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Abstract: Climate change is expected to alter drought regimes across North America throughout the
twenty-first century, and, consequently, future drought risk may not resemble the past. To explore
the implications of nonstationary drought risk, this study combined a calibrated, regional-scale
hydrological model with statistically downscaled climate projections and standardized drought indices
to identify intra-annual patterns in the response of meteorological, soil moisture, and hydrological
drought to climate change. We focus on a historically water-rich, highly agricultural watershed in
the US Midwest—the Wabash River Basin. The results show likely increases in the frequency of soil
moisture and hydrological drought, despite minimal changes in the frequency of meteorological
drought. We use multiple linear regression models to interpret these results in the context of climate
warming and show that increasing temperatures amplify soil moisture and hydrological drought,
with the same amount of precipitation yielding significantly lower soil moisture and significantly
lower runoff in the future than in the past. The novel methodology presented in this study can be
transferred to other regions and used to understand how the relationship between meteorological
drought and soil moisture/hydrological drought will change under continued climate warming.
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1. Introduction

Droughts—defined as prolonged periods of below-average water availability [1]—are one of the
main types of weather-related disasters. Drought can be classified into three main types—meteorological
drought, soil moisture drought, and hydrological drought—representing below-normal conditions
in precipitation, soil moisture, and streamflow, respectively. Meteorological droughts often precede
other types of drought; however, the common impacts of drought, including reduced agricultural
yield, forest fires, and water scarcity, are directly related to soil moisture and hydrological drought and
only indirectly related to meteorological drought [2,3]. For example, the 1988 and 2012 droughts in the
continental United States (US) resulted in an estimated US $40 billion and US $30 billion in mostly
agricultural losses [4].

Due to the growing world population and increasing water demands, the adverse impacts of
droughts are likely to worsen in the future. Recent drought studies [5–7] have shown an increasing
trend in drought extent and affected population, and climate change is predicted to lead to more
extremes [8]. Due to these factors (increasing population + increasing water demand + climate change),
research on the climate change impacts on drought are economically and socially necessary.

Many previous studies have investigated climate change impacts on drought in North
America [7,9,10] and regional studies have focused on the western, central, and eastern United
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States, see [11–13] among others. Most of these studies focus on meteorological and soil moisture
drought, and a common conclusion for water-rich regions, like the US Midwest, is that soil moisture
droughts will increase in frequency and severity despite decreasing frequency of meteorological
droughts [13,14]. The contrasting changes in meteorological drought and soil moisture drought
highlight the importance of incorporating temperature into assessments of future drought regimes.
While the role of temperature in changing drought regimes has received increasing attention over the
last decade [15,16], the implications of a nonstationary climate on future drought risk are not yet well
understood [17].

To explore the potential implications of nonstationary drought risk, this study focuses on a
historically water-rich, highly agricultural region—the Wabash River Basin. The Wabash Basin covers
more than 65% of the state of Indiana, and more than 72% of the watershed is agricultural, with 66%
cultivated crops and 6% pasture/hay. Cropland in this region is primarily rainfed [18] and thus exhibits
relatively high drought sensitivity [19]. This study uses a large ensemble of 61 hydrological model
simulations to investigate climate change impacts on seasonal water availability in the Wabash River
Basin. Specifically, this study focuses on seasonal water availability and addresses three main questions:
(1) How will climate change impact the annual and intra-annual water balance? (2) Will there be
significant changes in the frequency and severity of short-term droughts and do the changes vary
seasonally? and (3) Will the relationships between meteorological drought and soil moisture and
hydrological drought change with continued climate warming?

The remainder of this paper is organized as follows. Section 2 presents the region of study,
the model setup, calibration, and validation, along with methods used to calculate drought indices.
The results are presented in Section 3 and discussed in Section 4. Conclusions are provided in Section 5.

2. Materials and Methods

2.1. Study Area

The domain for this study is the Wabash River Basin located in Midwest USA, which is the
largest northern tributary of the Ohio River. The Wabash Basin drains over 90,000 km2, including
most of the state of Indiana, part of eastern Illinois, and a small section of western Ohio (Figure 1).
The watershed has a humid continental climate, with a mean annual temperature of 11.3 ◦C and mean
annual precipitation of 122.7 cm over the 1971–2000 period.

Figure 1. Wabash River basin.
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2.2. Hydrologic Model

The Soil and Water Assessment Tool (SWAT) hydrological model (version 2012) was used to
model the hydrologic cycle of the Wabash River Basin. SWAT is a semi-distributed watershed
modeling program developed by the Agricultural Research Service (ARS) of the U.S. Department
of Agriculture [20,21]. SWAT model construction requires inputs of hydrography, topography, soils,
and land cover. For this study, model construction was facilitated by the program ArcSWAT [22], a SWAT
interface for the geographic information systems (GIS) software ArcGIS. Further model setup included
the choice of the curve number method [23] for estimating surface runoff and the Penman-Monteith
method [24,25] for estimating potential evapotranspiration (PET) and actual evapotranspiration (AET).

