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Abstract: In this study, numerical simulations were conducted in order to understand the role
of wave-current interactions in wave deformation. The wave-current interaction mechanisms,
wave reflection and energy loss due to currents, the effect of incident conditions on wave-current
interactions, the advection-diffusion characteristics of saltwater, and the effect of density currents
on wave-current interactions were discussed. In addition, the effect of saltwater–freshwater density
on wave-current interactions was investigated under a hypopycnal flow field via numerical model
testing. Turbulence was stronger under the influence of wave-current interactions than under the
influence of waves alone, as wave-current interactions reduced wave energy, which led to decreases in
wave height. This phenomenon was more prominent under shorter wave periods and higher current
velocities. These results increase our understanding of hydrodynamic phenomena in estuaries in
which saltwater–freshwater and wave-current pairs coexist.

Keywords: wave-current interaction; hypopycnal flow; estuarine hydraulics; estuarine currents;
Navier–Stokes solver

1. Introduction

In the ocean, various continually interacting physical external forces. In particular, estuaries are
characterized by freshwater flows from land and saltwater flows from the ocean, which meet and
form a major pathway for material transportation. Estuaries are complex, therefore it is difficult to
investigate their hydrodynamic characteristics. Thus, it is critical to analyze the dynamic interactions
between complex estuary features, including wave-current interaction mechanisms. Furthermore,
it is necessary to understand the effect of a density current, which is generated by density differences
between saltwater and freshwater, on wave-current interactions.

In the estuary that exhibits highly complex hydraulic characteristics, the circulation type varies
significantly according to vertical salinity distribution, tide, and wave [1,2]. However, if two fluids
differing in density meet at the estuary, three types of flow and material transport patterns are largely
exhibited [3,4]. As shown in Figure 1, homopycnal flow occurs in the case of no density difference,
hypopycnal flow occurs when the influx flow has a lower density, and hyperpycnal flow occurs when
the influx flow has a higher density. Hypopycnal flow generally occurs in the estuary when fresh river
water flows in to ocean and interacts with ocean waves. However, most studies that attempted to
analyze the wave-current interaction mechanism at the estuary region did not consider the density
discrepancy between freshwater and saltwater, and were performed under homopycnal flow conditions.
Meanwhile, due to the developments of measurement equipment, wave transformation, wave set-up,
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flow rate, salinity, and temperature at the estuary are being observed [5–9]. In some studies, a model
of the estuary was composed in a three-dimensional experimental tank to measure wave variation
based on wave-current interaction and vertical salinity distribution influenced by density current
behavior at the estuary [10,11]. Onsite investigations or transport of three-dimensional experiment to
the estuary requires significant time and money and only allows for limited information to be recorded
at measurement points.
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Figure 1. Three types of estuarine hydrodynamics based on the density differences between river and
sea/lake water (Modified from Bates [3] and Boggs [4]). (a) Homopycnal flow; (b) hypopycnal flow;
(c) hyperpycnal flow.

Therefore, numerical simulations are frequently performed to analyze the hydraulic characteristics
of the estuary. Most of studies have used the model based on the depth-averaged model [12–14] or
the 3-D model based on σ-coordinate system [15,16]. This numerical model cannot directly simulate
wave behavior due to a large discrepancy between the calculation grid and time. To consider the wave
reaction, the wave radiation stress estimated from Simulating WAves Nearshore (SWAN [17]) or WAve
Model (WAM [18]) are substituted into the momentum equations [14,19,20].

Various theoretical, experimental and observational studies on waves propagating with currents
have previously been conducted in the field of coastal and ocean engineering [21–25]. In particular,
there have been many studies on the effects of wave kinematics (changes in the wave number and
frequency due to shoaling and refraction) and dynamics (changes in wave steepness and wave-action
conservation) according to wave-current interaction [26–29]. Wave kinematics include the effects of
depth and current in wavelength variation and dispersion (Doppler shift) according to opposing or
following current. Wave dynamics include energy and action conservation and the variations in wave
height and water level [24,30]. Umeyama [31] and Lee et al. [32] explored the vertical distribution
of flow and turbulence structures under wave-current interactions in order to analyze wave-current
interaction mechanisms. Smith et al. [10] investigated wave deformation by wave-current interactions
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in a 3-D experimental basin with an estuary model. However, these experimental studies were not
able to define the mechanisms of wave deformation and energy loss due to wave-current interactions.
Numerical studies have reproduced past experimental results, but have focused mostly on wave
deformation, neglecting to analyze the mechanisms behind wave-current interactions. In addition,
Umeyama [33] measured and analyzed the flow velocity and trace of water particles by combining
them with the particle image velocimetry (PIV) and particle tracking velocimetry (PTV) when the
wave and current have the same direction. Chen et al. [34] studied the trace of water particles
using the electronic hydrometer when the wave and current have opposite directions. However,
none of the experimental studies conducted so far describe the wave deformation phenomenon and
the mechanism of energy decrease clearly. The abovementioned studies focus on the motion of
water particles from the wave-current interaction instead of the characteristics of wave deformation.
Fernando et al. [35] discussed the topographic change resulting from the wave-current crossing angle,
and the characteristics of local and vertical distribution of flow velocity. However, it is difficult to
extend this study to analyze the effect of the hydraulic pattern. Lim and Madsen [36] analyzed the
vertical flow velocity structure and shear velocity for wave-current crossing angles of 30◦, 60◦, and 90◦

for conditions of smooth and uniform beds of fixed roughness. The results show that the fluid motion
affects some topographic changes depending upon the wave-current crossing angle.

Wave reflection by the opposing current is known to be weakened under wave-current interactions.
Longuet-Higgins and Stewart [37] built a theoretical background for wave reflection by currents upon
which many researchers have expanded [38]. These theoretical backgrounds remain insufficient for
defining reflection characteristics under wave-current interactions. Lee et al. [39] did not discuss wave
reflection, although a partial standing wave field was formed by the wave-current interactions in
their experiments. Rey et al. [40] measured wave reflection using a 3-D experiment basin in which
the wave and current coexist, using the incidence and reflected wave separation method proposed
by Drevard et al. [41]. Lee et al. [32] investigated the effect of turbulence on the reduced wave height
in a river channel. They analyzed the coefficient of wave reflection due to the current in the partial
standing wave field. However, a structure was installed in their experimental water tank, so the net
wave reflection due to the wave and current cannot be known.

