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Abstract: Concerning the clustering of spur dikes on river systems, the spacing thresholds of twin
spur dikes are important parameters to influence the estimations on the impact scales of spur dike
groups and the overall responses of river systems. In this study, both numerical investigations
and experimental measurements are proceeded to quantify the influence of the spacing threshold
of non-submerged twin spur dikes with ipsilateral and orthogonal layout in a straight rectangular
channel. Through dimensional analysis, three normalized indices, i.e., Froude number Fr, ratios
of channel width to dike length B/b, and ratios of channel width to water depth B/h are identified
as the main influencing factors of the relative spacing threshold Sc/b, i.e., dike spacing threshold to
dike length. The simulation results indicate that the similarity of mean velocity along the water
depth nearby the tips of twin spur dikes is determined by the criterion of the spacing threshold of
non-submerged twin spur dikes with ipsilateral and orthogonal layout in straight rectangular channel.
The results also show that: Fr plays the least impact among the three influencing factors; with the fixed
values of Fr and B/h, the relative threshold Sc/b sharply increases first and then decreases slightly as B/b
factor increases, with which the relationship presents approximately convex quadratic function; while
both Fr and B/b are fixing, the Sc/b changes oppositely, i.e., slightly increasing first and then sharply
decreasing as B/h increases, which, again presents a convex quadratic function. Hence, the normalized
empirical formula of spacing threshold can be deduced by multivariate regressions and verified by
the corresponding measurements in good agreements. Such empirical formula further suggests that
the reasonable spacing threshold ranges from 24b to 130b, which is wider than the recovery area scales
found in literature. The outputs of this study provide foundation for the characterization of impact
scales of spur dike groups.
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1. Introduction

Rivers relate to human being’s living and development significantly and, are depicted as the
cradle of human civilization. In order to exploit and train rivers to meet the requirements of human
development efficiently, many river developments are built such as banks, dikes, dams, sluices, weirs
and bridges, etc. [1,2]. These works help people to obtain benefits on one hand and, meanwhile may
change and harm the original water-sediment process on the other hand [1,3,4]. In fact, the health of
the river system may be affected or damaged due to the limited recognition of human-being and the
unscientific development program of river works [5,6]. As one of the river works, spur dikes (shown
in Figure 1) are widely used in river engineering such as channel regulation, flood prevention, river
diversion and beach reclamation for maintaining the desired water depth, changing the direction of
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main flow, protecting river bank and bed, and acquiring land resource [7–12]. In spite of different
types [8,13], the spur dikes present simple structure and multiple functions, which can be regarded as
the simplification of many river works [12,14]. Hence, it is necessary and important to investigate spur
dike hydraulics in details. After construction of spur dikes, the original channel becomes narrower and
leads to changes in the moving characteristics of the flow current near spur dikes. In practice, spur dike
exerts influences on river system usually in the form of groups as shown in Figure 1. These spur dikes
(or groups) interact in a specific range, and such interaction gradually weakens beyond the critical
range [2,8,15–17]. According to the degree of interaction, the spur dike groups on river system are
classified into large-scale and small-scale [2,17]. The spur dike group in large-scale consists of sole spur
dikes or small-scale spur dike groups, which are independent of each other without interaction; while
spur dike group in small-scale consists of sole spur dikes, which interact with each other noticeably
and present the role as a whole. To date, previous researches on spur dike hydraulics are mainly
focusing on two aspects: (a) sole spur dike, including flow field around the spur dike [18–21], local
scour mechanism [9,10], backwater effects [16,22], flow resistance and local head loss [16,23] and (b)
spur dike group in small-scale, specifically including determination of reasonable spacing [24,25],
estimations of water surface oscillation and water surface curves under different spacing [7]. These
studies on spur dikes mainly concern the local response of river system. However, few studies have
addressed the integrated, overall impact of spur dike group in large-scale on river system, though the
cumulative effect of river works has been spotted both in engineering and academic domain [1,4,26].
Therefore, it is necessary to explore how a spur dike group in small-scale, in spite of its existing
benign effect on local river training, would affect the whole river system as part of spur dike group
in large-scale.
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River, USA; (b). Spur dikes to reinforce banks of Xijiang River, Guangdong, China; (c). Spur dikes as
training works for navigation in Odra River, Poland).