The following sections outline the main steps in setting up the Wabash Basin SWAT model,
including the gathering and pre-processing the required model inputs (Section 2.2.1) and the definition
of hydrological response units (Section 2.2.2). Additional details on model setup, including the
incorporation of tile drains [26–31], the aggregation of pond and lake area by subbasin, and the
parameterization of reservoirs, are included in supplemental Text S1, Figures S1 and S2, and Tables S1
and S2.

2.2.1. Model Inputs

SWAT input datasets, including topography, delineated subbasins, soil properties, and land
use/landcover (LULC) were compiled from multiple governmental agencies. Basin topography, in the
form of a 10 m (1/3 arc-second) digital elevation model (DEM), was obtained from the National
Elevation Dataset (NED) via the National Map Seamless Server (https://viewer.nationalmap.gov/

basic/). Delineated subbasin polygons were obtained from the United States Geological Survey’s
National Hydrography Dataset (NHD), with pre-defined streams and subbasins in the SWAT model
corresponding to NHD 12-digit Hydrologic Unit Code (HUC) basins (Figure S1). Soil properties were
obtained from the State Soil Geographic Database (STATSGO), which lumps soils into four hydrologic
groups. Soils within the Wabash Basin are dominated by hydrologic groups B and C (Table S5).

Two land use/landcover (LULC) datasets were used to parameterize SWAT: (1) the 2001 National
Land Cover Data (NLCD) [32] and (2) the National Agricultural Statistics Service (NASS) cropland data
layers [33]. The NASS dataset contains detailed spatial data on agricultural crop types—information
that is not available in the NLCD dataset. NASS, however, has missing data due to cloud cover and
has less detailed classification for non-agricultural lands. The distribution of different crop types is
potentially important for future SWAT model applications. For example, corn and soybeans have
different optimal growth temperatures and will, therefore, respond differently to continued climate
warming. Therefore, a combined NLCD and NASS LULC dataset was created for the Wabash Basin
(Table S4; Figure S3). The primary LULC classes are soybean and corn, encompassing 26.1% and 25.3%
of the area within the Wabash Basin. Details on the pre-processing steps for the LULC inputs can be
found in supplemental Text S1.

Historical meteorological data and climate projections were obtained from the University of Notre
Dame [34,35]. These gridded time series have a daily time step and include maximum temperature,
minimum temperature, precipitation, and wind speed. The climate change projections have been
statistically downscaled using the hybrid delta method (HD) for a subset of ten different global
climate models (GCMs) from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) under
representative concentration pathways (RCPs) 4.5 and 8.5 (Table 1). RCP 4.5 represents a medium
stabilization scenario; and RCP 8.5 represents a very high baseline emissions scenario [36]. The gridded
time series have a 1/16◦ spatial resolution and were aggregated at the subbasin level for use in the
SWAT model.

For the historical baseline, a single model simulation was completed using the gridded observation-
based meteorological dataset (1915–2013). Three future periods, representing 30-year windows centered
on the 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100), were used for the climate change
scenario modeling. The 10-member GCM ensemble combined with the two emissions scenarios (RCPs
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4.5 and 8.5) lead to a suite of 60 SWAT model runs for the climate change analysis (10 GCMs × 2
RCPs × three future periods), plus one SWAT model run for the historical baseline. Model runs were
completed using Indiana University’s high-performance computing resources, with post-processing
and model result visualization and analysis supported by Extreme Science and Engineering Discovery
Environment (XSEDE) [37]. While the climate change projections are keyed to 30-year time periods,
they have the same time series length as the baseline historical dataset due to the HD downscaling
method, as described in [34,38]. For all model runs, the first 14 calendar years were used as the model
spin-up period, resulting in 85 years (1929–2013) of daily model output. These relatively long time
series have key advantages for estimating changes in extremes [38]; therefore, this dataset is well-suited
for investigating changes in drought frequency and severity.

Table 1. Coupled Model Intercomparison Project (CMIP5) global climate model (GCM) and
Representative Concentration Pathway (RCP) combinations used for Soil and Water Assessment
Tool (SWAT) climate change scenario modeling.

GCM RCP

Community Earth System Model 1-Community Atmospheric Model 5 (CESM1-CAM5) 4.5 and 8.5
Geophysical Fluid Dynamics Laboratory Climate Model 3 (GFDL-CM3) 4.5 and 8.5

Geophysical Fluid Dynamics Laboratory Earth System Model 2 (GFDL-ESM2) 4.5 and 8.5
First Institute of Oceanography-Earth System Model (FIO-ESM) 4.5 and 8.5

Hadley Global Environment Model 2-Atmosphere-Ocean (HadGEM2-AO) 4.5 and 8.5
Hadley Global Environment Model 2-Carbon Cycle (HadGEM2-CC) 4.5 and 8.5

