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Abstract: The aim of the study was to analyze the results of surface water quality tests carried out in
the Bystrzyca river basin. The study was conducted over four years in four seasons. The following
chemometric techniques were used for the purposes of statistical analyses: the principal component
analysis with factor analysis (PCA/FA), the hierarchical cluster analysis (HCA), and the discriminant
analysis (DA). The analyses allowed for determining the temporal variability in water quality between
the seasons. The best water quality was recorded in summer and the worst in autumn. The analyses
did not provide a clear assessment of the spatial variability of water quality in the river basin.
Pollution from wastewater treatment plants and soil tillage had a similar effect on water quality.
The tested samples were characterized by very high electrolytic conductivity, suspended solids and
P-PO4 concentrations and the water quality did not meet the standards of good ecological status.
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1. Introduction

In Poland, rivers are characterized by relatively low runoffs. Small water resources often overlap
with eutrophication processes resulting from low dilution of pollutants. In the twentieth century,
in Poland, often untreated municipal sewage and industrial wastewater was discharged directly into
rivers. After Poland’s accession to the European Union (EU), the implementation of environmental
monitoring programs commenced [1,2].

Due to their location, rivers carry pollutants to lakes and the sea, contributing to the eutrophication
of these water bodies. Water from rivers, lakes, and groundwater is used for human consumption
needs. Water resources play an important role in drinking water supply, crop irrigation, industrial
production, hydropower generation, and fish farming [3–6]. The increase in water demand caused
by the development of civilization has contributed to the reduction in the amount of water and the
deterioration of its quality. Water quality is affected by both natural processes and anthropogenic
factors. Natural processes include, but are not limited to, topography, geological structure, seasonal
temperature and rainfall changes, and land use. Many studies confirm that natural processes have a
significant impact on water quality [7–10]. However, anthropogenic factors are much more important
for the deterioration of water quality [11,12]. The anthropogenic factors include: industrial pollution,
domestic sewage, agricultural drainage, as well as agriculture and urbanization intensity. Pollutants
go to water from point sources (industry, municipal) and area sources, which are identified with
agricultural land [13–15]. Both natural and anthropogenic factors influence the amount of nutrients
eluted from the basin [16,17]. Excessive content in surface waters can lead to eutrophication, oxygen
deficiency, as well as the development of organisms posing a danger to human health [18,19]. Studies on
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the spatial variability of water quality have shown that the presence of nutrients in aquatic ecosystems
is highly dependent on land use, soil properties, agriculture intensity, and the discharge of treated
wastewater [20–25].

There is a need to assess surface water quality for proper water resource management. In order to
protect water against pollution, it has become necessary to develop a water quality monitoring program.
Long-term and regular research is a great source of information for water resource managers. The most
commonly used methods for processing and analyzing datasets are multivariate statistics [26–32].
In addition, on their basis, it is possible to determine the variability between seasons, spatial variability
of river water quality, and identify the potential sources of water pollution [4,33–38]. The following
chemometric techniques were used for multivariate analysis of environmental datasets: the principal
component analysis (PCA), the cluster analysis (CA), the discriminant analysis (DA), and the factor
analysis (FA). Many studies also confirm the use of these techniques in order to identify the potential
sources of water pollution. Chemometric techniques to assess the results of water quality testing
have been used in many countries, e.g., India [33,34], Vietnam [35], Morocco [39], China [40,41],
Hong Kong [42], Iraq [43], and Pakistan [44,45]. Such analyses were also carried out in Poland. PCA,
CA, FA, and DA were used to analyze spatial and temporal changes in surface water quality in the Mała
Wełna river basin [46]. Multivariate analyses, such as the principal component analysis with factor
analysis (PCA/FA) and the hierarchical cluster analysis (HCA), were used in order to examine the effect
of urbanization in the Łyna river basin on the water quality parameters [47]. On the example of Gdańsk,
the cluster analysis (CA) and the analysis of variance (ANOVA) were used to analyze the temporal and
spatial variability of drinking water quality. The sources of pollution in the Goczałkowice, Kowalskie,
and Chechło reservoirs were also identified using multivariate statistical techniques [48–50].