As mentioned above, clustering spur dikes in the river system presents the basis for investigating
the cumulative effects and the comprehensive responses of river systems after construction of spur
dikes. Since twin-spur-dike is the simplest spur dike group and the fundamental model regardless
large- or small-scale spur dike groups, one can realize the clustering of spur dikes through establishing
the calculation theory of the spacing threshold of twin spur dikes [2,17]. In this study, according to
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the flume experimental data, we use CFD (computational fluid dynamics) method [11,14,19,20,27] to
quantitatively analyze the spacing threshold of non-submerged twin spur dikes with ipsilateral and
orthogonal layout in straight rectangular channel. Unlike previous researches on reasonable spacing,
which aimed to improve the training effects of small-scale spur dike group on the local segment of
river system [8,24,25], this study aims to open the door for investigating the hydraulics of spur dike
group in large-scale. In view of differences and similarities between the former researches and this
study, we generally designate the spacing issue of spur dikes as “impact scale of spur dikes”.

2. Materials and Methods

2.1. Analyzing Models

In this study, the flow problem of non-submerged twin spur dikes is generalized in Figure 2. Two
identical spur dikes are perpendicular to the shoreline and in ipsilateral layout on the horizontal bed.
The mean velocity of approaching flow is U. Under the Cartesian coordinate system, the direction
along the main flow is X-axis, along the water depth Y-axis and parallel to the spur dike length Z-axis.
The original coordinate is set at the point O, the bottom of flume as shown in Figure 2.

Spur dike flow is regarded as fully turbulent [22], and can be simulated through k−εmodel [9,19,20].
In the current study, a commercial CFD software package, FLUENT, is used to build the numerical model
of the flow around non-submerged twin spur dikes shown in Figure 2. The “pressure based” solver and
the standard k− ε model in FLUENT are selected. The turbulence parameters of hydraulic diameter
DH and the turbulence intensity I are calculated according to [28,29]. The SIMPLEC (semi-implicit
method for pressure-linked equations consistent) algorithm is used to model the pressure-velocity
coupling; the “body force weighted” method is applied for pressure discretization; and the discrete
format of momentum, turbulent kinetic energy and turbulent dissipation rate are all assumed “first
order upwind” scheme to guarantee the converged results. The approaching flow at the inlet uses
“mass-flow-inlet”. Since the water surface slope of non-submerged spur dike flow hardly changes in
flat-bottomed flume tests, the rigid lid assumption is used to model the free surface [15], i.e., assuming
the constant free surface. The top surface of water body uses the “symmetry” as its boundary condition,
whose tangential velocity may be not zero compared to the “wall”. The flow at the outlet is assumed
as free outflow. The dike bodies and other faces of the flume are regarded as solid walls and meet the
no-slip condition, and the “standard wall functions” are used to solve the steep variations of k and ε
near the wall. The simulation domain is divided into several regular blocks for generating meshes by
adding some appropriate auxiliary surfaces. The grids are hexahedral and refined in the vicinity of
two spur dikes, as shown in Figure 3.
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In order to verify the accuracy of the numerical model, three sets of flume experiments were
conducted to obtain verification data. As shown in Figure 4, the experiments were carried out in the
multifunction flume, which was 50 m long, 1.2 m wide and 1.4 m high and located at Jiangong Hall
of Zhejiang University, China. The spur dikes were made of plexiglass and 1.6 cm thick and 40 cm
high. Acoustic Doppler velocimeters (ADV) are used to measure velocities, and wave height recorders
(WHR) to measure surface elevations. The distribution of measured cross-sections and points are
shown in Figure 5. Spur dike 1 is arranged at cross-section A; spur dike 2 at cross-section B and initial
Section s0 is set as the inlet. There are five cross-sections (i.e., s1–s5) at the upstream of spur dike 1 with
equal interval of 0.2 m, eleven cross-sections (i.e., z1–z11) between two dikes with equal interval of 0.4
m, and also eleven cross-sections (i.e., x1–x11) at the downstream of spur dike 2 with equal interval of
0.4 m. The outlet cross-section x0 was 7.6 m from cross-section x11. The total numbers of measured
cross-sections and points were 31 and 341 respectively. The coordinate origin was arranged at the
bottom of flume at the point O in Figure 5.
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2.2. Dimensional Analysis