Community Climate System Model 4 (CCSM4) 4.5 and 8.5
Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate Model (CMCC-CM) 4.5 and 8.5

Hadley Global Environment Model 2-Earth System (HadGEM2-ES) 4.5 and 8.5
Model for Interdisciplinary Research on Climate 5 (MIROC5) 4.5 and 8.5

The 10-member GCM ensemble projects increases in temperature across all seasons, reaching a
5 ◦C increase in the mean annual temperature by the 2080s relative to the 1980s baseline under RCP 8.5.
A comparison of annual and seasonal precipitation between the historical baseline and the three future
periods, 2020s, 2050s, and 2080s, is presented in the results section, alongside the SWAT model water
balance outputs. Further details on the projected changes in climate, the HD downscaling method,
and the rationale for the selection of the 10-member GCM subset can be found in [34].

2.2.2. Hydrological Response Unit (HRU) Definition

In SWAT, hydrological response units (HRUs) are defined as unique combinations of land
cover, soil, and/or slope classes within a subbasin. The HRU method is an effective way to simplify
representation and simulation of watershed processes [39]. ArcSWAT allows users to specify two types
of thresholds to define HRUs: percent-based and area-based. Higher thresholds result in fewer HRUs
and thus shorter model run times. However, higher thresholds also result in greater generalization
and thus a greater loss of information. Slope within the Wabash Basin is strongly correlated with
landuse/landcover and soils; therefore, only one slope class was used, with slope set to the subbasin
average. Based on an analysis of the trade-off between model simplicity versus information loss (see
supplemental Text S1, Figure S4), area-based thresholds values were set as follows: land cover = 250 ha
and soils = 650 ha, leading to a total of 6852 HRUs.

2.3. Model Calibration and Validation

After the initial data assimilation and model construction, the Wabash Basin SWAT model was
calibrated and validated. Model calibration was completed in two stages. Stage 1 consisted of
automated parameter regionalization, where a cascading methodology like the method outlined in [40]
was used to set the calibration parameter values to an initial “best guess”. Parameter regionalization
was completed in nine subbasin sets, where upstream reaches were parameterized with the “best
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guess” parameter sets before moving to the next downstream gauges (Figure S5, Table S6). The goal
of this regionalization was to account for regional variations in the performance of initial parameter
values, especially with regard to the most sensitive parameters. For each round in this cascading
scheme, 500 model runs were completed. Stage 2 of the model calibration consisted of a multi-site,
multi-criteria sequential uncertainty fitting (SUFI) procedure, similar to the method outlined by [41].
For Stage 2, two rounds were completed with 850 model iterations each. This two-stage calibration
routine was completed using the R statistical programming software [42].

Both stages of the calibration routine use the same observed stream flow data and the same
multi-criteria objection function, which are described in the following Sections 2.3.1 and 2.3.2. Additional
details on the calibration methodology, including (1) parameter constraints for deep aquifer recharge [43]
and ground water recession constants [44,45], (2) initial parameter ranges, (3) parameter modification
with Latin hypercube sampling [46], and (4) baseflow separation [47,48] and the detailed use of the
multi-criteria objective function, are included in Text S2, Figures S4–S6, and Tables S7 and S8.

2.3.1. Stream Flow Calibration Sites

Observed stream flow records for all gauging stations within the Wabash River Basin were
downloaded from the United States Geological Survey (USGS) using the R package waterData [49].
A time series plot of total annual stream flow at the downstream main-stem gauge (ID 03377500) was
used to select the calibration and validation periods for the model, with the goal of including high flow
and low flow years in both periods and maximizing the number of active gauging stations. The 8-year
period from 1993–2000 was chosen as the calibration period, with 2001–2012 serving as the validation
period, and 1981–1992 serving as the warm-up period (Figure S6).

As part of the initial data screening, a subset of gauging stations within the Wabash Basin was
chosen based on: (1) record completeness—no missing data 1993–2012, (2) spatial distribution—avoid
clusters of gauging stations, and (3) proximity to lakes reservoirs—gauging stations with reservoir and
lake effects were removed. The final selection included 25 gauging stations located throughout the
Wabash River Basin, with drainage areas ranging from 1383 km2 to 74,164 km2 (Figure 2, Table 2).

Figure 2. United States Geological Survey (USGS) gauging stations used for model calibration.
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Table 2. USGS gauging stations used for model calibration.