Studies conducted so far in order to identify sources of water pollution indicate that water quality
deteriorates mainly due to anthropogenic factors [51–55]. In the Bystrzyca river basin, surface water
pollution results from agricultural activity, including animal husbandry, crop irrigation, and water
erosion. This also overlaps with industrial activities, including the processing of sugar beets, fruits and
vegetables, and the production of parts for cars and aircrafts. Due to the poor water quality in
the Bystrzyca river basin, the environment monitoring program covering surface and underground
waters has been carried out for 20 years (Regional Inspectorate for Environmental Protection).
Regular monitoring and assessment of the water quality is necessary for the proper management of
water resources in order to improve the status of the environment.

The aim of the study was to analyze the temporal and spatial variability of surface water quality
in the Bystrzyca river basin. The dataset was collected over four years (2011–2014) in four seasons at
10 measuring stations (a total of 160 samples). To achieve this goal, chemometric techniques (HCA,
PCA/FA, DA) were used, which allowed for: determining similarities and differences between the
measuring stations, determining temporary changes in the water quality, and determining the potential
sources of pollution affecting the water quality.

2. Material and Methods

2.1. Study Area

The Bystrzyca river basin, in terms of the physical and geographical location in Poland, is located
in the macroregion of the Lublin Upland and in the mesoregions of the Świdnik Plateau and the
Giełczew Plateau. According to the coding system for hydrographic units, the Bystrzyca river basin has
the code 246 [56]. Typologically, Bystrzyca has been classified as a medium-sized river. Its ecological
functioning is classified into various abiotic types: headwater section and all tributaries up to 6, middle
section up to 9, and estuary section up to 15 [57]. The Bystrzyca River has its springs in Sulów at
an altitude of 232 m above sea level, and the outlet near Spiczyn at an altitude of 152 m above sea
level. The total area of the Bystrzyca basin is 1320 km2, and the part to the Sobianowice section,
where hydrometric measurements were taken, covers 1260 km2. The river is 81.9 km long and is fed
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by five tributaries. The following tributaries have an outlet into the Bystrzyca River: Kosarzewka
at 47 km, Kreżniczanka at 40 km, Czerniejówka at 26 km, Czechówka at 25 km, and Ciemięga at
12 km (from the outlet of the Bystrzyca river). From kilometer 18 to 38, the Bystrzyca River flows
through the city of Lublin [51,52]. For this reason, the causes of eutrophication of surface water can be:
intensive suburbanization, industrial activity, recreation, and agriculture. Suburbanization occurs in a
ring-like system around the city of Lublin. Industry is mainly based in the eastern districts of the city.
Recreational areas are concentrated in the southern part of the city, around the Zemborzyce reservoir.
Agricultural areas are located downstream and upstream of the river. In 2014, five municipal sewage
treatment plants and five industrial wastewater plants operated in the study area. In its catchment
basin, there is the Zemborzyce reservoir with an area of 280 ha and three fishpond complexes with a
total area of 70 ha. The basin includes agricultural land (78%): arable land constitutes 71%, grassland
4%, and orchards account for 3%. The land use structure of the basin is complemented by forestland
(10%), urban areas (11%), and wasteland (1%). The soil cover consists mainly of Podzisols occurring in
the top parts of the upland and on slopes, as well as Cambisols in the lowland parts [53–55]. In the
years 2011–2014, the average annual air temperature was 9 ◦C, and the precipitation level was 570 mm.
In the summer half-year, the precipitation was 370 mm, while in the winter half-year it was 200 mm.
The average water runoff on the Sobianowice section was 4.1 m3 s−1, which was lower than the
multi-year average.

2.2. Sample Collection

Surface water samples were collected for physical and chemical analyses over four years, 2011–2014,
in four seasons (winter, spring, summer, autumn). A single 1 L sample was taken at each time at the
depth of half of the water level in the river. The tests were carried out on five measuring sections
along the Bystrzyca River and five on its tributaries (Table 1, Figure 1). Direct measurements with
a Multi 340i multi-parameter meter (WTW, Weilheim, Germany) included: pH, dissolved oxygen
(DO), and the electrolytic conductivity (EC) of water. Using the sampler, water samples were collected
into PE bottles for laboratory testing. Physical and chemical analyses were carried out using a PC
spectrophotometer (AQUALYTIC, Langen, Germany) and verified the following parameters: total
phosphorus (P), phosphates (P-PO4), total nitrogen (N), and ammonium nitrogen (N-NH4), and by
means of a LF300 photometer (SLANDI, Michałowice, Poland): sulphates (SO4) chloride (Cl), nitrate
nitrogen (N-NO3), and Kjeldahl nitrogen (KN). Biochemical oxygen demand (BOD) was determined by
the Winkler method, chemical oxygen demand (COD) by the bichromate method, suspended solids (SS)
by the gravimetric method, and total organic carbon (TOC) using a TOC1200 analyzer (Trace Elemental
Instruments, Delft, Netherlands).

