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Abstract: Data on historical extreme events provides information not only for water resources
planning and management but also for the design of disaster-prevention measures. However, most
basins around the globe lack long-term hydro-meteorological information to derive the trend of
hydrological extremes. This study aims to investigate a method to estimate maximum and minimum
flow trends in basins with limited streamflow records. To carry out this study, data from the Allipén
River watershed (Chile), the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model
at a daily time step, and an uncertainty analysis were used. Through a calibration using only five
years of records, 21-year mean daily flow series were generated and the extreme values derived.
To analyze the effect of the length of data availability, 2, 5, and 10 years of flows were eliminated from
the analyses. The results show that in the case of 11 years of simulated flows, the annual maximum
and minimum flow trends present greater uncertainty than in the cases of 16 and 19 years of simulated
flows. Simulating 16 years, however, proved to properly simulate the observed long-term trends.
Therefore, in data-scarce areas, the use of a hydrological model to simulate extreme mean daily flows
and estimate long-term trends with at least 16 years of meteorological data could be a valid option.

Keywords: long-term flow trends; data scarce; hydrological modeling

1. Introduction

Water availability changes each year due to local, global, natural, and anthropogenic
phenomena. These changes and the constant increase in demand, be it for human consumption,
irrigation, hydropower, or industrial use, require increasingly efficient water resources planning and
management [1]. Moreover, the frequency and magnitude of extreme meteorological events, such
as floods and droughts are currently changing [2,3]. Despite scientific and technological progress,
the population remains exposed to these events [4]; therefore, trend analysis of hydroclimatic variables
has become the study focus for many researchers around the world [3,5,6].

Several studies have shown that changes in flow time series are due to climatic [7–10] and/or
anthropogenic factors [11–13]. To analyze the hydrological behavior in a watershed it is important to
determine maximum and minimum flow trends; however, ascertaining the history of a basin can be
a difficult task when the available hydrometeorological information is limited [14]. Most drainage
basins around the globe are ungauged or data-scarce, either because a required variable has not been
sampled at the required resolution or because it has not been observed during a period of interest [15].
To address this limitation, different approaches have been developed to estimate stream flows in
ungauged areas [16], for example, multiple linear regression (MLR), variations of autoregressive
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moving-average (ARMA) models, artificial neural networks (ANNs) [17,18], and the widely used
conceptual or physically-based hydrological models.

Currently, hydrological models are important components in planning and management of water
resources, since they allow the simulation of streamflow series through a simplified representation
of hydrological processes. There are various hydrological models, which vary in complexity and
utility [19]. Most hydrological models can be classified as conceptual models, with parameters, or at
least some parameters, that cannot be directly physically interpreted or measured, making it necessary
to estimate them through a calibration process [20,21]. These models can be lumped, semi-distributed,
or distributed. Depending on the aim of the study and information availability, lumped models may
be preferred, since they provide acceptable results in terms of accuracy [22] and are simpler to interpret
and implement than distributed models, especially in scarce-data cases.

In recent years, several studies have reported a decrease in precipitation and in snow and glacier
coverage [23–29] and increasing temperature trends [30,31] in south-central Chile. These changes
might affect the way in which water is managed on a regional scale, as well as how extreme events,
such as floods and droughts, are faced.

Several countries around the globe currently need to face the lack of hydrological data for
water-related management and planning. In Chile, streamflow records have a relatively short length of
30 years on average [32], and gauging stations are unevenly distributed throughout the country [33],
limiting basin-and regional-scale analysis of flow trends and making it difficult to study runoff

changes [34,35].
Time series reconstruction using a dendroclimatological approach [36–41] has been one of the most

used methods to conduct hydrological long-term trends analyses. Tree-ring records provide continuous
series of past environmental changes for the last several centuries and in some cases, millennia [36].
However, there is still a lack of specific studies related to the analysis of extreme flow trends and,
more importantly, such trends in basins with limited hydrological information. Several studies used
extensive databases [42–45] and performed a data quality control considering criteria such as no gaps
and a length of time-series of at least 40–50 years. Thus, the objective of this article is to investigate a
method to estimate such hydrological extreme trends, with a controlled and known uncertainty, in a
basin with limited data availability. With this aim, a combined approach of hydrological modeling
with a calibration using 5-years of data, a short simulation window (up to 21 years), and uncertainty
analysis of flow trends is used.