ID Name Lat. Lon. Area (km2) αgw
1

03363900 Flatrock River at Columbus, IN 39.24 −85.93 1383 0.23
03326500 Mississinewa River at Marion, IN 40.58 −85.66 1766 0.33
03376500 Patoka River near Princeton, IN 38.39 −87.55 2129 0.62
03360000 Eel River at Bowling Green, IN 39.38 −87.02 2150 0.86
03331500 Tippecanoe River near Ora, IN 41.16 −86.56 2217 0.17
03349000 White River at Noblesville, IN 40.05 −86.02 2222 0.24
03379500 Little Wabash River below Clay City, IL 38.63 −88.30 2929 0.85
03339000 Vermilion River near Danville, IL 40.10 −87.60 3341 0.27
03345500 Embarras River at Ste. Marie, IL 38.94 −88.02 3926 0.27
03353000 White River at Indianapolis, IN 39.74 −86.17 4235 0.35
03365500 East Fork White River at Seymour, IN 38.98 −85.90 6063 0.23
03354000 White River near Centerton, IN 39.50 −86.40 6330 0.28
03327500 Wabash River at Peru, IN 40.75 −86.07 6957 0.56
03381500 Little Wabash River at Carmi, IL 38.06 −88.16 8034 0.95
03329000 Wabash River at Logansport, IN 40.75 −86.38 9788 0.51
03371500 East Fork White River near Bedford, IN 38.77 −86.41 10,000 0.31
03360500 White River at Newberry, IN 38.93 −87.02 12,142 0.26
03373500 East Fork White River at Shoals, IN 38.67 −86.79 12,761 0.26
03335500 Wabash River at Lafayette, IN 40.42 −86.90 18,821 0.32
03336000 Wabash River at Covington, IN 40.14 −87.41 21,285 0.22
03340500 Wabash River at Montezuma, IN 39.79 −87.37 28,796 0.21
03374000 White River at Petersburg, IN 38.51 −87.29 28,814 0.21
03341500 Wabash River at Terre Haute, IN 39.47 −87.42 31,766 0.20
03342000 Wabash River at Riverton, IN 39.02 −87.57 34,087 0.19
03377500 Wabash River at Mt. Carmel, IL 38.40 −87.76 74,164 0.22

1 ground water recession constant. See Text S2.

2.3.2. Multi-Criteria Objective Function

The Nash–Sutcliffe efficiency criterion (NSE) [50] is often used to evaluate the performance of
hydrological models. However, several shortcomings in the use of NSE as a single objective function
have been pointed out [51] with one of the main problems being a greater emphasis on high flows.
Therefore, other error metrics, including percent bias (PBIAS), root mean square error standard
deviation ratio (RSR), and the volumetric efficiency criterion (VE) proposed by [51] were incorporated
into a multi-criteria objective function (Table 3). VE was included because it represents the fraction of
water delivered at the proper time. VE values range from 0 to 1, where 1 represents a perfect match.
RSR and NSE are based on the minimization of the square of the residuals, while PBIAS and VE are
based on the minimization of the absolute (VE) and relative (PBIAS) differences. These two error
function types are complementary [52], and, thus, used together, help constrain parameter ranges,
reduce model uncertainty, and increase model skill.

Table 3. Error metrics used in the objective function.

Metric Description Calibration Target 1

RSR Root mean square error/standard deviation of observed ≤0.70
PBIAS Percent bias ≤±25
NSE Nash–Sutcliffe Efficiency criterion ≥0.50
VE Volumetric efficiency ≥0.50

1 The calibration target for error statistics RSR, PBIAS, and NSE are based on the threshold for “satisfactory” model
performance at a monthly time step according to Table 4 in [53]. A daily time step is used here; thus, model
simulations that meet the calibration target can be considered “good”. VE is not listed in [53]; it has the same range
as NSE and was therefore set to the same calibration target as NSE.
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The “best” parameter set was chosen based on the minimization of a multi-criteria objective
function, which incorporates the four different error metrics in Table 3. See Text S2 for additional
details. For Stage 1 of model calibration, the objective function was calculated independently for each
gauging station. For Stage 2, the objective function was calculated jointly for all 25 gauging stations by
calculating a weighted mean for each error statistic, where the weights for each gauging station were
equal to the ratio of the gauging station drainage (1383 km2 to 74,164 km2) area to the total drainage
area upstream of all gauging stations (89,198 km2).

2.4. Quantification of Drought

To understand how climate change will impact drought, drought must first be quantified. A group
of related drought indices—the standardized precipitation index (SPI) [54], the standardized soil
moisture index (SSI) [55], and the standardized runoff index (SRI) [56]—are flexible, multi-scale indices
that can be calculated over a range of timescales, typically 1 to 48 months. The multi-scale nature
of these indices enables the quantification of both short-term and long-term drought characteristics.
SPI, SSI, and SRI provide an assessment of meteorological, soil moisture, and hydrological drought,
respectively. Hydrological drought is associated with deficiencies in the both surface water and
groundwater; it is often diagnosed by streamflow drought. For this study, the quantification of
hydrological drought focuses only on streamflow and does not consider groundwater storage.

The majority (66%) of the Wabash River Basin is cultivated agricultural land, and, in general,
agricultural regions are the most sensitive to short-term droughts that coincide with critical crop
development periods in July to August [19]. Therefore, SPI was calculated at 1- to 6-month timescales,
and SSI and SRI were calculated at the 1-month timescale. The three drought indices—SPI, SSI,
and SRI—were calculated using the same basic methodology:

1. The time series of watershed-averaged precipitation, soil water content, and runoff were obtained
from the SWAT model output for the historical baseline model simulation.