Table 1. Location of the station in the Bystrzyca river basin.

No. Station River Outlet (km) Flow (m−3·s−1)

1 Kiełczewice

Bystrzyca Lublin

60 0.4
2 Osmolice 48 1.0
3 Zemborzyce 38 2.2
4 Hajdów 20 3.8
5 Spiczyn 3 4.9

6 Iżyce Kosarzewka 3 0.9
7 Krężnica Krężniczanka 5 0.9
8 Głusk Czerniejówka 7 0.7
9 Zamek Czechówka 1 0.2
10 Pliszczyn Ciemięga 4 0.6
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Figure 1. The hydrographic network of the Bystrzyca river basin. 
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Figure 1. The hydrographic network of the Bystrzyca river basin.

Hydrometric measurements were also carried out at each measuring station, which included
the measurement of water flow rate and cross-section parameters (river depth and width). This was
done using a HEGA-1 hydrometric meter (Biomix, Poland) and a Leica Nova MS 50 total station
(Leica, Switzerland).

2.3. Statistical Analysis

The assessment of the physical and chemical composition of the water in the Bystrzyca catchment
basin was based on a set of data consisting of 15 water quality parameters. The study was carried
out at ten measuring stations during the years 2011–2014 in four seasons (winter, spring, summer,
autumn). Prior to the statistical analysis, the data was collated. Then, using the W test (Shapiro–Wilk),
the compliance of the distribution of the physical and chemical parameters of water with normal
distribution was checked. Environmental data was transformed and standardized to meet the
normality assumption. In the case of chloride and sulphate concentrations, their distribution after
transformation differed significantly from normal; therefore, these parameters were not included in
chemometric analyses. In order to characterize the temporal and spatial variability of the remaining
13 water quality parameters, the multivariate analysis methods of classification and ordination were
used. The hierarchical cluster analyses (HCA) were developed based on the monitoring stations’
measurements using the Ward’s minimum variance classification algorithm with Euclidean distance as
a similarity measure. The principal component analysis with factor analysis (PCA/FA) was used to
determine the relationships between water quality parameters at the measuring stations and individual
test dates. Finally, the discriminant analysis (DA) was carried out, using the season as a discriminating
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variable. DA was applied to raw data, whereas CA and PCA were applied to standardized data to
avoid misclassification arising from different parameter units.

The calculations were made using Microsoft Excel 2010, Statistica 13.3 software and the open
source software R, version 3.4.3, package: vegan, version 2.4-6 [57,58].

3. Results and Discussion

3.1. Characteristics of Water Quality in the Bystrzyca River Basin

During the study period, the surface water in the Bystrzyca river basin showed an alkaline
reaction ranging from 7.5 to 8.25. Nitrate nitrogen concentrations were low and ranged from 0.7 to
3.5 mg/L, ammonium nitrogen from 0.02 to 0.34 mg/L, and Kjeldahl nitrogen from 0.7 to 1.88 mg/L,
while total nitrogen concentrations ranged from 1.5 to 5.2 mg/L. Low biochemical oxygen demand
(BOD) was observed from 1.4 to 4.5 mg/L. Chemical oxygen demand (COD) ranged from 8.0 to
28.0 mg/L, and the concentrations of total organic carbon (TOC) ranged from 1.1 to 7.4 mg/L. Therefore,
high DO concentrations above 7.6 mg/L could be observed. All the test samples were characterized by
a very high content of suspended solids (SS), which ranged from 261 to 522 mg/L and the associated
high electrolytic conductivity (EC) ranged from 393 to 802 µS/cm. In addition, high phosphorus
concentrations ranging from 0.10 to 0.37 mg/L and very high phosphate concentrations (P-PO4) ranging
from 0.05 to 0.24 mg/L were found in the test samples. The statistical parameters of water quality
indicators for the testing seasons are presented in Table 2.