2. Study Area and Data

2.1. Study Area

The Allipén River watershed was chosen as a case study location. The Allipén River watershed
until the Río Allipén en Los Laureles stream-gauge station (1652 km2) is located in southern Chile and
monitored by the Chilean General Water Directorate (DGA; Figure 1). The Allipén River rises in the
Andes Mountains. Its climate varies between warm, temperate and rainy in the middle and lower
parts of the watershed to cold, temperate and rainy with Mediterranean influence in its upper part
(the Andean area). Annual precipitation can reach 3000 mm and mean monthly temperatures oscillate
between −3 and 18 ◦C. The watershed receives mostly pluvial precipitation, with slight snow influence
in the upper part, presenting a mixed hydrological regime (pluvio-nival). In the upper watershed
volcano-sedimentary rock formations of the Tertiary and Quaternary periods are prominent, while in
the Central Valley there are unconsolidated deposits of glacial origin and highly permeable alluvial
material [46].

2.2. Data

To implement the hydrological model of the watershed, mean daily precipitation, temperature,
and monthly evapotranspiration series representative of the watershed are required. The Los Laureles,
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Quecheregua, Cunco, Cherquenco, Tricauco, and Malalcahuello rain gauge stations (see locations
in Figure 1), managed by the DGA, were used. To estimate mean precipitation in the watershed,
the inverse distance weighting (IDW) method was used. Due to the absence of temperature records,
0.25◦—resolution (~25 km) gridded data series published by the Department of Civil and Environmental
Engineering of Princeton University [47] were obtained and the Thiessen Polygon method was used
to interpolate them. Based on these records, potential evapotranspiration was estimated using the
Thornthwaite method [48].

Daily flow records from the Río Allipén en Los Laureles station (from 1990 to 2010) were used
for the calibration-validation process and to carry out the analyses. To analyze the trend results,
the available records from 1951 to 2010 were used.

As this study is focused on maximum and minimum flows, data gaps during the calibration and
validation might affect the results. Therefore, prior to the calibration-validation stage, it was verified
that no significant data gaps in the seasons of interest were present.
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Figure 1. Geographic location and digital elevation model of the Allipén River watershed at the Río
Allipén en Los Laureles station. The light blue dot shows the location of the streamflow monitoring
station, the dark blue dots the locations of the rain gauge stations, and the red dots the gridded
temperature stations published by Princeton University.

3. Hydrological Model and Methods

In this study, the Hydrologiska Byråns Vattenbalansavdelning (HBV) model [49] is used.
This version of HBV is a free MATLAB-coded model that can be obtained from http://amir.eng.
uci.edu/software.php. The HBV model and its various versions have been applied in a range of
watersheds and climates and several countries [49], including Belgium [50], Sweden [51,52], China [53],
and the United States [54], serving as a suitable alternative for flow estimation in a variety of
watershed types. Moreover, it has been used at different time scales (e.g., Parra et al. [55]), where
the obtained results support the model performance and its ability to adequately represent the main
hydrological processes.

3.1. HBV Model Description

The HBV model [49] is a conceptual snow–rain water balance model that can be used as a
lumped or semi-distributed model. In this study, the simplified version of the model presented
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by Aghakouchak and Habib [56] was used. This version simulates daily discharges based on daily
precipitation, temperature, and potential evapotranspiration time series [57].