2. The probability distributions of monthly precipitation, soil water content, and runoff were
calculated separately for each month. Distribution fits were tested with the Shapiro–Wilk test.
The gamma distribution produced a satisfactory fit for precipitation. No satisfactory distribution
was found for soil moisture or runoff. Therefore, percentiles for soil moisture and runoff were
estimated empirically, following recommendations in [56].

3. Monthly time series of cumulative probabilities were calculated using the fitted distributions (for
baseline and climate change scenarios) and then converted to z-values, representing the number
of standard deviations below or above the mean of a normal distribution with a mean of 0 and a
variance of 1.

The standardized index values provide a measure of drought severity, with more negative values
indicating more severe drought conditions. Drought frequency was calculated as the fraction of
years with moderately dry (moderate drought) to extremely dry (extreme drought) conditions, i.e.,
standardized index value of less than −1 (Table 4). The significance of changes in the frequency and
severity of drought was then tested using the chi-square, Wilcoxon signed-rank, and Mann–Whitney U
tests. The chi-square test was used to test for significant changes in drought frequency. The Wilcoxon
signed-rank test [57] was used to test for significant shifts in the drought indices toward higher (wetter
conditions) or lower (drier conditions) values. The Mann–Whitney U test [58] was used to test for
significant changes in median drought severity.

The Wilcoxon signed-rank test is a nonparametric statistical hypothesis test to determine if there
is a significant difference between two matched samples, where the matched samples correspond to
the drought indices calculated from (1) the historical baseline and (2) the climate change scenarios.
The Mann–Whitney U test is an alternate version of the Wilcoxon signed-rank test and is used to
determine if there is a significant difference between to independent (i.e., unmatched) samples. For this
study, the independent samples corresponded to the subset of drought index values (i.e., SPI, SSI,
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SRI values less than −1) for (1) drought events in the historical baseline and (2) drought events in the
climate change scenarios.

To further investigate climate change impacts on the drought regime, the relationships between the
different drought types were analyzed with bivariate correlation analysis and multiple linear regression.
Identifying relationships between different drought types provides a basis for understanding how
drought propagates through the hydrologic system, specifically the propagation of meteorological
drought into soil moisture or hydrological drought. Therefore, SSI and SRI at the 1-month timescale
were used as the dependent variables (predictands) with SPI at 1- to 6-month timescales used as the
independent variables (predictors). Combinations of predictor variables were tested using automatic
stepwise (combined forward and backward) regression analysis, with final model selection based on
the Akaike Information Criterion (AIC) [59].

Table 4. Drought classification, following [60].

Drought Index Value Classification

<−2 Extremely Dry
−1 to −1.5 Severely Dry
−1.5 to −1 Moderately Dry
−1 to +1 Near normal

+1 to +1.5 Moderately Wet
+1.5 to +2 Severely Wet

>+2 Extremely Wet

3. Results

The following sections present the model calibration and validation (Section 3.1) and the results of
the climate change scenario modeling, including climate change impacts on the annual and intra-annual
water balance (Section 3.2) and the frequency and severity of drought (Section 3.3). Further analysis
using multiple linear regression models to investigate how climate warming impacts the relationship
between meteorological and soil moisture and hydrological drought is included in Section 3.4.

3.1. Model Calibration and Validation

The SWAT model was calibrated with the 1993–2000 period and validated with the 2001–2012
period. The error statistics for the calibration and validation periods for the “best” model simulation
are included in Tables S9 and S10. For the calibration period, PBIAS was below the calibration target
of ±25% for all 25 gauging stations, and the majority (23/25) of stations met the calibration goal for
NSE and RSR. All calibration targets were met at the downstream main-stem gauging station (Wabash
River at Mt Carmel—USGS gauge 03377500) in both the calibration and validation periods (Tables S9
and S10; Figures S8 and S9).

Overall, model performance in the validation period is similar to the calibration period.
The main-stem gauging station (03377500) had a higher PBIAS value compared to the calibration
period (−3.3% calibration, +7.0% validation). This pattern is similar for the other stream flow gauges;
however, only three out of the 25 gauging stations have PBIAS values higher than the calibration target
of ±25%. This tendency toward higher PBIAS values indicates an over-prediction of stream flow in the
validation period compared to the calibration period. While the cause of the over-prediction in the
validation period is unclear, it may be due to changing land and water use patterns, which were not
incorporated into the model. For this study, the model outputs for the full 61-member model ensemble
are analyzed in terms of the sensitivity to climate change, focusing on the relative change rather than
on absolute change. With this focus, the implications of the higher PBIAS values are minimal.
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3.2. Climate Change Impacts on Annual and Intra-Annual Water Balance

A water balance analysis was completed for each of the 61 scenarios (one historical baseline;
60 climate change). The water balance components of interest for this study include the input
precipitation and the model outputs of the amount of precipitation falling as snow, AET, soil moisture,
ground water recharge, and stream flow. Water balance results for individual GCMs are not shown,
but rather lumped by RCP (4.5, and 8.5) and period (2020s, 2050s, and 2080s) and reported by the
inter-model spread and the ensemble mean for simplicity. Results are presented as the percent change
from the historical baseline (((future - baseline)/baseline) × 100) at both the annual (Figure 3) and
monthly (Figure 4) time scale.