Based on the concentration of nitrogen, ammonium nitrogen, pH, DO, COD, and TOC, the water
quality corresponded to a very good ecological status (class I). Based on the concentrations of total
phosphorus, Kjeldahl nitrogen, nitrate nitrogen, and BOD, the water quality corresponded to good
ecological status (class II). The standards of good ecological status are met for these oxygen and nutrient
indicators. Achieving this goal was associated with the implementation of a program to protect the
aquatic environment against degradation in the EU [2,51]. The test samples were characterized by
very high EC, SS, and P-PO4 concentrations and the water quality did not meet the standards of good
ecological status. Very high EC and SS concentrations are associated with the ionic composition of
water and the runoff of soil and mineral salts from the slopes. Very high levels of orthophosphates are
associated with the use of detergents and waste storage.

The analyzed surface waters had the best quality in the summer season, and the worst in the
autumn season. The analysis of variance revealed fluctuations between the seasons in the study
period in dissolved oxygen concentrations, biochemical oxygen demand, chemical oxygen demand,
phosphates, electrolytic conductivity, and total phosphorus (statistically significant differences at
the level α = 0.05). However, no differences in water quality parameters were found between the
measuring stations.
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Table 2. Season-specific values of the physical and chemical parameters.

Seasons DO BOD COD TOC EC SS pH N-NH4 N-K N-NO3 N P-PO4 P

Unit mgO2/L mgO2/L mgO2/L mgC/L µS/cm mg/L - mg/L mg/L mg/L mg/L mg/L mg/L

Winter

Mean 9.89 2.8 18 5.07 533.5 386.13 8.03 0.142 1.163 2.252 3.291 0.194 0.263
SD 0.351 0.636 5.578 1.365 67.605 63.344 0.082 0.054 0.169 0.698 0.686 0.056 0.125

Min 9.3 1.9 11 3.0 393 261 7.9 0.10 0.9 1.5 2.4 0.1 0.13
Max 10.5 3.7 28 7.4 625 457 8.2 0.25 1.4 3.47 4.74 0.3 0.44

Spring

Mean 9.77 2.63 15.70 4.10 561.10 382.56 7.92 0.16 1.30 1.93 3.11 0.13 0.20
SD 0.769 0.690 4.715 1.046 61.167 47.006 0.116 0.065 0.192 0.628 0.708 0.055 0.059

Min 8.5 1.9 9.0 2.1 490.0 300.0 7.7 0.1 1.0 1.3 1.8 0.1 0.1
Max 10.8 4 23 5.8 656 434 8.04 0.32 1.6 3.1 4 0.24 0.31

Summer

Mean 8.50 1.89 12.40 2.78 482.00 343.67 7.74 0.07 0.96 1.47 2.31 0.08 0.16
SD 0.552 0.515 3.836 1.022 37.880 30.952 0.137 0.067 0.208 0.576 0.497 0.037 0.052

Min 7.6 1.4 8.0 1.1 445.0 305.0 7.5 0.0 0.7 0.7 1.5 0.01 0.1
Max 9.1 3 20 4.4 563 402 7.89 0.25 1.19 2.46 2.95 0.173 0.26

Autumn

Mean 10.80 3.53 19.40 5.47 658.60 419.33 8.13 0.27 1.44 2.26 3.86 0.15 0.27
SD 0.655 0.778 4.274 1.398 95.690 62.942 0.031 0.052 0.195 0.517 0.761 0.043 0.069

Min 9.9 2.6 15.0 2.6 500.0 344.0 8.1 0.2 1.2 1.5 3.0 0.1 0.2
Max 12.1 4.5 28 6.9 802 522 8.2 0.34 1.88 3.2 5.24 0.24 0.37
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3.2. Assessment of the Temporal and Spatial Variability

A hierarchical agglomerative cluster analysis was conducted to identify the temporal and spatial
variability of water quality parameters at the monitored stations. Ward’s algorithm of minimum variance
was used for clustering and the Euclidean distance was applied as a measure of similarity. The obtained
results of classification are presented graphically as dendrograms (Figure 2a,b). The measuring sections
were grouped into two statistically significant clusters (Dlink/Dmax)× 100 < 60. The first cluster consisted
of the stations Pliszczyn, Krężnica, Zamek, and Hajdów (moderate pollution level). The stations
Pliszczyn (10) and Krężnica (7) are located in eroded agricultural land, while the stations Zamek (9)
and Hajdów (4) are located in an urban area. It follows that both intensive agriculture and urbanization
contribute to water pollution. The second cluster includes the stations Kiełczewice (1), Osmolice (2),
Zemborzyce (3), Spiczyn (5), Iżyce (6), and Głusk (8), with low water pollution (low pollution level).
The investigated basin has a high capacity to retain dissolved chemical compounds. Therefore, the water
quality parameters on the outlet stretch Spiczyn (5) have low values. In addition, despite the discharge
of sewage from an industrial treatment plant, the Osmolice station was classified in the second group
(low pollution level). It is similar in the case of the Hajdów station (moderate pollution level). This is
where domestic sewage from the sewage treatment plant for the Lublin urban area (380,000 residents)
is discharged. The cluster analysis detected no point source pollution in the form of industrial and
domestic sewage discharges. This results from very good management of water resources and the use
of the best available technology for wastewater treatment. In addition, point pollution is superimposed
on area pollution from surface runoff. Stations located both in agricultural and urbanized areas were
classified into one cluster. This indicates a comparable level of area and point pollution.