Currently, advances in computer technology have enabled 3-D numerical model
experiments [42–45] using Navier–Stokes solvers with high calculation loads. In addition, Liu et al. [46]
applied the homotopy analysis method (HAM) to the analysis of wave-current interaction to identify
the utility and show the potential of solving the issue of strong wave-current interaction.

Previous studies [32] were performed under homopycnal flow conditions without considering
the density discrepancy at the estuary. It is expected that hydraulic characteristics according to
wave-current interaction and a decreased mechanism of wave height will show a difference at the actual
estuary. In this study, it was necessary to improve the existing numerical wave water tank in order
to analyze density current caused by temperature or salinity difference. Afterwards, the measured
wave height distribution and density current propagation processes according to wave-current
interaction in the existing experiment were compared and verified in order to check the validity and
effectiveness. Subsequently, the wave height decrease mechanism, wave reflection, average water level,
and turbulence energy caused by wave-current interaction were analyzed numerically. Further, from
the numerical simulation model considering hypopycnal flow, the influence of density current, that is
exhibited in the case of density difference between the river and ocean, on wave-current interaction
was thoroughly investigated.

2. Numerical Model

The mechanism and hydrodynamic characteristics of the interactions between waves and currents
were analyzed accounting for the densities of freshwater and seawater. For this purpose, a 3-D numerical
analysis model [47,48] based on the existing 3-D numerical wave tank (NWT), LES-WASS-3D [49–51]
was introduced to analyze density currents in this study.
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LES-WASS-3D, which is based on the 3-D Navier–Stokes momentum equations, uses the volume
of fluid (VOF) method to reproduce complicated free surfaces, including wave breaking, and the
porous body model (PBM) to reflect energy dissipation by a permeable structure; the model was based
on Hur and Mizutani [52] and Hur et al. [53]. In addition, to analyze sub-grid scale (SGS) turbulence,
Smagorinsky turbulence model (STM [54]) for the large eddy simulation (LES) was adopted in the
NWT [55]. By considering inertia [56], turbulence [57,58], and laminar flow resistance [58,59] according
to porous medium characteristics (diameter, porosity, and shape), the model can directly analyze
interactions among waves, structures, and the seabed [49–51].

The water density state equation (refer to Appendix A [60]) and kinematic viscosity coefficient
(refer to Appendix B [61]) were applied herein to analyze the density current in view of salinity and
temperature. Salinity and temperature were quantitatively calculated by simultaneously applying a
3-D advection-diffusion equation. Due to flow separation around structures, present LES turbulence
models do not provide accurate calculations of turbulence, which significantly influences the diffusion
coefficient applied in the advection-diffusion equation. Thus, a dynamic modeling procedure involving
the application of the dynamic eddy viscosity model suggested by Germano et al. [62] and Lilly [63]
was applied to re-evaluate Smagorinsky constant (Cs).

2.1. Governing Equations

The basic set of calculations consists of the continuity equation (Equation (1)), which includes the
source term that generates waves and currents without reflection in 3-D incompressible and viscous
fluids, and a modified Navier–Stokes momentum equation (Equation (2)), in which the fluid resistance
of the permeable structure is applied.

γi
∂νi
∂xi

= q∗ (1)

γν
∂νi
∂t

+ γiν j
∂νi
∂x j

= −γν
1
ρ

∂p
∂xi

+
∂
∂x j

[
γi(ν+ νt)

(
∂νi
∂x j

+
∂ν j

∂xi

)]
−Qi −Ri − γνgi − Ei (2)

where xi is the Cartesian coordinate system (x, y, and z); t is time; νi is the velocity components (u, ν,
and w); ρ is the fluid density; p is the fluid pressure; ν is the kinematic viscosity coefficient; νt is the
eddy viscosity coefficient from the turbulence model; γν and γi are the volume and surface porosities,
as shown in Figure 2; Ri is the fluid resistance term for the porous media; gi is the acceleration of
gravity; Ei refers to the wave energy damping term (= −βw; where β is the damping factor which
equals 0 except for the added damping zones) for the vertical velocity only; Qi refers to the wave and
current source terms (= 2ν

3
∂q∗

∂xk
); and q∗ is the source term required to generate waves and currents,

and it is defined as:

q∗ =

q/∆xs : x = xs

0 : x , xs
(3)

where q is the flux density; ∆xs is the grid size at the source position (x = xs).
As suggested by Brorsen and Larsen [64], the flux density of the wave and current generation

sources q in Equation (3) is gradually increased during three wave periods starting with wave and
current generation, as shown in Equation (4).

q =

2V0ζ[1− exp(2t/Ti)] : t/Ti ≤ 3

2V0ζ : t/Ti > 3
(4)

where V0 is the horizontal velocity determined by incident condition (in case of wave, based on the
3rd-order Stokes wave theory); and ζ is the intensity factor at the wave source (= (ηs + h)/(η0 + h));
ηs is the water surface elevation at the source position, η0 is the water surface elevation estimated using
the 3rd-order Stokes wave theory, and h is the water depth). The constant “2” accounts for two flows
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propagating to the left and right sides in NWT. The depth integrated quantity of q is adjusted by ζ to
achieve the same quantity in the non-reflection condition [65].Water 2020, 12, x FOR PEER REVIEW 5 of 30 
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Figure 2. Definition of the volume and surface porosities. Each cell is flagged as one of three types
according to the γν value: an empty cell occupied by fluid (γν = 1 ), an impermeable cell without
fluid flow (γν = 0 ), and a permeable cell containing both solid and fluid (0 < γν < 1), where Vsolid

and Asolid are the volume and surface area of solids in a cell, respectively. (a) γν = 1 − Vsolid
∆xi∆x j∆xk

;

(b) γi = 1− Asolid
∆x j∆xk

.

F is the volume of fluid (VOF) in each cell [66], which can be expressed as fluid conservation
by applying an assumption of fluid incompressibility and a function volume based on PBM, as in
Equation (5).