Figure 3. Projected percent change in annual (a) precipitation, (b) precipitation falling as snow, (c) actual
evapotranspiration, (d) soil moisture, (e) ground water recharge, and (f) stream flow (at the basin
outlet) from the 10-member GCM ensemble for representative concentration pathways (RCPs) 4.5 and
8.5. Gray shading represents the ensemble spread; black circles show the ensemble mean; dotted lines
highlight the historical baseline (1971–2000). For the three future periods: 2020s = 2011–2040; 2050s =

2041–2070; and 2080s = 2070–2100. See Table S11 for the tabular version.
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Figure 4. Projected monthly changes in major water balance components: (a) total precipitation,
(b) actual evapotranspiration, (c) soil moisture, (d) ground water recharge, and (e) stream flow (at the
basin outlet) from the 10-member GCM ensemble for representative concentration pathways (RCP) 4.5
and 8.5. Semi-transparent shading represents ensemble spread; solid lines show ensemble mean; dotted
line highlights the historical baseline (1971–2000). For the three future periods: 2020s = 2011–2040;
2050s = 2041–2070; and 2080s = 2070–2100.

Based on statistically downscaled climate projections, there is high certainty that regional
temperatures will increase in the future [34]; however, the direction and magnitude of precipitation
change is less certain. The inter-model variability of projected precipitation is high and increases from
near future (2020s) to far future (2080s) (Figure 3a). In general, precipitation in winter (December,
January, and February) is projected to increase while precipitation in late summer and fall (August,
September, and October) is likely to exhibit no change or decrease slightly (Figure 4a).

Water balance variables that are closely linked to temperature, i.e., snow and AET, exhibit
consistent changes and a low amount of inter-model variability (Figures 3 and 4). The amount of
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precipitation falling as snow decreases (Figure 3b) while AET increases (Figure 3c). As expected,
the largest increases in AET occur in the far future (2080s) under the high emissions scenario (RCP 8.5).
Seasonally, AET increases the most in winter (December to February) and decreases slightly or exhibits
no substantial change during late summer and early fall (July to August; Figure 4b). The seasonal
pattern in the AET change is related to seasonal water availability. Increasing temperatures cause PET
to increase in all months (results not shown). AET, however, is dependent on both the PET and water
availability. If little or no water is available, AET will be small or zero even when PET is high.

Soil moisture, ground water recharge, and stream flow are more closely linked to precipitation
than to temperature. The mean annual values of soil moisture, ground water recharge, and stream
flow exhibit both increases and decreases relative to the historical baseline, due to the high inter-model
variability in precipitation (Figure 3d–f). Seasonally, ground water recharge, stream flow, and soil
moisture exhibit a pattern of decreased water availability in summer (June, July, August) and fall
(September, October, November; Figure 4c–e).

3.3. Projected Changes in Meteorological, Soil Moisture, and Hydrological Drought

Soil moisture and hydrological droughts become significantly more frequent in the far future
under both emissions scenarios, particularly during the summer months (Figure 5 and Figure S10).
Meteorological droughts, however, exhibit either decreasing frequency or no significant change,
with relatively few GCMs showing a significant increase in meteorological drought frequency. Changes
in monthly drought indexes, SPI, SSI, and SRI, mirror the patterns shown in the results for the monthly
water balance presented in Section 3.2, with a shift toward drier conditions (lower SSI and SRI values)
in summer and fall (Figure 6 and Figure S11) and higher precipitation (higher SPI values) in winter.

Figure 5. Projected change in the frequency of moderate to extreme meteorological, soil moisture,
and hydrological droughts under representative concentration pathway (RCP) 8.5. Solid black lines
show the GCM ensemble mean. Symbols represent individual GCMs from the 10-member ensemble,
with red up-pointing triangles indicating a significant (p < 0.05) increase in drought frequency and
blue down-pointing triangles indicating a significant decrease in drought frequency from the historical
baseline (1971–2000). Gray circles indicate no significant change. For the three future periods: 2020s =

2011–2040; 2050s = 2041–2070; and 2080s = 2070–2100. Figure S10 shows results for RCP 4.5.
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Figure 6. Monthly means of the standardized indices (SPI-1, SSI-1, and SRI-1) under representative
concentration pathway (RCP) 8.5. Solid black lines show the GCM ensemble mean. Symbols represent
individual GCMs from the 10-member ensemble, with blue up-pointing triangles indicating a significant
(p < 0.05) increase (wetter conditions) and red down-pointing triangles indicating a significant decrease
(drier conditions) from the historical baseline (1971–2000). For the three future periods: 2020s =

2011–2040; 2050s = 2041–2070; and 2080s = 2070–2100. Figure S11 shows results for RCP 4.5.