The CA was repeated taking into account both the stations and the date of sampling (Figure 2b).
Four clusters were obtained and their analysis indicates that the date of sampling may be a factor
determining that they should be included in a particular group. In particular, it can be seen that the
samples taken in the summer season formed the first cluster (marked in pink). The second cluster
comprised four samples from the autumn season (marked in olive green), while the third one comprised
three samples from the winter season (marked in blue). The fourth cluster (marked in steel blue)
includes the remaining samples from three different seasons. Samples taken during the summer and
partly in the spring season show the lowest levels of pollution. This may be a result of highly diluted
impurities and the uptake of nutrients by plants.
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The next stage of the statistical analysis was the principal component analysis (PCA). Significant
PCA axes were selected with the Kaiser–Gutman criterion [59]. The first three components (PC1,
PC2, PC3) had eigenvalues greater than 1 (Table 3), which allowed 74.14% of the total variation to be
explained. Assuming the assessment of the relationship between factor loadings for water quality
parameters and individual components according to Reference [9], the following conclusions can be
formulated. The factor analysis reduced the set of 13 parameters initially used to characterize water
quality to three VF (Variations Factor) variations necessary for the identification of the river pollution
sources. If the factor loadings between water quality parameters and VF coefficients are 0.75–1.00,
the values are strongly correlated, while at 0.50–0.75, they are moderately correlated. The first factor,
VF1 (corresponds to 68% of total variance), was strongly correlated with NK, N-NH4, EC, SS, pH, and P
concentrations. The next two factors with a cumulative variance of 28% were, on average, correlated
with the concentration of N-NO3 and P-PO4 (VF2), with organic carbon TOC (VF3). A negative factor
correlation with the concentrations of nitrogen and phosphorus compounds suggests an impact of
organic pollutants. These pollutants can be associated with intensive land use (fertilizers and pesticides)
as well as industrial production (waste and sludge). Nitrogen and phosphorus compounds contribute
to the eutrophication of water and the deterioration of the quality of aquatic ecosystems [60–62].
The negative correlation of the VF1 factor with pH level indicates that when the parameter has low
values, carbon and calcium can be released from carbonate rocks. High concentrations of calcium
carbonate occur in arable fields due to intensive soil erosion. A graphical representation of the PCA
analysis for the first two components is shown in the graphs in Figure 3.
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Table 3. Matrix of factor loadings calculated on the basis of water quality parameters.

Parameter PC1 PC2 PC3

DO −0.73 b 0.07 −0.09
BOD −0.72 b −0.01 −0.49
COD −0.59 b −0.44 0.21
TOC −0.67 b −0.01 −0.67 b

EC −0.85 a
−0.26 0.27

SS −0.79 a
−0.22 0.24

pH −0.78 a 0.23 0.02
N-NH4 −0.88 a

−0.19 −0.02
N-K −0.79 a

−0.37 0.05
N-NO3 −0.54 b 0.70 b 0.38

N −0.73 b 0.44 0.32
P-PO4 −0.46 0.60 b −0.32

P −0.76 a
−0.11 −0.03

Eigenvalue 6.81 1.61 1.22
Variance % 52.40 12.37 9.37

Cumulative variance % 52.40 64.77 74.14
a Strongly correlated factor loadings; b Medium correlated factor loadings.
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The principal component analysis did not provide an unambiguous assessment of the spatial
variability of water composition in the catchment basin and its quality. Based on the PCA analysis,
insignificant differences were identified in the physical and chemical parameters of the water analyzed
on the sections Pliszczyn and Hajdów (Figure 3a), which is clearly influenced by both point sources
of pollution (municipal sewage treatment plant) and area sources (soil erosion). No significant
differentiation was found between the remaining points (the stations are mixed together).