γν
∂F
∂t

+ γiνi
∂F
∂xi

= Fq∗ (5)

where F is the VOF function. In the numerical simulation, each cell is assigned as one of three types by
the VOF function value: fluid cell (F = 1), empty cell (F = 0), and free surface cell (0 < F < 1).

2.2. Advection-Diffusion Equations

In density current analyses, quantitative decisions about influential factors are important in order
to accurately calculate the fluid density ρ and kinematic viscosity coefficient ν, which are substituted
into the governing equations. The state equation used to calculate the density and kinematic viscosity
coefficient of water is a function of temperature T and salinity S. Therefore, the 3-D advection-diffusion
equations adopted herein include Equation (6) for temperature and Equation (7) for salinity.

γν
∂C
∂t

+ γiνi
∂C
∂xi
−
∂
∂xi

(
γiεi

∂C
∂xi

)
= 0 (6)

εi =

{
νt

νt/σc

: horizontal direction
: vertical direction

(7)

where C is temperature T or salinity S, and εi is the horizontal and vertical diffusion coefficients. In
this study, σc, which is the Prandtl/Schmidt number, has a value of 1.0, as estimated from experimental
results [67] and ocean observations [68,69].

2.3. Turbulence Model

In general, to reproduce complete turbulence, the calculation area must be larger than the
representative scale of the fluid, and the grid must be set smaller than the minimum turbulence scale.
It is essential to consider turbulence when modeling a 3-D phenomenon, therefore the grid number of
Re9/4 (Re; Reynolds Number) is required. However, it is practically impossible conduct numerical



Water 2020, 12, 183 6 of 30

analysis using this number of grids. Thus, the use of a turbulence model is practical for reproducing
turbulence. To this end, the STM [54] was adopted in this study.

However, a model constant (Cs) must be applied in the eddy viscosity model for the fluid. For
this, the appropriate Cs can be calculated through the dynamic modeling procedure suggested by
Germano et al. [62] and Lilly [63].

The dynamic modeling method expresses the physical quantity included in the analytical grid
as functions of time and space. This method does not require prior designation of unknown model
constants or fine tuning and can accurately predict laminar flow and asymptotic behavior near walls.
In addition, the model constant has a negative value showing energy backscattering, as the model
constant Cs is applied temporally and spatially.

2.3.1. Eddy Viscosity Model

In the STM, length and speed are expressed as L = Cs∆ and V = L|S|, respectively. The speed
calculation assumes that the pure dissipation equals the energy transferred from the large-scale to
small-scale analytical grids, and that the eddy viscosity coefficient νt formula is expressed as:

νt = (Cs∆)
2
|S| (8)

|S| =
(
2Si jSi j

)1/2
(9)

Si j =
1
2

(
∂νi
∂x j

+
∂ν j

∂xi

)
(10)

∆ = (∆x · ∆y · ∆z)1/3 (11)

where Si j is the strain tensor for the grid size, and ∆ is the filter length scale.

2.3.2. Dynamic Eddy Viscosity Model

In the LES grid, the stress τi j of the sub-grid scale can be modeled via Equation (12) and
Equation (13) using STM.

τi j = νiν j − νiν j (12)

τi j =
δi j

3
τkk = 2Cs∆2

|S|Si j (13)

where |S| and ∆ have the same definition in the STM.
Likewise, the stress τi j of the secondary stress can be modeled as Equations (14) and (15) by

applying a secondary filter.
Ti j = ν̂iν̂ j − νiν j (14)

Ti j =
δi j

3
Tkk = 2Cs∆̂2

∣∣∣Ŝ∣∣∣Ŝi j (15)

A secondary filter (the test filter) with width ∆̂ larger than ∆ is introduced. It is generally assumed
that the width of the test filter is two times of that of the grid filter and that the Cs of the two filters are
the same. These assumptions are adopted in this study. Ti j and τ̂i j are related by the Germano identity.

Li j ≡ Ti j − τ̂i j = νiν j − ν̂iν̂ j (16)

Substituting the sub-grid scale stress τi j from Equation (13) and secondary filter stress Ti j from
Equation (15) into Equation (16) produces relationships such as those seen in Equation (18).

Li j −
δi j

3
Lkk = −2Cs

(
∆̂2

∣∣∣Ŝ∣∣∣Ŝi j − ∆2
|S|Si j

)
= −2CsMi j (17)
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Mi j = α2
∣∣∣Ŝ∣∣∣Ŝi j − |S|Si j (18)

where α is the ratio of the test and grid filters (= ∆̂/∆).
There is only one unknown quantity, Cs, in Equation (17). Both Li j and Mi j are tensors, so

Equation (17) is an overdetermined equation system. Applying a least-squares technique to Equation (17)
produces a least error value for Cs.

Cs = −
Li jMi j

2Mi jMi j
(19)

A critical problem exists in the determination of the space-temporal function Cs. If Cs exhibits
severe fluctuations or negative values, numerical instability is induced, and it ultimately diverges. To
prevent such numerical instability, a space mean in uniform direction of numerator and denominator
is required locally for every calculation. In addition, a clipping of Cs is also required so that ν+ νt can
always be a positive (+) value. On following the above process, most of the limitations of STM can be
overcome. Germano et al. [62] proposed 1/2 as the optimal α value in flow calculation while applying
the dynamic eddy viscosity model. We also apply α = 1/2 in this study.

Cs = −
Li jMi j

2Mi jMi j
(20)

2.4. Non-Reflected Boundary

Figure 3 shows a schematic diagram of a numerical water basin with a variable grid system and
damping factors β in an added damping zone for non-reflected wave generation [70]. Each grid cell in
the damping zone increases its size by a factor 1.03 with respect to the previous cell as they approach
the open boundaries, as shown in Equation (21). This approach serves to make the analysis zone
independent from the influence of the numerical water basin boundaries. In addition, wave reflection
is controlled by setting the horizontal differences in physical quantities φi, such as velocity and the
VOF function, to zero at the numerical water basin boundary, as shown in Equation (22).

∆xi =

{
1.03∆xi−1 : positive damping zone
1.03∆xi+1 : negative damping zone

(21)

∂φi

∂xi
= 0 (22)
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For the boundary condition of the impermeable slope in a quadrilateral mesh system according
to spatial discretization based on finite difference method, the impermeable condition is adopted in
the normal direction and slip condition is adopted in the tangential force for the inclined structure by
applying the reasonable boundary [48,51] based on Petit et al. [71].

