74 4.91
IPSL-CM5A-LR 68.76 8.30 13.72 79.42 55.58 4.87

MRI-CGCM3 64.34 3.87 6.40 75.76 47.94 6.23
bcc-csm1 66.65 6.19 10.24 78.73 50.40 5.52
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Figure 8. The generation and output of LCCHS and JSCHS under climate change projections. (a,b)
Monthly average output; (c,d) change in monthly average output compare to historical model simulation;
(e,f) yearly generation distribution; (g,h) yearly generation. In each subfigure, the thick line represents
the generation of the corresponding GCM, and the thin lines represent the generation of other GCMs.

6.2. Spill

Table 6 shows some statistics on energy and water spills, average annual storage range and
average annual inflow range. Figure 9a,b shows the monthly average percentage of inflow, generation
and spillage of all GCMs; Figure 9c,d shows the peak generation (generation of the flood season from
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June to October) and spillage distribution; Figure 9e,f shows the yearly average spill for each station.
There are some clear insights to be drawn from these:

1. Average annual spill, SD. of annual spill, average annual inflow and average annual storage
range have similar trends, wherein more inflow increase spill and large reservoirs can be useful
(Table 6).

2. Both CHSs spill in most years, and JSCHS spills more because its smaller storage capacity is
insufficient to regulate seasonal inflow variation (Table 6).

3. Spill is concentrated from July to September in both CHSs. The difference of inflow and generation
percentage show that large amounts of water can transfer from flood seasons to dry seasons in
LCCHS, and nearly none in JSCHS (Figure 9a,b).

4. The box plot of peak generation and spill in Figure 9c,d shows peak generation and spill have
similar trends with more generation and spill. Although LCCHS can transfer some water from
flood seasons to dry seasons, it still spills during extreme wet years, while JSCHS has little storage
and spills nearly all surplus water during flood seasons, with more spill outliers in LCCHS
than JSCHS.

5. Gongguoqiao has the most spill in LCCHS, while spillage in JSCHS is relatively evenly distributed
across stations (Figure 9e). This might be because Gongguoqiao is the first station of LCCHS
and lacks regulation storage capacity, while all JSCHS stations lack good regulation ability. With
abundant inflow during the flood season and little storage, they must spill surplus water.

6. The maximum yearly spillage and its SD. in most cases is much larger than the values with
historical hydrology in both CHSs, indicating that spill exhibits greater inter-annual change under
climate change.

Table 6. The annual spill statistics under each climate change projection (unit, spill: 108 m3, inflow:
m3/s).

CHS Scenario Model
Annual Spillage

ASR AIR
Mean Anomaly SD. Spill Years (%)

LCCHS

Historical 42.4 - 52.1 92 49.6 3258

RCP4.5

CCSM4 43.2 0.7 67.2 88.75 49.8 3169
GFDL-ESM2M 128.4 86.0 237.8 93.75 67.9 3792
IPSL-CM5A-LR 50.6 8.2 87.8 92.50 55.7 3217

MRI-CGCM3 106.4 64.0 222.8 83.75 45.9 3390
bcc-csm1 61.4 19.0 132.1 75.00 50.2 3208

RCP8.5

CCSM4 146.9 104.5 235.9 96.25 79.8 3822
GFDL-ESM2M 267.5 225.1 331.0 93.75 56.2 4172
IPSL-CM5A-LR 111.8 69.4 216.0 90.00 55.5 3446

MRI-CGCM3 60.3 17.9 114.2 88.75 54.3 3369
bcc-csm1 117.2 74.8 169.1 87.50 75.8 3817

JSCHS

Historical 312.0 - 272.9 96.00 4.1 3758

RCP4.5

CCSM4 299.6 −12.4 314.2 95.00 3.8 3641
GFDL-ESM2M 342.3 30.3 418.7 91.25 3.6 3810
IPSL-CM5A-LR 287.8 −24.2 290.5 98.75 3.9 3675

MRI-CGCM3 241.0 −71.1 316.1 86.25 3.8 3418
bcc-csm1 254.9 −57.1 270.7 90.00 3.6 3543

RCP8.5

CCSM4 463.8 151.7 410.0 95.00 3.0 4016
GFDL-ESM2M 400.7 88.6 360.2 92.50 3.7 4018
IPSL-CM5A-LR 397.8 85.7 451.5 92.50 3.4 3813

MRI-CGCM3 206.7 −105.3 210.8 85.00 3.6 3419
bcc-csm1 324.1 12.1 293.3 93.75 2.5 3802