Regarding the full turbulent flow such as spur dike flow, the molecular viscous effects can be
neglected (i.e., Reynolds number) [22]. Further, the dike thickness of 0.016 m is less important and
can be ignored compared with the dike spacing. Therefore, the following function is suggested by
dimensional analysis for the spacing threshold Sc of non-submerged twin spur dikes with orthogonal
layout in straight rectangular channel as:

Sc = f (ρ, g ,Q, h, b, B), (1)

where b represents the dike length, B the channel width, Q the flow rate of approaching flow, h the
water depth, ρ the density of water and g the acceleration of gravity. According to Buckingham’s
π-theorem [30], ρ, g and h are selected as the basic variables. The dimensionless equations are further
deduced in Equation (2) listed below: 

Sc
b = f

(
Fr, B

h , B
b

)
Fr =

Q
Bh
√

gh

, (2)

where Sc/b represents the relative spacing threshold, Fr the Froude number, B/h the section width-depth
ratio and B/b the relative dike length.

2.3. Verification and Simulation Conditions

The verification conditions are listed in Table 1, where s is the dike spacing. The simulation cases
are summarized in Table 2. Here, all cases, regarding the issue of “impact scale of spur dikes”, belong
to subcritical flow with Fr < 1. The numerical simulations aim to investigate the relationships between
Sc/b and Fr, B/b, B/h respectively and to build the empirical formula for spacing threshold Sc. Cases
1–5 correspond to different incoming flow rates or Fr, Cases 6–9 represent conditions of different dike
lengths or B/b and Cases 10–13 reflect the situations under different B/h with Case 2 as communal one.
To minimize the impact of incoming flow fluctuation and guarantee the sufficient developing range,
the length scale of numerical flume is selected at 100 m with spur dike 1 fixed at X = 26 m and spur
dike 2 movable along the flume bed.

Table 1. Verification conditions.

No. Q (m3/s) b (m) h (m) s (m)

YZ1 0.0485 0.2 0.15 4.8
YZ2 0.0416 0.4 0.15 4.8
YZ3 0.0618 0.3 0.3 4.8
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Table 2. Simulation conditions of cases.

No. B (m) b (m) h (m) Q (m3/s) Fr B/h B/b

Case 1 (c1) 1.2 0.2 0.2 0.0336 0.1 6 6
Case 2 (c2) 1.2 0.2 0.2 0.0672 0.2 6 6
Case 3 (c3) 1.2 0.2 0.2 0.1008 0.3 6 6
Case 4 (c4) 1.2 0.2 0.2 0.168 0.5 6 6
Case 5 (c5) 1.2 0.2 0.2 0.2352 0.7 6 6

Case 6 (c6) 1.2 0.5 0.2 0.0672 0.2 6 2.4
Case 7 (c7) 1.2 0.4 0.2 0.0672 0.2 6 3
Case 8 (c8) 1.2 0.3 0.2 0.0672 0.2 6 4
Case 2 (c2) 1.2 0.2 0.2 0.0672 0.2 6 6
Case 9 (c9) 1.2 0.1 0.2 0.0672 0.2 6 12

Case 10 (c10) 0.6 0.1 0.3 0.0618 0.2 2 6
Case 11 (c11) 1.2 0.2 0.3 0.1235 0.2 4 6

Case 2 (c2) 1.2 0.2 0.2 0.0672 0.2 6 6
Case 12 (c12) 1.8 0.3 0.2 0.1009 0.2 9 6
Case 13 (c13) 2.4 0.4 0.2 0.1345 0.2 12 6