The model consists of three main modules (see conceptual diagram in Figure 2): a snow module,
an effective precipitation and soil moisture module, and a response module [57]. The first module
controls snow accumulation and melting. Precipitation accumulates as snow when the temperature
is below a threshold value (TT); otherwise, the model considers precipitation rain and begins the
snowmelt subroutine. The contribution of snowmelt to runoff is estimated through the simple
degree-day method [49], depending on the difference between the actual and threshold temperatures.
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The second module determines the contribution of precipitation to infiltration and surface runoff.
First, it calculates daily potential evapotranspiration (ETPa) by reducing the monthly value based
on a correction factor (C), the mean daily temperature and the long-term temperature, and potential
evapotranspiration averages [57]. The permanent wilting point (PWP) is a fraction (LP) of field capacity
(FC); when moisture surpasses the PWP value, actual evapotranspiration (ET) is equal to daily potential
evapotranspiration. In addition, when soil moisture (SM) is below PWP, a linear reduction is applied
to evapotranspiration (see upper left corner of Figure 2). Subsequently, the model calculates runoff

(∆Q), which depends on precipitation (∆P), soil moisture (SM), field capacity (FC), and an empirical
coefficient (β), which determines the relative contribution of rain or snowmelt to runoff (see upper
right corner of Figure 2).

Finally, the response model estimates the flow based on two reservoirs, one above the other.
The upper reservoir represents the flow near the surface, while the lower simulates baseflow
(groundwater contribution), and both are connected through a percolation rate (kp). There are
three outlets, two in the upper reservoir (Q0 and Q1) and one in the lower (Q2). When the water level
in the upper deposit surpasses a threshold value (L), runoff is generated quickly in its upper part (Q0).
The responses of the other two outputs are relatively slower (Q1 and Q2), and recession coefficients
k0, k1, and k2 are used to ensure that Q0 has the quickest response and that the response of Q2 is
slower than that of Q1. For a more detailed description of the model consultation of Bergström [57],
Aghakouchak and Habib [56], and Seibert [58] is recommended.

In the Andes of southern Chile, a precipitation enhancement of up to three times the precipitation
recorded in the lower areas may occur. Therefore, the model also includes a precipitation adjustment
parameter (A). This parameter allows the model to achieve a long-term water balance [59], and thereby
correct the underestimation of precipitation as a result of the lack of records in the highest parts of
each watershed.
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Table 1 presents a brief description of the parameters and initial ranges used, based on the studies
of Aghakouchak and Habib [56] and Kollat et al. [60].

Table 1. Model parameters and initial ranges used for the analysis.

Parameter Description Range

Mass balance

A Precipitation modification parameter 0.8–2.5

Snow module

TT (◦C) Threshold temperature that indicates the
initiation of snowmelt (normally 0 ◦C) 0

Cmelt (mm
◦

C−1 day−1)
Fraction of snow that melts above the
threshold temperature (TT) from the

beginning of snowmelt.
0.5–7

Sf Snow accumulation adjustment factor 0.5–1.2

Moisture module

FC (mm) Field capacity (storage in the soil layer) 0–2000

β
Empirical coefficient that represents the soil

moisture variation in the area 0–7

LP Fraction of field capacity to calculate the
permanent wilting point (PWP = LP*FC) 0.3–1

C (
◦

C−1)
Correction factor for potential

evapotranspiration 0.01–0.3

Response module

L (mm) Threshold for quick runoff response 0–100
k0 (day−1) Quick response coefficient (upper reservoir) 0.3–0.6
k1 (day−1) Slow response coefficient (upper reservoir) 0.1–0.2
k2 (day−1) Lower reservoir response coefficient 0.01–0.1
kp ( day−1) Maximum flow coefficient for percolation 0.01–0.1

3.2. Model Calibration

To obtain a set of parameters that represent the watershed under study, a calibration process
based on a regional sensitivity analysis (RSA) [61] was carried out using the Monte Carlo Analysis
Toolbox (MCAT) [54]. In this study, 10,000 simulations were run at a daily time step using parameter
sets within the valid range of each model parameter, extracted from a uniform distribution (Table 1).
The number of simulations was chosen based on the study presented by Sarrazin et al. [62].

To allow a better understanding of the methodology, Figure 3 details the periods in which each
process was carried out. Satisfactory results have been obtained using a 5-year or smaller time window
for calibration [55]. Harlin [63] recommends using a calibration period between 2 and 6 years to find
optimal parameters for the HBV model, and Brigode et al. [64] indicated that calibration periods longer
than 3 years do not necessarily lead to more robust parameter sets. In this study, periods of 1, 5, and
5 years were used for model warm-up, calibration, and validation, respectively (grey, yellow, and red
periods in Figure 3).