2.5. Numerical Water Basin Stability

Figure 4 presents the computed water surface profiles in the numerical water basin during one
wave period. Figure 3 shows that the wave spatial envelope is gradually attenuated in both of the
added damping zones by the numerical dispersion caused by the coarse grid system and the wave
damping term included in the momentum equation; the wave spatial envelope vanishes after x/Li = 2.
An added damping zone with a length over 2 Li was applied in this study. From numerical result such
as those in Figure 3, one can conclude that the present non-reflected system works efficiently to absorb
waves in the damping zone and release energy out of the open boundaries.
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2.6. Numerical Model Validation

2.6.1. Wave-Current Interaction

The hydraulic model experiment in Iwasaki and Sato [72] was simulated to verify the characteristics
of wave deformation by wave-current interactions in an open channel. Figure 5 shows the numerical
water tank simulated by Iwasaki and Sato [72]. Wave and current generation sources (without reflection)
were deployed at each end of the analysis domain, and additional damping zones were included at
both ends. For verification, a numerical calculation was conducted with an x direction grid size of
1 cm, a z direction grid size of 0.5 cm, and a time increment of 1/1000 s.
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Figure 5. The numerical water basin is modelled after the experimental campaign by Iwasaki and
Sato [72].

Figure 6 shows the wave height distribution while the wave propagates over an opposing current,
where (a) shows a current velocity of Vc = 6.3 cm/s and (b) shows a current velocity of Vc = 19 cm/s.
Here, the black circle (�) and blue triangle (N) indicate the experimental results, and black line
(—) and blue line (—) represent the modelled values. Wave height damping due to wave-current
interactions is observed in the experimental results and calculations shown in Figure 6. In this study,
the experimental results are reproduced well by the calculations. Furthermore, the inclination of the
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wave height distribution is quite similar in the calculations and the experiments for wave deformations
with coexisting wave-current fields. This indicates that the ratios of wave height damping due to
wave-current interaction are similar. These results were used to determine the validity and effectiveness
of the numerical model for wave transformation during an interaction with an opposing current.
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2.6.2. Salinity Advection

Figure 7 shows a numerical water tank based on the hydraulic model experiment in Huppert and
Simpson [73]. The water tank was 960 cm long and 27 cm wide, and the water depth was 10 cm. A
compartment of 30 cm long (x0) was installed in the water tank and filled with the density of saltwater
(ρs) of 1.0115 g/cm3. The remaining area was filled with the density freshwater (ρf) of 0.9999 g/cm3.
The density difference (∆ρ) was 0.0116 g/cm3 and the reduced gravity g’ (= ∆ρg/ρf) was 11.4 cm/s2.
The grid size for verification was ∆x = 1 cm, ∆y = 1 cm, and ∆z = 0.25 cm, and the numerical calculation
was carried out for ∆t = 1/1000 s.
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Figure 8 shows the temporal evolution of the salinity front due to the density difference. The upper
picture shows the experimental results and the lower picture shows the calculated results. The figure
also shows the saltwater shapes when (a) t = 4.4 s, (b) t = 6.8 s, (c) t = 9.7 s, and (d) t = 17.5 s after the
partition was removed from the compartments.
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3. Numerical Results

3.1. Wave-Current Interactions without Density Current

3.1.1. Description of Numerical Water Basin and Incident Conditions

A numerical wave tank was defined as shown in Figure 9 in order to numerically investigate the
mechanisms of wave-current interactions according to the velocity of the incident wave and current in
an open channel. To generate waves based on 3rd-order Stokes waves and currents without reflection,
wave and current sources were installed at each end of the analytical domain; damping zones were
added at both ends to absorb wave energy. The length of the analytical domain was 5 Li of the incident
wavelength, the width was 30 cm, and the water depth was 30 cm. In addition, the length of the
damping zones was set to more than double the incident wavelength to absorb wave energy and
minimize reflection.

Wave-current interaction numerical simulations were performed for 63 different cases involving
three incident wave heights (Hi = 3, 5, and 7 cm), three incident wave periods (Ti = 1.2, 1.5, and 1.8 s),
and seven current velocities (Vc = 0, 5, 10, 15, 20, 25, and 30 cm/s). The wave celerity (Ci) is based on
3rd-order Stokes wave theory. The calculation grids were ∆x = 2 cm, ∆y = 2 cm, and ∆z = 1 cm. In all
simulations, the wave was generated after current generation in order to stabilize the flow field.
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3.1.2. Distribution of Wave Heights

Figure 10 shows the wave height spatial distributions for various current velocity conditions when
the incident wave (Ti) period was 1.2 s. As shown in Equation (23), the wave height was calculated
using surface elevations (Equation (24)) from three periods and described via the non-dimensional
wave height (H/Hi) after the flow and wave field stabilized.

H(x) =
1

3Ti

∫ t+3Ti

t
[max

{
η(x, t)

}
−min

{
η(x, t)

}
] dt (23)

η(x, t) =
k=kmax−1∑

k=2

Fk∆zk − h (24)

where k = 2 and k = kmax − 1 represent the bottom and top of the NWT, and ∆zk is the grid size in the
z direction.
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as the ratio (Vc/Ci) between current velocity (Vc) and incident wave celerity (Ci) increases. A partial 
standing wave field is generally observed due to wave reflection by the wave-current interactions. 
These results are in agreement with the experimental results [32,39,74]. In addition, an intersecting 
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Figure 10. Spatial distributions of wave heights for an incident wave period of 1.2 s according to Vc.
(a) Hi = 3 cm, Ti = 1.2 s, Hi/Li = 0.017, Ur = 3.5; (b) Hi = 5 cm, Ti = 1.2 s, Hi/Li = 0.028, Ur=5.8; (c) Hi =

7 cm, Ti = 1.2 s, Hi/Li = 0.04, Ur = 8.1.