3. Results and Discussions

3.1. Verification of Numerical Model

The cross-sections of s5, z1, z6, z11, x1 and x0 were selected as verification locations of the
numerical model (shown in Figure 5). The comparisons of the u-velocity component along channel
width Z at selected horizontal planes (i.e., selected water depths) are described in Figure 6. From
the series of diagrams, good agreements between experiments and computations were observed.
Tables 3 and 4 compare the lengths (RL) and widths (RW) of the backflow zone downstream both spur
dikes under conditions of YZ1, YZ2 and YZ3, respectively. It is noticed that all maximum relative
errors (RE) were less than 5%, which indicate the consistency between numerical simulations and the
corresponding flume experiments. Hence, the accuracy of numerical model was verified and could be
employed for subsequent investigations on the spacing threshold of non-submerged twin spur dikes.

Table 3. Comparison of RL and RW between observed and computed (spur dike 1).

No.
Length of Backflow Zone RL (m) Width of Backflow Zone RW (m)

Flume Test CFD RE (%) Flume Test CFD RE (%)

YZ1 1.76 1.7052 3.11 0.3127 0.302 3.42
YZ2 / / / 0.5596 0.5847 4.49
YZ3 2.4 2.508 4.5 0.4297 0.4442 3.37

Note: RL of YZ2 beyond the dike spacing.

Table 4. Comparison of RL and RW between observed and computed (spur dike 2).

No.
Length of Backflow Zone RL (m) Width of Backflow Zone RW (m)

Flume Test CFD RE (%) Flume Test CFD RE (%)

YZ1 1.21 1.1886 1.78 0.245 0.2416 1.39
YZ2 2.0 1.9414 2.93 0.44 0.4511 2.52
YZ3 1.8 1.7502 2.77 0.35 0.339 3.14
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3.2. Identification of Spacing Threshold

In order to classify “impact scale of spur dikes”, we proposed the concept of spacing threshold
of non-submerged twin spur dikes with equal skew angle and ipsilateral layout in straight prism
channel before [2], that is, the minimum spacing for maintaining the similarity of lateral distributions
of magnitude velocity V at the cross-sections of twin spur dikes. When the dike spacing is larger than
the threshold, the two spur dikes should be regarded as a large-scale group, otherwise a small-scale
one. Figure 7 presents the comparisons of lateral distribution V (Y = 0.05 m) and V at cross-sections A
and B under different dike spacing s, where V is the average of V along water depth. As indicated,
the similarity of V-patterns was almost the same to that of V-profiles at the both cross-sections. It
means that the criterion of spacing threshold could be justified by whether the lateral distributions
of V at adjacent two spur dikes are similar or not. Figure 8 depicts the comparison of V-patterns
nearby the tips of twin spur dikes and relevant difference changes with dike spacing s, marked as
Vt and ∆Vt respectively. As the dike spacing s increased, the Vt of spur dike 1 kept constant almost,
while the Vt of spur dike 2 gradually increased and approached the level of spur dike 1 until both
tended the same level at s ≈ 25 m. At this point, the velocities at cross-section B had recovered to the
levels at cross-section A and the flow pattern around spur dike 2 was hardly affected by spur dike
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1. Furthermore, the similarity of V nearby the tips of twin spur dikes was ultimately determined by
the criterion of spacing threshold, i.e., the minimum spacing of non-submerged twin spur dikes with
equal skew angle and ipsilateral layout in straight prism channel when the Vt of twin spur dikes were
approximately coincident indicated in Figure 8 (The complete coincidence of Vt of twin spur dikes was
impossible due to frictional head loss and local head loss). In this research, the coincidence error was
set as 0.05U, where U is the mean velocity at the inlet [8], and the coincidence of Vt was given at 5 cm
from the tips of both spur dikes.Water 2020, 12, 172 8 of 13 
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3.3. Relations of Sc/b – Fr, B/b and B/h