According to Seibert and Vis [65], one year is sufficient to warm up the model. Therefore, in the
calibration and validation processes, the first year of analysis (2000 and 2006, respectively) was
discarded to eliminate the influence of the starting values on the results.
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3.2.1. Regional Sensitivity Analysis

The RSA method consists of generating a sample of N points (simulations) in the feasible space of
each parameter, obtained from a previously defined distribution (generally uniform). The parameter
sets are ranked from best to worst in terms of the chosen objective function. The ranked population
is then divided into ten bins of equal size according to their objective values. The objective values
associated with each parameter set are then converted to likelihood measures. The cumulative
distribution of each group is then plotted, and the highest likelihood parameter distributions are
indicated by bold black lines and the lowest likelihood distributions indicated by light gray lines (see
Figure 4 as an example). In order to obtain the best representation of all the parameter sets (models),
the calibrated parameters values were obtained according to the 50th percentile in the highest likelihood
parameter distributions (bold black lines). Parameter sensitivity can be evaluated by assessing the
separation of the ten curves. The greater the separation between curves, the greater the sensitivity
of the model to the parameter under analysis. By contrast, the less separated the curves, the less
sensitivity of the model to the parameter [54].
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In order to independently represent the minimum and maximum mean daily flow trends, two
calibrations were carried out based on the root mean square error (RMSE) and transformed root Mean
square error (TRMSE) objective functions, which are focused on high and low flows, respectively [66,67].
Additionally, NSE values were calculated for both calibration and validation with the purpose of
complementing the overall model performance evaluation (not only focusing on either maximum or
minimum flows). The objective functions are described in the following sections (Sections 3.2.2–3.2.4).
To validate the models, values within the limit of acceptability for the validation period were sought.

3.2.2. Root Mean Square Error (RMSE)

RMSE can be considered a multi-purpose criterion centered on the simulated hydrograph.
This function is focused on high streamflow errors [66,67] and is calculated with Equation (1):

RMSE =

√
1
T

∑T

t=1

(
Qs,t −Qo,t

)2
, (1)

where Qs,t and Qo,t are the simulated and observed stream flows in time step t, respectively, and T is
the length of the time series. Because RMSE measures differences between simulated and observed
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stream flows, it has the unit of measurement of the analyzed data (m3/s). An RMSE equal to zero
indicates a perfect fit between the simulated and observed series, while the greater the RMSE value,
the worse the fit between simulated and observed data. According to Singh et al. [68], RMSE values
less than half of the standard deviation of the observed data can be considered low and indicate good
model prediction.

3.2.3. Transformed Root Mean Square Error (TRMSE)

This function emphasizes low flow errors using the Box–Cox transformed [60] root mean square
error, as shown in Equations (2) and (3):

Q̂t =
(1 + Qt)

λ
− 1

λ
, (2)

TRMSE =

√
1
T

∑T

t=1

(
Q̂s,t − Q̂o,t

)2
, (3)

where Q̂s,t and Q̂o,t are the Box–Cox transformed simulated and observed streamflow at time step t,
respectively, T is the length of the time series, and λ = 3 has a similar effect as a log transformation [60].
As the RMSE, we deemed less than half of the standard deviation of the transformed observed data to
be the value that indicates good model prediction.

3.2.4. Nash–Sutcliffe Efficiency (NSE)

This index determines the relative magnitude of residual variance in comparison to the variance
of the measured data [69]. The NSE is obtained with Equation (4):

NSE = 1−

∑T
t=1

(
Qs,t − Qo,t

)2

∑T
t=1

(
Qo,t −Qo

)2 , (4)

where Qs,t, Qo,t, and Qo are the simulated stream flows in time step t, observed stream flows in time
step t, and the average of the observed stream flows, respectively. Meanwhile, T is the length of the
time series. NSE values vary between 1 and −∞, with 1 being the optimum value. Normally the value
for a model to be considered suitable is NSE = 0.6 [55,70].