Note: ASR = average annual storage range, annual storage range is maximum storage −minimum storage in one
year. AIR = average annual inflow range, annual inflow range is maximum inflow −minimum inflow in one year.
Spill years (%) is the years of spill as a percentage of total years.
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6.3. Multi-Year Drought

Figure 10 shows the generation of the most severe single- and multi-year droughts which had less
incoming streamflow than the historical average for each GCM under different scenarios compared to
historical values. More droughts occur in most cases. (1) Generation in the year with the worst drought
is less than the historical minimum in all cases in both CHSs; some decrease by about 31% compared to
the historical average. (2) Larger multi-year reductions in generation occur in some cases in both CHSs.
In some cases, the multi-year drought is so severe that yearly generation decreases by 18% for five
successive years. For example, the most severe successive two-year drought decreases generation by
26% and 18% in MRI-CGCM3 under RCP4.5 in LCCHS and JSCHS, respectively. Successive five-year
and eight-year droughts decrease generation by 15% in some cases, which is much more severe than the
historical average. (3) Effects of multi-year droughts on LCCHS are more serious than their impact on
JSCHS in most cases. Since hydropower generation represents more than 80% of Yunnan’s total power
generation, this may sometimes result in the generation of insufficient electricity, seriously impacting
the electricity supply under climate change. Furthermore, nearly half of Yunnan’s hydroelectricity is
transferred to eastern provinces of China like Guangdong and Guangxi, and this proportion may grow
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with continued hydropower growth in Yunnan. The transferred electricity may fall dramatically in
acute drought years under climate change with large-scale impacts.
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6.4. Discussion

This paper tries to suggest adaptations for CHSs like JSCHS and LCCHS in the face of climate
change. Different basins have specific characteristics and may be affected by climate change differently.
Therefore, different measures may be needed, accordingly.

6.4.1. Large Longpan Hydropower Plant on Jinsha River

As mentioned above, JSCHS spills a lot, mainly because all of the hydropower plants of JSCHS
have small reservoirs and very limited regulation ability. Increasing the installed capacity of some
hydropower plants may decrease spill. However, the augmented installed capacity is only useful
during flood season, as shown in Figure 9b, and this is only of benefit for the hydropower plant with
increased installed capacity; surplus water cannot be transferred from flood seasons to dry seasons,
and is not helpful for other hydropower plants. Since each hydropower plant spills a lot during flood
season, as shown in Figure 9f, this may require increased installed capacity for all hydropower plants,
which may mean a massive investment and low efficiency of utilization. With a large reservoir, a
hydropower plant can store water during flood seasons for use in dry seasons for all hydropower
plants downstream. From this perspective, a large reservoir can better increase generation and reduce
spill. A hydropower plant named Longpan, with a 386 × 108 m3 reservoir and a 4,200 MW installed
capacity with carryover regulation, was planned in the upper Liyuan of Jinsha River, but has not
yet been built. Therefore, this section also tries to discuss the benefits of constructing the Longpan
station. Re-simulated results for hydropower generation and spill with the Longpan hydropower
plant on Jinsha River are presented in Table 7 and Figure 11 (this does not contain the generation of the
Longpan hydropower station, to aid comparison with Tables 5 and 6). Table 7 shows higher annual
mean, max and min generation than in Table 5. Both Table 7 and Figure 11b show significant spill
reductions. Figure 11a,b shows that power output is much less in flood seasons and higher during dry
seasons, showing that Longpan station could greatly increase the seasonal regulation capacity of the
JSCHS. Moreover, Figure 11c,d shows that spill decreases significantly compared to Figure 9d,f, which
could reduce hydro energy curtailment and help relieve flood pressure. Therefore, additional storage
capacity in the upper stream may help adapt to climate change for hydropower, the environment, and
other related issues.
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Table 7. JSCHS annual generation statistics with Longpan commissioned (omits generation of Longpan
hydropower station to aid comparison with Tables 5 and 6, unit: TWh).

Scenario Model
Generation Spill

Years (%)Mean Anomaly Max Min SD.