Figure 9 indicates the patterns of s–∆Vt for all cases, i.e., c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11,
c12 and c13. For all cases, ∆Vt-values gradually decreased as dike spacing s increased and were less
influenced with the further increase of s (e.g., s > 25 as indicated in Figure 9). The relations between s
and ∆Vt can be expressed by negative exponential function for all cases. According to Figure 9 and the
coincidence error of 0.05U mentioned above, the spacing thresholds Sc for all cases are obtained and
listed in Table 5. As indicated, the spacing thresholds Sc for non-submerged twin spur dikes were less
influenced and increased slightly with the increase of incoming flow rate Q with other parameters
fixed (c1–c5 in Table 2). As B, h and Q fixed (c2, c6–c9 in Table 2), the spur dike played less influence on
the flow as b decreased, i.e., the Sc of non-submerged twin spur dikes decreased as well.
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3.4. Empirical Formula of Spacing Threshold 

The results of Figure 10 are further regressed by statistical analysis software SPSS, and a general 
empirical formula of spacing threshold of non-submerged twin spur dikes was obtained in 
multiple-regression equation listed as below:  =  43.340𝐹 − 17.690𝐹 − 1.500 + 27.433 − 0.748 + 7.288 − 21.383. (3) 
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Table 5. Spacing thresholds for c1–c13.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Sc (m) 20.919 20.798 20.838 21.621 22.938 25.539 24.355 24.298 10.704 9.550 21.972 26.323 27.610

Figure 10 further provides the relationships between the relative spacing threshold Sc/b with the
Froude number Fr, the relative dike length B/b, and the section width–depth ratio B/h. As indicated in
Figure 10a, Sc/b slightly decreased first and then gradually increased as Fr increased with fixed B/b and
B/h. However, Fr presents a minor influencing factor concerning the narrow range of Sc/b values. The
relation of Sc/b–Fr can be approximately described by concave quadratic function. For Figure 10b, Sc/b
increased first and then decreased slightly with B/b increasing under fixed Fr and B/h. The relation
between B/b and Sc/b was approximated by the convex quadratic function. Moreover, the value range
of Sc/b in Figure 10b was higher than that in Figure 10a, which indicates the strong impact of B/b on the
Sc/b scale. For Figure 10c, Sc/b slightly increased first and then decreased sharply with the increase of
B/h as Fr and B/b fixed. It indicates that the spur dike flow was easier to recover in wide-shallow water.
Similarly, the relation between B/h and Sc/b could be again approximated by convex quadratic function.
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3.4. Empirical Formula of Spacing Threshold

The results of Figure 10 are further regressed by statistical analysis software SPSS, and a
general empirical formula of spacing threshold of non-submerged twin spur dikes was obtained in
multiple-regression equation listed as below:
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Sc

b
= 43.340Fr

2
− 17.690Fr − 1.500

(B
b

)2
+ 27.433

B
b
− 0.748

(B
h

)2
+ 7.288

B
h
− 21.383. (3)

To examine the fitting effect of Equation (3), the calculated values Sc for cases c1–c13 from
Equation (3) were compared with corresponding CFD results and shown in Figure 11. Good agreement
between two data sets illustrated a satisfactory fitting effect of Equation (3). Similarly, in a previous
study [17], we proposed an empirical formula, i.e., Equation (4), to estimate the spacing threshold of
non-submerged twin spur dikes with ipsilateral layout as:

Sc

b
= 143.15Fr

2
− 94.39Fr + 14.13

B
b
+ 278.02

(B
h

)−0.53
− 79.38. (4)