In Figure 10, for all the cases, the wave height is higher than the incident wave height (Hi) at x/Li
= 0. The wave height gradually decreases with wave propagation. This phenomenon is more obvious
as the ratio (Vc/Ci) between current velocity (Vc) and incident wave celerity (Ci) increases. A partial
standing wave field is generally observed due to wave reflection by the wave-current interactions.
These results are in agreement with the experimental results [32,39,74]. In addition, an intersecting
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point with a wave height of H/Hi = 1 is observed in (a–c); this point moves farther from x/Li = 0 as Hi
increases because Ci increases, thus decreasing Vc/Ci.

Furthermore, as Vc/Ci increases, the partial standing wave wave-height distribution is marginally
formed. In this case, the wave height is also relatively high at x/L = 0 in comparison to the point at
which the partial standing wave forms. This phenomenon was also reported by Lee et al. [39], who
found Hi = 5 cm, Ti = 1.0 s, and Vc = 60 cm/s. In other words, shorter wave periods, lower wave heights,
and higher current velocities lead to lower wave orbital motion velocity. Therefore, this phenomenon
appears to be a result of the predominance of wave energy loss over wave reflection. Nevertheless,
further study is required to verify this mechanism.

Figure 11 shows the spatial distribution of the H/Hi according changes in the Vc under Ti = 1.5 s.
This figure shows a tendency similar to that in Figure 10, which has Ti = 1.2 s. However, the Vc/Ci
is small compared to the case with Ti = 1.2 s; thus, the effects caused by a decrease in wave height
due to decreases in interactions decrease, and changes in the wave height rate become weaker. For
this reason, points (H/Hi = 1) generally move far from x/Li = 0. The wave height distribution becomes
narrower because the range over which Vc/Ci fluctuates is relatively narrow.
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Figure 11. Spatial distributions of wave heights for an incident wave period of 1.5 s according to Vc.
(a) Hi = 3 cm, Ti = 1.5 s, Hi/Li = 0.013, Ur = 6.1; (b) Hi = 5 cm, Ti = 1.5 s, Hi/Li = 0.021, Ur = 10.2; (c) Hi =

7 cm, Ti = 1.5 s, Hi/Li = 0.03, Ur = 14.2.

Figure 12 shows the wave height spatial distribution with changes in the Vc under Ti = 1.8 s.
This figure also shows a tendency similar to those in Figures 8 and 9, and also shows prolonged
wave-current interaction period characteristics. As the Ti increases, the range over which Vc/Ci
fluctuates decreases, resulting in a narrower wave height distribution. In addition, as the incident
wave period and wave height increase, the Ci increases and the decreases in wave height weaken,
resulting in gentler inclinations in the wave height distribution.
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where u′ , v′ , and w′  are turbulence components; tv  is the eddy viscosity coefficient estimated 
using STM; sC  is a model constant calculated by the dynamic eddy viscosity model; and Δ  is the 
filter length scale. 
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Figure 12. Spatial distributions of wave heights for an incident wave period of 1.8 s according to Vc. (a)
Hi = 3 cm, Ti = 1.8 s, Hi/Li = 0.01, Ur = 9.3; (b) Hi = 5 cm, Ti = 1.8 s, Hi/Li = 0.017, Ur = 15.5; (c) Hi =

7 cm, Ti = 1.8 s, Hi/Li = 0.024, Ur = 21.7.

Considering the above discussion of Figures 8–10, the wave orbital motion velocity and current
velocity have the same direction under the wave trough and different directions under the wave
crest within the wave-current interaction. As confirmed in the existing experiment, more intense
wave-current interactions occur in the wave crests than in the wave troughs. This leads to wave
reflection and wave height decay.

3.1.3. Characteristics of Turbulent Kinitic Energy (TKE)

The mean phase-averaged TKE (K) is the average turbulence over ten wave periods, as shown in
Equation (25). This TKE is calculated using Equations (26) and (27), as suggested by Christensen [75].
Equation (26) can be used to calculate the TKE of a grid scale (KGS) using the flow velocity calculated
by the numerical model, and Equation (27) can be used to calculate TKE of a sub-grid scale (KSGS) by
applying the values calculated by LES. The center of the analysis zone is the measuring point.

K =
1
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t
(KGS + KSGS) dt (25)
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2

(
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)
(26)
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(
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Cs∆

)2
(27)

where u′,ν′, and w′ are turbulence components; νt is the eddy viscosity coefficient estimated using STM;
Cs is a model constant calculated by the dynamic eddy viscosity model; and ∆ is the filter length scale.

Figure 13 shows the vertical distribution of the K according to the ratio of current velocity and
wave celerity (Vc/Ci). This figure shows that the value of the mean phase-averaged TKE is larger with
wave-current interactions than with waves alone. The intensity generally increases with higher Vc/Ci
values. In particular, still water with higher velocity due to wave orbital motion shows higher TKE.
Therefore, wave height decreases with increased TKE. The relationship between TKE and wave height
decay in the coexisting wave-current field will be comprehensively discussed later, along with wave
energy characteristics.
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Figure 13. Vertical distributions of mean phase-averaged turbulent kinitic energy (TKE) according to
variations in Vc.

Figure 14 shows the vertical distribution of the K according to the incident wave period (Ti).
The mean phase-averaged TKE increases with increasing Hi, Hi/Li, and Ursell number (Ur). This
increment is larger near still-water levels. In addition, with longer incident periods, the mean
phase-averaged TKE increases in sections, except for those near the still-water level. Under the
influence of wave-current interactions, TKE is closely related with velocity due to the orbital motion of
waves and current velocity. That is, as the incident wave height and period increase, the velocity of
water particles increases, and thus the TKE is increased by wave-current interactions.

Nevertheless, it is difficult to directly correlate TKE and the aforementioned wave height decay
because they are not proportional. The wave energy conditions differ, therefore wave energy decay
and wave height decay are not proportional to TKE. This relationship is closely related to the wave
energy described later and will be discussed in more detail in the following section. Wave height decay
is caused primarily by turbulence in the coexisting wave-current field, therefore the mechanism of
wave attenuation will be analyzed by exploring changes in TKE, wave energy, and wave height decay.
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3.1.4. Wave Energy Loss Characteristics

Wave energy (E) lost due to wave-current interactions is calculated by applying the simulated
data in Equation (28) after a stable wave-current coexisting field is attained. In Equation (29), the mean
energy loss (EL) is calculated for three periods from the energy ratio of the prior and following waves.
Subsequently, the average EL of five wavelengths is used to calculate the wavelength-averaged energy
loss (EL).