Historical 60.46 - 70.30 47.58 4.83 96.00

RCP4.5

CCSM4 75.52 15.06 100.02 58.09 9.15 10.00
GFDL-ESM2M 74.06 13.59 97.38 55.00 9.95 18.75
IPSL-CM5A-LR 77.81 17.35 98.77 63.01 7.60 10.00

MRI-CGCM3 70.60 10.14 98.56 52.87 10.11 5.00
bcc-csm1 72.28 11.81 98.16 55.12 8.50 10.00

RCP8.5

CCSM4 79.67 19.20 100.73 56.38 9.68 18.75
GFDL-ESM2M 79.50 19.03 97.69 59.15 10.02 16.25
IPSL-CM5A-LR 78.49 18.02 100.70 60.75 10.60 13.75

MRI-CGCM3 71.92 11.46 88.01 52.69 8.75 6.25
bcc-csm1 73.81 13.35 93.85 55.96 8.60 15.00
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Nuozhadu hydropower plants, transferring some surplus water from flood seasons to dry seasons 
and reducing spillage. Therefore, increasing the turbine capacity of Gongguoqiao hydropower plant 
is a cost-effective measure for reducing spill of LCCHS. This section explores augmenting capacity 
by steps of 22.5 MW until 225 MW of additional capacity is achieved. The re-simulated generation 
and spill change results are shown in Figures 12 and 13. Figure 12 shows that generation of 
Gongguoqiao could increase by up to about 8% under all GCMs with 25% additional turbine capacity, 
and generation of LCCHS could increase slightly by up to 0.5%, because the added turbine capacity 
can be used only in flood seasons. Also, the installed capacity of Gongguoqiao is small compared to 

Figure 11. The generation and spill of JSCHS under different climate change projections with Longpan
commissioned (does not contain the generation of Longpan hydropower station in order to compare
the result). (a) Average monthly output, (b) average monthly percentage of inflow, generation and
spillage, (c) peak generation and spill distribution, and (d) annual average spill of each station.

6.4.2. Increased Turbine Capacity of Gongguoqiao Hydropower Plant

As shown in Figure 9e, spillage in LCCHS occurs mainly at Gongguoqiao station. Other stations
downstream of Gongguoqiao hydropower plant can benefit from large reservoirs of Xiaowan and
Nuozhadu hydropower plants, transferring some surplus water from flood seasons to dry seasons and
reducing spillage. Therefore, increasing the turbine capacity of Gongguoqiao hydropower plant is a
cost-effective measure for reducing spill of LCCHS. This section explores augmenting capacity by steps
of 22.5 MW until 225 MW of additional capacity is achieved. The re-simulated generation and spill
change results are shown in Figures 12 and 13. Figure 12 shows that generation of Gongguoqiao could
increase by up to about 8% under all GCMs with 25% additional turbine capacity, and generation of
LCCHS could increase slightly by up to 0.5%, because the added turbine capacity can be used only in
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flood seasons. Also, the installed capacity of Gongguoqiao is small compared to the entire LCCHS.
However, Figure 13a,b shows that the added turbine capacity could greatly reduce spill in both the
individual plant and the entire LCCHS. Because spill occurs mainly during flood seasons, increased
turbine capacity can reduce spill directly. Since adding turbine capacity costs much less than building
a large reservoir, added turbine capacity may economically help with climate change.
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7. Conclusions

Hydropower systems are usually designed based on historical conditions. However, climate
change can change the inflow conditions dramatically and have dire consequence for hydropower
systems. Evaluating the effects of climate change is important.

This paper explores likely hydropower generation changes for two major cascaded hydropower
systems in Yunnan for 10 climate change projections consisting of 5 GCMs under 2 projected climate
change scenarios. The modeling provides some insights into the potential effects of climate change
and how systems might be able to adapt.

(1) The results show that hydropower generation is prone to increase in all projections, especially
under the scenario of RCP8.5, and could become more variable under climate change. Generation
in severe drought may be much lower, especially in JSCHS, due to lack of seasonal reservoir
storage capacity.

(2) The max yearly spill and its SD. for most projections is much larger than with historical hydrology
in both CHSs, showing that annual spill is prone to fluctuate more with climate change.

(3) Both CHSs will face more droughts, and consecutive multi-year droughts may cause severe
adverse effects on electricity supply and export in Yunnan.

(4) The planned Longpan large reservoir in upper Jinsha can increase power generation, reduce spill
and alleviate uneven output during flood seasons and dry seasons remarkably. Adding turbine
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capacity to the Gongguoqiao plant on LCCHS can increase generation slightly, but reduces spill
much more. Such solutions may be useful to help alleviate adverse effects of climate change.

Since wind and solar power are booming in China and other countries all over the world, we suggest
studies to investigate the climate change effects including other renewable power, and the coordination
of operation of hydropower and other renewable power sources under climate change, which may
complement cascaded hydropower systems and regional power grids to address climate change.
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