The performance comparison between Equations (3) and (4) is expressed in Figure 11. The figure
indicates that Equation (3) offers higher accuracy than Equation (4), especially in the range of small
Sc values. The reason causing such is that the conditions to acquire Equation (3) cover wider scope
than that to obtain Equation (4). Therefore, considering that the conditions involved in this study
have approached the ultimate range, Equation (3) is recommended as the final empirical formula of
spacing threshold of non-submerged twin spur dikes with ipsilateral and orthogonal layout in straight
rectangular channel.
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According to the ranges of parameters Fr = 0.1–0.7, B/b = 2.4–12 and B/h = 2–12 in current research,
the minimum and maximum values of Equation (3) can be obtained through generalized genetic
algorithms [31] optimization respectively, i.e., (Sc/b)min = 24 (Fr = 0.204, B/b = 2.60, B/h = 11.36) and
(Sc/b)max = 130 (Fr = 0.665, B/b = 9.02 and B/h = 4.87) or Sc = 24b–130b alternatively. This range of
Sc is wider than the recovery lengths obtained by previous researchers, e.g., Sc = 38b–52b (Nanjing
Hydraulic Research Institute, Nanjing, China), Sc = 40b–60b (Tianjin Research Institute for Water
Transport Engineering, Tianjin, China) and Sc = 30b–70b (Department of Transportation of Hunan
Province, China) cited by [32]. Such status implies that, on one hand, existing researches have not yet
achieved full agreement on awareness of the recovery area in the downstream of spur dike; on the other
hand, Equation (3) obtained by this investigation possesses more inclusive than previous formula.
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However, it must be pointed out that: by definition, the spacing threshold of twin spur dikes used
in this study was a little longer than the recovery length of single spur dike declared by [32]. When
the spacing between neighboring upstream and downstream spur dikes reached the threshold, the
location of downstream dike exceeded the recovery range of upstream dike and was hardly affected by
the upstream one. Under the circumstances, the adjacent two spur dikes on the river system were
regarded as the spur dike group in large-scale.

4. Conclusions

Both flume experimental study and numerical simulations on non-submerged twin spur dikes
with ipsilateral and orthogonal layout were carried out and reported in this paper. Based on the
concept of spacing threshold and its dimensionless equations of non-submerged twin spur dikes with
ipsilateral and orthogonal layout implemented in straight rectangular channel, the models were used
for quantitative investigation of spacing thresholds. The following conclusions could be drawn:

(a) The similarity of the average velocity along the water depth nearby the tips of twin spur dikes
was determined by the spacing threshold, i.e., the minimum spacing where the Vt of twin spur
dikes were approximately coincident. This criterion is also suitable for the case of non-submerged
twin spur dikes with equal skew angle and ipsilateral layout in straight prism channel.

(b) For straight rectangular channel, the influencing factors of the relative spacing threshold Sc/b of
non-submerged twin spur dikes with ipsilateral and orthogonal layout include Fr, B/b and B/h.
Among these three factors, Fr presented the least impact on the scale of Sc/b.

(c) Under fixed Fr and B/h, Sc/b increased first and then decreased slightly as B/b increased. The
relation of Sc/b–B/b was approximately described by the convex quadratic function. Similarly,
with fixed Fr and B/b, Sc/b slightly increased first and then decreased sharply as B/h increased. The
pattern of Sc/b–B/h could be approximated by the convex quadratic function too.

(d) A generalized, normalized empirical formula of spacing threshold was obtained in this study,
which presented applicable only to non-submerged twin spur dikes with ipsilateral and orthogonal
layout in straight rectangular channel due to generalization and simplification of the flow for
non-submerged twin spur dikes employed. The formula presented good, reliable accuracy with
wider recovery range concurrently, i.e., Sc = 24b–130b.

Although the outcomes, obtained in this research, were idealized and deviated from the situation
in reality, they had established a good foundation for further investigations. These conclusions could
be used to understand the impact scale and characteristics of water-sediment in river systems with
spur dike groups implemented, provided references to assess the health of river systems, arranged
spur dikes in large- and/or small-scales accordingly, and truly realized the quantitative classification of
impact scale of spur dike groups on natural river systems in future.
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Nomenclature

Fr Froude number
B/b relative dike length
B/h section width-depth ratio
Sc/b relative spacing threshold
U mean velocity of approaching flow
k turbulent kinetic energy
ε turbulent dissipation rate
s dike spacing
RL length of backflow zone
RW width of backflow zone
X-axis direction along the main flow
Y-axis direction along the water depth
Z-axis direction parallel to the spur dike length
V magnitude velocity
Sc spacing threshold
b dike length
B channel width
Q flow rate of approaching flow
h water depth
ρ density of water
g acceleration of gravity
RE relative error
u velocity component in X direction
v velocity component in X direction
w velocity component in X direction
V average of V along water depth
Vt V nearby the tip of spur dike

∆Vt
relevant difference changes of V between twin spur
dikes
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