E = ρ

∫ η
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dz (28)
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Figure 15 shows the EL according to the Vc/Ci between current velocity and wave celerity under
various wave conditions. Wave energy loss increases as Vc/Ci increases. This phenomenon can be
explained with the fact that TKE increases as Vc/Ci increases, which results in increased energy loss.
The energy decay rate was expected to increase because the TKE becomes larger as the incident
wave height increases. The energy decay due to turbulence increases because higher wave energies
accompany higher wave heights, but the general decay rate is relatively low compared to that for low
wave heights.

The aforementioned analytical results for wave height distribution, TKE, and wave energy show
that the TKE increases with increasing Vc/Ci rate. This leads to wave energy and height decay. This
numerical mechanism can be used to understand wave height decay due to wave-current interactions.
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3.1.5. Wave Reflection Characteristics

Partial standing waves due to wave-current interactions are also found in the aforementioned
wave height distribution. Equation (30), which was proposed by Healy [76], was used to calculate the
reflection coefficient with the wave-current interactions. In addition, the values calculated for five
partial standing wave field wavelengths were averaged to produce the average reflection coefficient.

KR =
Hmax −Hmin

Hmax + Hmin
(30)

where Hmax and Hmin are the wave heights at the node and the anti-node in a partial standing wave
field, respectively.

Figure 16 shows the wavelength-averaged reflection coefficient (KR) according to the ratio (Vc/Ci)
between current velocity and wave celerity under various wave conditions. The wave reflection
rate generally increases as Vc/Ci increases. Wave reflection due to current is generated by a strong
interaction under the wave crest, where the wave orbital motion velocity and current velocity oppose
each other. Therefore, the reflection rate increases as the current velocity increases. Meanwhile, (a–c),
which feature the same incident wave height, show lower reflection rates with shorter incident wave
periods. The wavelength is not long in waves with shorter periods, therefore the exposure time under
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the wave crest decreases. Therefore, the wave-current interaction time becomes shorter under an
opposite flow velocity, resulting in a lower reflection rate. In addition, the current by the incident
wave height does not appear to have strong effects on the wave reflection rate, which is similar to the
reflective wave characteristics.

Wave reflection by currents, which was reported by an existing theoretical study to be
insignificant [37], is therefore confirmed, and the mechanism is elucidated above. The reflection rate is
up to 0.068 under the incident conditions applied herein. Such a wave reflection rate cannot be ignored
when analyzing hydraulic phenomena in coexisting wave-current fields.

Water 2020, 12, x FOR PEER REVIEW 20 of 30 

 

reflection rate generally increases as Vc/Ci increases. Wave reflection due to current is generated by a 
strong interaction under the wave crest, where the wave orbital motion velocity and current velocity 
oppose each other. Therefore, the reflection rate increases as the current velocity increases. 
Meanwhile, (a–c), which feature the same incident wave height, show lower reflection rates with 
shorter incident wave periods. The wavelength is not long in waves with shorter periods, therefore 
the exposure time under the wave crest decreases. Therefore, the wave-current interaction time 
becomes shorter under an opposite flow velocity, resulting in a lower reflection rate. In addition, the 
current by the incident wave height does not appear to have strong effects on the wave reflection 
rate, which is similar to the reflective wave characteristics. 

Wave reflection by currents, which was reported by an existing theoretical study to be 
insignificant [37], is therefore confirmed, and the mechanism is elucidated above. The reflection rate 
is up to 0.068 under the incident conditions applied herein. Such a wave reflection rate cannot be 
ignored when analyzing hydraulic phenomena in coexisting wave-current fields. 

 
(a) 

  
(b) (c) 

Figure 16. Wavelength-averaged reflection coefficients according to variations in Vc. (a) Hi = 3 cm; (b) 
Hi = 5 cm; (c) Hi = 7 cm. 

3.1.6. Mean Wave Level Characteristics 

Figure 17 shows the spatial distribution of the mean water level according to the ratio between 
the current velocity and wave celerity, Vc/Ci. As shown in Equation (31), the mean water level was 
calculated using surface elevations (Equation (24)) from three periods and described via the non-

dimensional mean level ( / iHη ) after the wave and flow field stabilized. 

Figure 16. Wavelength-averaged reflection coefficients according to variations in Vc. (a) Hi = 3 cm;
(b) Hi = 5 cm; (c) Hi = 7 cm.

3.1.6. Mean Wave Level Characteristics

Figure 17 shows the spatial distribution of the mean water level according to the ratio between
the current velocity and wave celerity, Vc/Ci. As shown in Equation (31), the mean water level
was calculated using surface elevations (Equation (24)) from three periods and described via the
non-dimensional mean level (η/Hi) after the wave and flow field stabilized.

η =

∫ t+3Ti

t
η(t) dt (31)
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In Figure 17, The mean water level also increases when Vc/Ci increases because the wave energy
decreases due to wave-current interactions, which show a tendency to increase because the wave
energy decreases further when Vc/Ci increases. Meanwhile, these types of wave level distributions
create currents due to wave level differences; currents, in turn, increase the initial current velocity,
which will accelerate wave height dissipation. To analyze this further, it is necessary to study the
interactions between the flow field and the wave field.
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3.2. Wave-Current Interactions with Density Current

The effect of current due to density differences between freshwater and saltwater must be
considered, as estuaries contain both freshwater and saltwater. In the past, most studies on wave-current
interactions did not consider density currents. Therefore, wave-current interactions under the influence
of density differences were numerically simulated using a newly suggested numerical model in order
to calculate density currents.

3.2.1. Description of Numerical Water Basin and Incident Conditions

A numerical water basin was prepared as shown in Figure 18 to evaluate the effect of density
current on wave-current interactions in an estuary. To generate waves without reflection, wave and
current sources were installed at both ends of the simulation domain, and damping zones were added
to absorb the wave energy. The analysis zone featured a length of 5 Li of the incident wavelength,
a width of 50 cm, and a water level of 30 cm; a 1:5 slope was installed to a water depth of 10 cm to
serve as the current source.