However, the PCA analysis allowed significant differences in water quality to be determined
between the testing seasons. With datasets for different periods, the PCA can also be used to investigate
the temporal variations in water quality and find out the most important pollution sources for each
period. By considering the deadline for sampling, the PCA can also be used to investigate the temporal
variations in the water quality (Figure 3b). It can be seen that the first principal component is strongly
correlated with the seasons. In particular, we can observe the clusters of samples in the summer
and autumn seasons. The samples in the autumn season are characterized by a higher than average
concentration of water quality parameters. Samples in the summer season are characterized by a
lower than average concentration of the tested parameters. The lowest values of water pollution in the
summer may be due to heavy rainfall and nutrient uptake by plants. In turn, in the autumn, rainfall is
low, the vegetation period comes to an end, and the source of pollution is plant residues.

At the final stage of calculations, the discriminant analysis (DA) was performed on the data
using a standard stepwise method. This made it possible to build a model containing 13 water
quality parameters that were used to characterize the temporal variability of the physical and chemical
composition of water in the basin (Table 3). The discriminant analysis allows for building orthogonal
functions with a cumulative variance of 97% in the event of temporal variability. The DA was performed
on raw data after splitting the dataset into four groups (spring, summer, autumn, and winter) based on
the results of the CA and PCA. Since the grouping variable had four categories, three discriminant
functions (DF) were obtained (Table 4). Only two of them were statistically significant (p < 0.01).
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The DA identified six variables (DO, SS, pH, N-K, N, and P-PO4) as the most important discriminating
variables (Table 5). The first discriminant function is weighted most heavily by the SS and N (Table 6).
The second function seems to be marked mostly by P-PO4 and EC. The graphical presentation of
DA results is shown in Figure 4. It can be stated that we obtain discrimination between the summer
and autumn seasons by means of the first discriminant function. However, the second discriminant
function seems to distinguish between winter and autumn seasons.

Table 4. Wilk’s lambda and chi-square test for the discriminant analysis of temporal variation.

Discriminant Factor Eigenvalue R Wilk’s Lambda Chi-Square p-Level

0 19.50412 0.975310 0.009453 142.1747 0.000000
1 2.26927 0.833139 0.193817 50.0456 0.001397
2 0.57818 0.605276 0.633641 13.9163 0.237659

Table 5. The discriminant analysis of water quality parameters measured at 10 stations,
variable grouping—season.

Parameter Wilks’ Lambda Partial Wilks’ Lambda F-Remove p-Level Tolerance

DO 0.013783 0.685831 3.664690 0.026379 0.606812
BOD 0.011303 0.836268 1.566316 0.223442 0.253237
COD 0.012709 0.743786 2.755789 0.064460 0.432741
OWO 0.012701 0.744268 2.748818 0.064916 0.210628

EC 0.012914 0.731978 2.929291 0.054131 0.151339
SS 0.014432 0.654958 4.214523 0.015763 0.165511
pH 0.018440 0.512605 7.606565 0.000962 0.448278

N-NH4 0.009703 0.974196 0.211903 0.887158 0.383435
N-K 0.014939 0.632754 4.643150 0.010690 0.239602

N-NO3 0.009785 0.966057 0.281081 0.838510 0.177250
N 0.013395 0.705667 3.336785 0.036190 0.152398

P-PO4 0.015121 0.625147 4.796987 0.009324 0.387294
P 0.011541 0.819024 1.767728 0.180194 0.450575

Table 6. Standardized canonical discriminant function coefficients.

Root1 Root2

DO −0.638 0.052
BOD −0.206 −0.491
COD −0.355 0.656
OWO −0.971 0.442

EC −0.483 −1.414
SS 1.371 0.584
pH −0.979 0.059

N-NH4 −0.110 −0.281
N-K −0.506 0.397

N-NO3 0.383 −0.134
N −1.348 0.502

P-PO4 0.649 0.903
P 0.309 −0.266
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4. Discussion

The HCA analysis allowed for the identification of two clusters represented as low pollution and
moderate pollution levels. Cluster 1 was formed by sites 4, 7, 9, and 10, while the other six sites were
assigned to cluster 2. Stations 7 and 10 were located on the tributaries of the river (Figure 1) in areas
with no industrial activity and with dispersed single-family housing. Various factors influence the
water quality in these stations: agricultural practices, animal husbandry, and domestic sewage [10,20].
Stations 4 and 9 were located in the city of Lublin in the area of intensive road infrastructure and
clustered housing development. In these stations, increased levels of pollution can result from surface
runoff and domestic sewage discharge. Increased levels of river pollution in these locations are due to
seasonal human activity, which can lead to eutrophication. In stations located in the Bystrzyca river
basin, increases are observed in pollution concentrations; however, they are not constant. Cyclical
changes in rainfall intensity and human agricultural activity contribute to the formation of clear
differences in water quality depending on the season of the year [63–65].