Despite the increased frequency of soil moisture and hydrological drought (Figure 5) and the
general shift toward lower SSI and SRI values (Figure 6) there is, in general, no significant change in
the mean severity of moderate to severe drought events (Figures S12 and S13). Therefore, while soil
moisture and hydrological droughts will likely be more frequent in the future, the average drought
severity will not be significantly different from the historical baseline.

3.4. Climate Warming Impacts on Relationship between Drought Types

Soil moisture and runoff over 1-month timescales, represented by SSI-1 and SRI-1, exhibit the
strongest correlations with precipitation over 3- to 4-month timescales (SPI-3, SPI-4; Table 5). In the
historical baseline period, the magnitude of SPI, SSI and SRI are also closely linked, and near-normal
precipitation results in near-normal soil moisture and runoff. However, as the climate warms,
this relationship changes, and there is a shift toward lower soil moisture and lower runoff for the same
near-normal amount of precipitation (Figures S14 and S15).

Table 5. Spearman correlation coefficients between SPI at 1- to 6-month timescales and SSI and SRI at
the 1-month timescale.

SPI-1 SPI-2 SPI-3 SPI-4 SPI-5 SPI-6

SSI-1 0.49 0.67 0.69 0.68 0.66 0.65
SRI-1 0.55 0.76 0.81 0.81 0.79 0.75

Note: All correlations are significant at the p < 0.001 level.

This shift toward lower runoff and lower soil moisture indicates an amplification of soil moisture
and hydrological drought due to climate warming. To quantify the degree of drought amplification,
multiple linear regression (MLR) models were used. Since the relationships between SPI and SSI/SRI
vary seasonally (Figures S14 and S15), separate MLR models were created for each month, for a total of
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732 MLR models each for SSI and SRI (61 SWAT simulations × 12 months). The final MLR models
account for an average of 71% and 78% of the variability in SSI and SRI, respectively (Figure S16).

From these MLR models, the y-intercept represents the predicted SSI or SRI from an SPI of 0 and
thus provides a simple estimate of the degree of drought amplification for each of the climate change
scenarios. As expected, the y-intercept is non-significant and near zero for the baseline historical 1980s,
when near-normal precipitation (SPI of 0) corresponds to near-normal soil moisture and runoff (SSI
and SRI of 0). For the three future periods (2020s, 2050s, and 2080s), however, the y-intercept has a
negative value and is significant at the 5% level in most months (Figure S17), indicating that the shift
toward lower soil moisture and lower runoff for the same near-normal amount of precipitation is
statistically significant.

Plotting the y-intercepts from the MLR models versus change in monthly mean temperature
shows that, in these model simulations, climate warming is driving the amplification of soil moisture
and hydrological drought. Further, the rate of this amplification, in terms of the change in standardized
drought index per ◦C (SI ◦C−1), can be quantified using the simple linear model fits shown on Figures 7
and 8. For soil moisture, drought amplification from climate warming is greatest in the months of
February, March, and April. For runoff, it is greatest in the months of March and April. The implications
of this are clarified by framing the amplification in terms of drought severity. In the historical baseline
period, moderate meteorological droughts propagate into moderate soil moisture and hydrological
droughts. A slope of −0.1 SI ◦C−1 indicates that, with 5 ◦C of warming, moderate meteorological
droughts will be amplified into severe soil moisture and hydrological droughts. Further, under 5 ◦C of
warming and a slope of −0.2 SI ◦C−1, moderate soil moisture and hydrological droughts are likely to
occur even with near-normal precipitation.

Figure 7. Climate warming impact on the relationship between SPI and SSI. Linear slope represents the
change in standardized drought index per ◦C change in mean monthly temperature. Change in mean
temperature is a significant predictor (p < 0.01) for all months.
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Figure 8. Climate warming impact on the relationship between SPI and SRI. Linear slope represents
the change in standardized drought index per ◦C change in mean monthly temperature. Change in
mean temperature is a significant predictor (p < 0.01) for all months.

4. Discussion

While several recent studies have used hydrological models to investigate climate change impacts
on meteorological, soil moisture, and hydrological drought [13,14,61], no previous studies have
specifically focused on short-term drought events and identified intra-annual patterns in the drought
response to climate change. In this study, a large ensemble of 61 hydrological models was combined
with an analysis of monthly drought indices and MLR models. Climate change projections show
increases in temperature and in the seasonality of precipitation, leading to increased frequency of
soil moisture drought and hydrological drought. Hydrological modeling results show that climate
warming amplifies soil moisture and hydrological drought, with the same amount of precipitation
yielding significantly lower soil moisture and significantly lower runoff in the future than in the past.