The simulations were performed under fixed incident wave and current conditions and variable
water density. The details are described in Table 1. Two major cases were considered: one with
density differences under wave-current interactions, and another without density differences (ρw = ρc).
The first major case was divided into three sub-experiments, which involved: high density water mass
and low density current flows (ρw > ρc); low density water mass and high density current flows (ρw

< ρc); and water mass with density stratification and middle density current flows (ρw1 < ρc < ρw2).
Here, the reduced gravity (g’) is that the effective change in the acceleration of gravity acting on one
fluid in contact with a fluid of different density due to buoyancy forces. For these, the calculation grids
were ∆x = 2 cm, ∆y = 2 cm, and ∆z = 1 cm. In all simulations, current was generated first, and waves
were generated only after the flow field stabilized.
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Table 1. Incident wave and current conditions for simulating wave-current interactions with
density differences.

CASE

Wave Current Reduced Gravity

Height Period Salinity Density Velocity Salinity Density ∆ρg/ρmin

Hi
(cm)

Ti (s) Sw (psu) ρw (g/cm3)
Vc (cm/s2) Sc (psu) ρc (g/cm3) g’ (cm/s2)

Sw1 Sw2 ρw1 ρw2

1

- -

0 0.9982

20

0 0.9982 0

2 35 1.0276 28.86

3 35 1.0276 0 0.9982 28.86

4 0 35 0.9982 1.0276 17.5 1.0129 14.33

5 6 1.5 0 0.9982 20 0 0.9982 0

6

6 1.5 0 0.9982 20

5 1.0024 4.12

7 10 1.0066 8.25

8 15 1.0108 12.37

9 20 1.0150 16.49

10 25 1.0192 20.62

11 30 1.0234 24.74

12 35 1.0276 28.86

13

6 1.5 35 1.0276 20

30 1.0234 4.02

14 25 1.0192 8.08

15 20 1.0150 12.17

16 15 1.0108 16.29

17 10 1.0066 20.45

18 5 1.0024 24.64

19 0 0.9982 28.86

20 6 1.5 0 35 0.9982 1.0276 20 17.5 1.0129 14.33

3.2.2. Density Current Formation Characteristics

Figure 19 shows the flow fields for CASEs 1–4 in Table 1, in which current was generated
without considering waves. In Figure 19, four different current shapes can be identified due to
density differences, including (a) a uniform-depth current due to a lack of density difference, (b)
an undercurrent due to a high-density current, (c) an upper current due to a low-density current,
and (d) a middle current due to a middle-density current flowing into the density stratification. Based
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on these results, various currents may arise from various density difference structures. Therefore,
the consideration of differences in density will affect the wave-current interactions in co-existing fields.
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3.2.3. Wave Height Variation

Figure 20 shows the wave height variations generated by wave-current interactions with density
differences, including (a) interactions between the wave and four different current shapes due to density
differences, (b) an interaction between the wave and undercurrent (ρw < ρc), and (c) an interaction
between the wave and upper current (ρw > ρc).

All cases in Figure 20a show decreases in wave height due to wave energy loss caused by
wave-current interactions. In particular, CASE 19 (ρw > ρc) shows considerable wave height decay
because the inflowing current is concentrated near the water surface, where the velocity caused by
wave orbital motion is large. Therefore, there may be stronger interactions near the water surface,
which induce wave height decay due to wave energy loss. In addition, the wave height decay seen in
CASE 12 (ρw < ρc) and wave height seen in CASE 20 (ρw1 < ρc < ρw2) are lower than those seen in
CASE 5 (ρw = ρc) because the current flows in the lower-middle layers, which feature lower velocity
caused by orbital motion, lead to less interaction between waves and currents, which results in less
wave height decay than that in CASE 5 (ρw = ρc), in which differences in density are not considered.
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In Figure 20b, CASEs 6, 8, and 11 show the same phenomenon and feature less wave height
dissipation than in CASE 5, which has a uniform-depth current. Furthermore, CASEs 6, 8, and 11 show
more wave height dissipation under smaller differences in salinity. This is because current generation
is more similar to that under a uniform-depth current when the difference in density is small. In
Figure 20c, there is more wave height decay in CASEs 13, 15, and 18 than in CASE 5. The cases with
upper current also show a tendency toward higher wave height decay as density differences increase,
although the effect is not very strong.

These results indicate that vertically varying currents affect wave deformation due to wave-current
interactions. Therefore, density currents must be considered in order to effectively analyze wave-current
interactions in areas with density differences.

3.2.4. Vertical Distribution of TKE

Figure 21 shows the vertical distribution of the mean phase-average TKE (K) under various
wave-current interactions due to density differences, including (a) interactions between the wave and
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four different current shapes due to density differences, (b) an interaction between the wave and an
undercurrent (ρw < ρc), and (c) an interaction between the wave and an upper current (ρw > ρc).Water 2020, 12, x FOR PEER REVIEW 25 of 30 
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In Figure 21a, CASE 5 shows more balanced K under the interactions between waves and a
uniform-depth current than do the other cases. CASEs 12, 19, and 20 show strong K generation at
each current point generated by density differences. In particular, K due to the wave-upper current
interaction appears to be strong near the free surface in CASE 19, which features the highest wave
height decay (Figure 18). In addition, CASE 5, which features a uniform-depth current, possesses
higher K than CASE 12, which features undercurrent and less wave height dissipation, and CASE 20,
which features a middle current. This turbulence appears to be the major factor in the wave energy loss
and height dissipation and can explain the formation mechanisms of the abovementioned wave height
distributions. In Figure 21b, CASEs 8 and 11 feature stronger K when larger salinity differences exist in
the lower layer. However, CASE 6, which features the lowest salinity difference, shows a K vertical
distribution similar to that in CASE 5; this reduces the wave energy, resulting in the wave height
distribution described above. In Figure 21c, CASEs 13, 15, and 18 possess stronger K under larger
salinity differences near the free surface. Under smaller salinity differences, K vertical distributions
similar to that in CASE 5, which features a uniform-depth current, are observed, which reduces wave
energy, resulting in the wave height distribution discussed earlier.