3.3. Trend Calculation and Analysis

After the calibration and validation processes, all daily stream flows were simulated, and the
annual minimum and maximum values in the 1990–2010 period were extracted for simulations.
To assess the effect of the length of the data series on the estimation of trends in the annual maximum
and minimum stream flows, three situations were studied by eliminating 2, 5, and 10 years of simulated
stream flows. All the possible trends according to the possible combinations (green period in Figure 3)
were estimated. This methodology was adopted because information at basin scale in Chile generally
does not consist of more than 30 years of records and may even consist of less than 10 years of data.
In addition, since performing the entire procedure of randomly eliminating from 1 up to 19 years
would significantly increase the computational resources needed, a simpler (reduced) approach was
used, removing 2, 5, and 10 years from the analyses. Thus, totals of 210 (2 years removed), 20,349
(5 years removed), and 352,716 (10 years removed) possible combinations were analyzed. Then the
trends of all the resulting time series (combinations) were calculated by the least squares method (green
period in Figure 3). This is the most popular method used to determine the position of the trend line of
a given time series. The trend line is technically called the best fit. In this method, a mathematical
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relationship is established between the time factor and the variable given [71]. The equation of the
trend line can be expressed as

y = ax + b, (5)

where a represents the trend of the variable when x = 0 and b represents the slope of the trend line. If b
is positive, the trend line will be upward, and if b is negative the trend line will be downward.

To analyze the influence of the length of each data set, the generalized likelihood uncertainty
estimation (GLUE) method [72] was applied to the resultant estimated trends. Unlike the GLUE
method, in which uncertainty bands are derived from the outputs that only produce adequate results
based on a performance measure, in this study the median and the uncertainty bands between 5% and
95% of all the calculated trends were calculated. Finally, the results of each situation were compared
with the long-term trend derived from observed streamflow data of the maximum and minimum flows
over the entire period of records from the Río Allipén en Los Laureles station (1951–2010; blue period
in Figure 3).

4. Results

4.1. Model Calibration and Validation

Figure 5 presents the results of the RSA in the calibration process focused on high and low
flows (TRMSE and RMSE, respectively). In both cases, high sensitivity of the results to variations in
parameters β and L is observed. β represents the contribution of precipitation and snowmelt to soil
storage and runoff, and L is the limit for the quick response. Most stream flows in the watershed are of
a pluvial origin; therefore, the model does not present sensitivity to parameters associated with the
snow accumulation and snowmelt processes (module) (Cmelt and Sf).

Along with the model sensitivity to β and L, in the calibration based on RMSE, it is observed
that the parameter that most influences the model performance is FC, which represents field capacity.
In addition, the results based on TRMSE indicate that the model is sensitive to K2 (slow-response
recession coefficient). The highest stream flows are a result of high precipitation in winter periods,
when soil storage can approach its capacity; therefore, the process that takes on the greatest importance
during high stream flows is soil moisture (FC). Meanwhile, in the recession and stable-streamflow
periods (spring-summer), groundwater runoff and the low snowmelt input are represented in the
model by the increase in sensitivity to the slow response (K2).
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Table 2 shows the values of the objective functions calculated for the calibration and validation,
while Table 3 shows the parameter sets obtained in each ease. The reference values of the objective
functions are indicated in parentheses. For the RMSE and TRMSE values, Parra et al. [55], Singh et al. [58],
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and Moriasi et al. [60] suggest that the results must be less than half of the standard deviation of the
observed and transformed data, respectively, and the NSE values must be greater than 0.6. According
to the calculated indices, the parameter sets in both cases are suitable for simulating the stream flows
of the Allipén River watershed.

Table 2. Objective function values and the reference performance rating in parenthesis.

Process Period
Peak Flows Low Flows

RMSE NSE TRMSE NSE

Calibration 2001–2005 45.1 (<54.8) 0.81 (>0.6) 0.89 (<2.0) 0.77 (>0.6)
Validation 2007–2010 39.4 (<40.1) 0.73 (>0.6) 0,91 (<1.1) 0.84 (>0.6)

Table 3. Parameter values obtained after calibration and validation focused on high and low flows
(separately).