The role of above-average temperatures in the amplification of soil moisture and hydrological
drought has been documented by previous studies in California [16], central and western Europe [15],
and the Iberian Peninsula [62]. In this study, we focus on a historically water-rich agricultural region
within the US Midwest and quantify drought amplification in terms of the increase in drought severity
per degree increase in monthly mean temperature. Results show that the degree of drought amplification
varies seasonally. For soil moisture, the seasonal variation is related to the local hydroclimatology.
With the same near-normal precipitation, climate warming amplifies soil moisture drought more in
energy-limited months (e.g., March–April, Figure 7) when the PET and AET are near equal than in
moisture-limited months (e.g., August–October; Figure 7) when the PET is substantially higher than
the AET.

Climate warming also amplifies hydrological droughts most in spring (March–April,
Figure 8). However, the impact of climate warming on hydrological drought is lowest in winter
(December–January, Figure 8), likely due to the added complexity of snow accumulation and melt.
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Even with the seasonal variations, results clearly show that temperature plays a significant role in
the amplification of soil moisture and hydrological droughts. Under 5 ◦C of warming, moderate
meteorological droughts will be amplified into severe soil moisture and streamflow droughts for most
months of the year. While the results presented here are region-specific and dependent on the local
hydroclimatology, the methodology could be transferred to other regions and used to understand how
the relationship between meteorological drought and soil moisture/hydrological drought will change
under continued climate warming.

Like all hydrological models, the calibrated SWAT model used in this study is a simplified
numerical representation of the natural flow system, and it cannot duplicate the natural flow system
exactly. Uncertainties are inherent in model structure, input data, parameterization, and GCM selection.
However, the model is physics-based and assessment with multiple error statistics indicates good
performance (Tables S9 and S10). Attributing model uncertainty among the different sources is difficult
and beyond the scope of this paper. Additionally, land use change and climate change mitigation were
assumed to be constant in both the baseline and future climate change scenarios. Incorporation of
land use change and climate change mitigation is beyond the scope of this paper but is a promising
direction for future research.

Additional limitations of this study stem from aggregation of the water balance and drought
indices to the watershed scale. The response of soil moisture drought and hydrological drought to
climate change may vary spatially due to heterogeneity of the catchment’s physical properties, e.g.,
land use, soil type, and geology. Additionally, this study only analyzed total soil moisture. Shallow soil
moisture and deep soil moisture may exhibit different responses to climate change [63,64]. A useful
extension of this work would be to (1) investigate if the physical properties of the catchment control
the degree of soil moisture and hydrological drought amplification under climate warming and (2)
determine if shallow and deep soil moisture exhibit different responses to climate warming.

5. Conclusions

In climate change projections, the uncertainty in precipitation is inherently higher than the
uncertainty in temperature. Since precipitation dominates the hydrologic regime in water-rich regions,
the uncertainty in projected precipitation carries through to uncertainty in the direction and magnitude
of future change in the hydrological regime. The analysis presented here, however, separates out the
role of temperature and shows that increased temperatures cause an amplification of soil moisture and
hydrological drought. In general, for this study region, the frequency and severity of meteorological
drought does not change significantly from the frequency and severity of meteorological droughts in the
historical period. However, our analysis shows that while moderate meteorological droughts propagate
into moderate soil moisture and hydrological droughts in the baseline period, this relationship changes
in the future periods, and moderate meteorological droughts will propagate into severe soil moisture
and hydrological droughts under 5 ◦C of warming.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/1/181/s1,
Text S1: Model Construction, Text S2: Model Calibration, Figure S1: Tile drained agricultural land, Figure S2:
Subbasin area draining to lakes, ponds, or wetlands, Figure S3: Reclassified land use/land cover, Figure S4:
Average relative error of aggregation (aREA), Figure S5: Parameter regionalization zones, Figure S6: Warm
up, calibration, and validation periods, Figure S7: Initial values for the proportion of recharge to the deep
aquifer, Figure S8: Observed versus simulated stream flow–calibration period, Figure S9: Observed versus
simulated stream flow–validation period, Figure S10: Projected change in the frequency of moderate to extreme
meteorological, soil moisture, and hydrological droughts under representative concentration pathway (RCP) 4.5,
Figure S11: Monthly means of the standardized indices (SPI-1, SSI-1, SRI-1) under RCP 4.5, Figure S12: Mean
drought severity under RCP 4.5, Figure S13: Mean drought severity under RCP 8.5, Figure S14: Point density
plots of SPI-3 versus SSI-1, Figure S15: Point density plots of SPI-3 versus SRI-1, Figure S16: Multiple linear
regression (MLR) model performance for (a) SSI and (b) SRI, Figure S17: Count of MLR models with significant
y-interceptstitle, Table S1: Tile drainage parameters, Table S2: Lakes and reservoirs in SWAT model, Table S3: Land
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Table S6: Cascading calibration scheme, Table S7: Parameter modification method and initial ranges—Stage 1,
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