Overall, wave-current interactions in cases with density differences appear different from those
found in cases that do not consider density differences. Therefore, consideration of currents due to
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density differences is strongly recommended during analysis of wave-current interactions in water
bodies with density differences, such as estuaries.

4. Conclusions

In the estuary, most of the laboratory experiments and numerical simulations for analysis of the
wave-current interaction were performed under homopycnal flow conditions that do not consider the
density discrepancy between the river and ocean. However, hypopycnal flow, which refers to river
water spreading out to the upper layer of ocean, actually occurs in estuary. In this study, to simulate
wave-current interaction under hypopycnal flow conditions, we have revised the NWT to reproduce the
density current based on the existing numerical model. To confirm the effectiveness and validity of the
improved numerical model, the model was compared with the results of hydraulic experiments [72,73].
These comparisons confirmed the validity and effectiveness of the newly suggested numerical model
in wave-current interaction simulations in estuaries that contain density differences.

This study addressed wave attenuation, wave reflection, and wave energy reduction under
wave-current interactions, which have not been addressed in previous studies. In addition, this study
numerically explored the effects of current due to density differences on wave-current interactions in
an open channel. Wave height decay and wave reflection mechanisms were analyzed in the coexisting
wave-current field in terms of TKE and wave energy. The hydraulic characteristics of the numerically
simulated wave-current interactions can be summarized as follows:

• When the ratio (Vc/Ci) between current velocity and wave celerity increases, wave height decay
increases. Wave reflection by currents forms a partial standing wave field.

• When the Vc/Ci velocity ratio increases, the overall mean phase-average TKE increases. At higher
incident wave heights, wave steepness, and Ursell numbers larger increases occur near still-water
levels. Longer incident periods lead to larger increases, except near the still-water level.

• As a result of turbulence caused by wave-current interactions, wave energy increases as the Vc/Ci
increases. When the incident wave height is high, TKE increases and the wave energy decay
rate decreases. Higher wave heights have higher wave energy, therefore the energy decay rate is
relatively low.

• The rate of wave reflection due to currents becomes larger as the Vc/Ci increases. With longer
wave periods, the exposure time in wave troughs, in which the wave orbital motion velocity and
current velocity are opposite in direction, is longer, and thus the wave reflection rate is increased.
As a result, reflection rates of up to 0.068 were found under the incident conditions applied in
this study.

• The mean water level increases more due to wave-current interactions as the velocity ratio Vc/Ci
increases, which further reduces wave energy.

In conclusion, the flow velocity turbulence element is increased in the coexisting wave-current
field by wave-current interactions, which decreases the wave energy. Consequently, the wave height
decays and the water level increases. Wave reflection by currents occurs under the wave trough.
Thus, the results provide an explanation wave height decay and wave reflection mechanisms due to
wave-current interactions.

The influence of currents caused by density differences on wave-current interaction in an estuary
can be described as follows:

• Various currents are generated depending on the density difference between two fluids.
• Wave height decay due to various current-wave interactions is highest in cases involving upper

currents, in which strong interactions occur near still-water levels. Cases involving middle current
and undercurrent feature less wave height decay than do cases with uniform-depth currents,
which feature no density current.

• The mean phase-average TKE vertical distribution is broad near each type of current. Greater
wave height decay values are accompanied by higher mean phase-average TKE.
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In general, simulated wave-current interactions caused by density differences show different
tendencies than cases that do not account for density differences. Therefore, currents arising from
density differences must be considered when analyzing wave-current interactions in water bodies with
density differences, such as estuaries.
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Appendix A. Fluid Density Equations

To analyze density current, it is important to estimate the density of a fluid accurately; thus,
Equation (A1) was applied to estimate density according to temperature and salinity, as suggested by
Gill [60]. Here, ρ0 is the density of 4 ◦C freshwater. ∆ρT is the increase in density with temperature
change and is expressed as Equation (A2). ∆ρS expresses the change in density with changing salinity
and is expressed as Equation (A3). The empirical constants used in the density calculation are shown
in Table A1.

ρ = ρ0 + ∆ρT + ∆ρS (A1)

∆ρT = a1T − a2T2 + a3T3
− a4T4 + a5T5 (A2)

∆ρS =
(
a6 − a7T + a8T2

− a9T3 + a10T4
)
S +

(
−a11 + a12T − a13T2

)
S3/2 + a14S2 (A3)

where T is the temperature (◦C) and S is the salinity (psu).

Table A1. Density estimation coefficients.

ρ0 = 0.999842594 g/cm3 a5 = 6.536332 × 10−12 a10 = 5.38750 × 10−12

a1 = 6.793952 × 10−5 a6 = 8.244930 × 10−4 a11 = 5.72466 × 10−6

a2 = 9.095290 × 10−6 a7 = 4.089900 × 10−6 a12 = 1.02270 × 10−7

a3 = 1.001685 × 10−7 a8 = 7.643800 × 10−8 a13 = 1.65460 × 10−9

a4 = 1.120083 × 10−9 a9 = 8.246700 × 10−10 a14 = 4.83140 × 10−7

Appendix B. Kinematic Viscosity Coefficient Equations

The kinematic viscosity coefficient ν for the fluid is calculated using Equation (A4). Here,
the calculated value of Equation (A1) is substituted for the density ρ, and the viscosity coefficient µ is
calculated using Equation (A5), which considers the water temperature and salinity, as suggested by
Riley and Skirrow [61].

ν = µ/ρ (A4)

µ = µ0 + ∆µT + ∆µS (A5)

∆µT = −b1T + b2T2
− b3T3 (A6)

∆µS = b4S + b5S2 (A7)

where, µ0 is the viscosity coefficient for 4 ◦C freshwater. ∆µT indicates the change in the viscosity
coefficient with a change in temperature and is expressed via Equation (A6). ∆µS indicates the change
in the viscosity coefficient with a change in salinity and is expressed via Equation (A7). The empirical
constants used for the water viscosity coefficient are expressed in Table A2.
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Table A2. Viscosity estimation coefficients.

µ0 = 1.802863 × 10−2 g/cm·s b2 = 1.31419 × 10−5 b4 = 2.15123 × 10−5

b1 = 6.108600 × 10−4 b3 = 1.35576 × 10−7 b5 = 3.59406 × 10−10
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