The low level of pollution in spring is probably due to dilution of melting snow by runoff.
The relatively low concentration values of the tested parameters in spring are mainly caused by dilution.
In turn, the very low level of pollution in summer is due to heavy rainfall and the uptake of nutrients
by plants. The use of large amounts of fertilizers in agricultural areas and the use of salt for de-icing of
roads in urban areas may contribute to increased concentrations of pollutants. Strong seasonal variation
in pH, DO, BOD, and COD may result from photosynthesis, hydrological pollution, and natural
chemical processes [22,23,66–68]. High TOC concentrations should be considered a result of the
dissolution of minerals containing calcium carbonate, which occurs in loess soils [51,55]. The high
SS content causes a reduction in DO, which affects the quality of water in the river. The high level of
water quality parameters points to causes of pollution, such as withered and decaying plants, mineral
acids, or agricultural and industrial waste discharged into the river [69,70]. For this reason, the highest
values of pollution parameters were observed in autumn. Other studies show that the highest pollution
values occurred in spring as a result of surface runoff. This indicates that, as a result of soil erosion
processes, pollutants are accumulated in rivers [71]. Intensive erosion in highlands occurs during



Water 2020, 12, 190 13 of 17

tillage and heavy rainfall. The frequency of pollution and soil erosion intensity depend on the land use
and the type and manner of performing agricultural works [72,73].

The sources of pollution in a river basin can be identified on the basis of factor analysis [28,69,71].
The PCA used in the work did not allow for determining the spatial variability of the tested water
quality parameters. No differences were found between stations located at sewage discharge points
and in other places. This is due to the fact that point pollution is often superimposed on area pollution.
The HCA and PCA/FA analysis showed that both sources of pollution are at a comparably high level.
This suggests that potentially harmful substances may be of natural or anthropogenic origin, or both [74].
In addition, some man-made compounds also occur in natural conditions, e.g., gypsum [20,64,66].
In the studied Bystrzyca river catchment, water is only moderately polluted by agricultural practices
or municipal sewage. The lowest quality water was found at station 4. This was due to surface
runoff from the city and discharge from the municipal sewage treatment plant. At station 5, however,
a significant improvement in water quality was observed, which reveals the river’s self-cleaning
ability [69]. Previous studies show that heavy metal concentrations were characterized by very low
values [57].

5. Conclusions

Chemometric techniques are a useful tool to describe water quality and its spatial and temporal
variability caused by natural and anthropogenic factors. The cluster analysis allowed for the
identification of two clusters. One included four stations with a moderate pollution level, while the
other comprised six stations with a low level of water pollution. The principal component analysis did
not provide an unambiguous assessment of the spatial variability of water quality in the basin and
the identification of hot spots. This is due to the simultaneous occurrence of area and point source
pollution in the analyzed basin with a similar effect on water quality. Analyses carried out using
PCA and DA showed statistically significant temporal variability between the study seasons. In the
Bystrzyca river basin, we get differences between the summer and autumn seasons using the first
discriminant function. With the second discriminant function, we get differences between winter and
autumn seasons. The differences between the seasons are due to human activity, the type of agricultural
treatment, and agricultural runoff. The main task of managers is to limit the frequency and intensity
of erosion. This can be achieved by introducing tree cover and good agricultural practices, and by
limiting surface sealing. This study can help the water resources management in the region.

The analyzed surface waters had the best quality in the summer season, and the worst in the
autumn season. The samples were characterized by very high EC, SS, and P-PO4 concentrations and
the water quality did not meet the standards of good ecological status. Excess ortophosphate (P-PO4)
from feed, fertilizers, and industrial waste, is an underlying factor contributing to the deterioration of
water ecosystems. In turn, electrical conductivity (EC) and suspended solids (SS) as water salinity
indicators reflect the impact of urbanization and soil erosion.
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