Parameter Peak Flows Low Flows

A 1.2 1.2
TT (◦C) 0 0

Cmelt (mm
◦

C−1 day−1) 4.01 3.65
FC (mm) 1280 1030
C (

◦

C−1) 0.15 0.18
β 0.50 0.60

L (mm) 115 180
k0(day−1) 0.44 0.44
k1(day−1) 0.15 0.14
k2(day−1) 0.015 0.008
kp(day−1) 0.11 0.12

LP 0.68 0.68
Sf 0.83 0.85

In Table 3, it is observed that L is greater for low stream flows than for high stream flows and
k2 is lower for low stream flows than for high stream flows, which shows that the model calibrated
with TRMSE emphasizes streamflow stability through the contribution of groundwater (slow process)
to the total streamflow, and the model calibrated with RMSE is focused on quick responses (peaks)
through the contribution of surface runoff to the total streamflow.

According to the sensitivity analysis, the objective functions, and the obtained parameter sets,
the model is deemed suitable for use in the subsequent analyses. Figure 6 shows a comparison of the
observed and simulated stream flows in the calibration and validation processes for each case.
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4.2. Trend Uncertainty Analysis

Figure 7a–c shows the maximum daily streamflow trends, the median of the trends obtained
by eliminating 2, 5, and 10 years of information, and the uncertainty bands for each case. The same
is shown in Figure 7d–f for the annual minimum daily stream flows. It is observed that extreme
events tend to increase in magnitude, as the maximum streamflow trend is positive, and the minimum
streamflow trend is negative.
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Figure 7. Uncertainty bands (gray areas), median of the simulated trends (black lines), observed trends
(red lines) of maximum (top) and annual minimum mean daily flows (bottom), and trend equations.
For (a) and (d) a simulation of 19 years, (b) and (e) a simulation of 16 years, and (c) and (f) a simulation
of 11 years. In addition, the observed annual maximum (top) and minimum extreme flow series
(bottom) are shown in the background (blue line).
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In Figure 7a,b,d,e it is observed that the medians of the trends are similar to the observed
streamflow trend. Trends of the annual minimum daily stream flows present greater uncertainty than
those of the annual maximum daily stream flows. As the uncertainty of trends calculated using 16 and
19 years is similar to that of the trend estimated from data, it proves suitable to use either 16 or 19 years
of simulated flows to estimate the basin annual maximum and minimum flow trends. Meanwhile,
for the trends estimated with 11 years of simulated data, uncertainty increases, and the slope of the
median differs from the trend obtained from the streamflow records available in the watershed.

In south-central Chile, a decreasing precipitation and increasing temperature trend has been
recorded [24–26,30]. Higher temperatures may lead to earlier snowmelt and to a shift of high flows
from spring to winter. Earlier recession flows will be therefore expected with lower flows in summer,
explaining the negative trend of the low flows observed in Figure 7.

5. Conclusions

The lack of stream flow records is one of the most common drawbacks when conducting
hydrological analyses. Results of the estimation of annual minimum and maximum flow trends
using hydrological modeling in watersheds with limited hydrological (meteorological and streamflow)
information were presented in the present study. To estimate these trends, a 21-year period of observed
and simulated stream flows was used. To account for data scarcity, trends were estimated in three
situations (by eliminating 2, 5, and 10 years of simulated stream flows) and accounting for the possible
combinations of the gaps.

According to the results of the trend analysis, minimum extreme flows tend to decrease, while
maximum extremes tend to increase. The Allipén River presents a mixed hydrological regime where
higher temperatures increase the snow melt, contributing to the increasing trend of high flows.
Additionally, to derive the long-term trends of annual peak and low flows it is necessary to simulate at
least 16 years of flows; otherwise, the resulting uncertainty is high, with levels at which even opposing
extreme flow trends are obtained.

This study presented an approach to estimate flow trends in basins with limited stream-flow
information. A minimum recommendable amount of data (16 year of data) is given in order to
obtain results under controlled uncertainty. The presented method is not limited to the use of other
hydrological models, objective functions, and/or sensitivity analysis. Despite the results presented here,
more robust analyses can be obtained if basins with different characteristics and more extensive gaps
of data are analyzed. Future research might complement the current research by including regional
analyses and different trend estimation methods (e.g., parametric vs. nonparametric).
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