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Abstract: Natural heterogeneity of soil hydraulic properties is significant for the design and
construction of geotechnical structures, and should be adequately characterized. Accurate
measurements of hydraulic properties remain a difficult job and do not always work well for
further design and analysis. Field hydraulic monitoring data reflects the overall slope performance
and provide a more representative estimation of in-situ soil hydraulic properties for back analysis.
The objective of this study is to explore the conditions under which monitoring data can provide
reliable estimates of hydraulic parameters. Different distributions of soil heterogeneity generate a
total number of 500 sets of synesthetic monitoring data. Bayesian inversion with the integration of
Karhunen-Loève (K-L) and polynomial chaos expansion (PCE) is chosen to estimate the spatially
varied saturated coefficient of permeability ks. The results show that the method is accurate and
reliable, with less than 3% percentage error and 0.08 coefficient of variation (COV) around the
monitoring points. There are two characteristics of the best-estimated fields. First, the ranges of ks for
best-estimated fields are much narrower than the worst estimated fields. Second, when the larger ks

values are distributed in the unsaturated zone of slope crest, it will lead to the best estimation. It is
suggested that monitoring data can provide a reliable estimation of heterogeneous ks when the ratio
of ground surface flux to ks in the unsaturated zone of slope crest is less than 1/150. Small values of ks

in the slope crest result in the response of pressure head far from the responses of homogenous ks in
the unsaturated zone. This complex response of the pressure head further causes the ill identification
of ks by Bayesian estimation.

Keywords: soil heterogeneity; hydraulic properties; rainfall-induced slope failure; parameter
estimation; unsaturated soil

1. Introduction

Water-induced slope failure is a common geological disaster threatening infrastructures and lives.
Severe rainfall events, intense storms, changes in groundwater level, snowmelt and roaring waves
substantially affect the mechanical and infiltration processes and consequently lead to the instability
of slopes [1–4]. Thus, proper characterization of hydraulic properties in slopes can better assess the
stability and mitigate the water-induced slope failures.
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The hydraulic properties of the soil, which are the key parameters to affect the infiltration
process, fluctuate in response to the infiltration and atmospheric condition. Despite the sophisticated
development of laboratory and in-situ tests, it has been widely observed that an accurate measurement
of hydraulic properties remains a difficult job. The main disadvantages of laboratory and in-situ
analysis of soil hydraulic properties are summarized below [5–7]. First, permeability is sensitive to
the sampling method and experimental condition, due to the redistribution of pore water and air.
Second, the measurement of soil hydraulic properties suffers from severe variability. For example,
the coefficient of variation of the saturated coefficient of permeability ks can be ranged from 50% to
450% according to Carsel and Parrish (1988) [8]. Third, to ensure acceptable reliability, a large number
of tests are often required in the field, adopting complicated sampling and testing techniques that
consume a lot of time and budget. Therefore, the inferred hydraulic properties from the laboratory or
in-situ tests do not always work well for further design and analysis.

To overcome the limitations of in-situ and laboratory testing, many researchers adopted inverse
method to back analyze the soil hydraulic properties for the interests of geotechnical engineering
based on model responses (recorded as monitoring data) [9–12]. In recent years, Bayesian approaches
have been utilized to estimate soil hydraulic properties with monitoring data. Zhang et al. (2014) [10]
calibrated a slope-stability model using time-varying response data and to justify appropriate
monitoring duration and data recording interval for field monitoring programs. Vardon et al.
(2016) [13] presented an inverse analysis with the ensemble Kalman filter method to reduce the spatial
uncertainty of hydraulic conductivity by utilizing pore pressure measurements. Gomes et al. (2017) [14]
investigated the uncertainty of the bedrock depth and soil hydraulic parameters on the stability of an
unsaturated slope in Rio de Janeiro, Brazil. Li et al. (2018) [15] updated the reliability of hydraulic
head monitoring data under a Bayesian framework. Yang et al. (2018) [16] proposed an efficient
Bayesian method for probabilistic estimation of spatially varied soil properties in a slope. Zheng et al.
(2018) [17] employed the Bayesian approach with various types of data to yield accurate predictions
of consolidation for a test embankment in New South Wales, Australia. These studies demonstrated
that field hydraulic monitoring data reflects the actual overall slope performance and can provide a
more representative estimation of in-situ soil hydraulic properties. However, among all these previous
studies, limited work is concerned with the soil heterogeneity [13,16].

Significant natural heterogeneity is observed in the field for soil hydraulic properties (Figure 1a).
The distribution of soil heterogeneity has a significant impact on the safety of geotechnical structures
and should be characterized properly [18–21]. There are two types of spatial heterogeneity, namely,
inter-layer and intra-layer heterogeneity.Water 2020, 12, x FOR PEER REVIEW 3 of 16 
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Figure 1. Spatial heterogeneity of soil: (a) Natural soil heterogeneity in the field; (b) inter-layer
heterogeneity (heterogeneous in layers); (c) intra-layer heterogeneity (spatially correlated).

In general, the entire ground can be divided into strata or layers. Soil parameters can be viewed as
statistically homogenous in a given stratum or layer (Figure 1b). However, the soils are heterogeneous
in the vertical direction, due to natural pedological processes. In this sense, inter-layer heterogeneity
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means that different strata or layers have different properties. Field investigations, experimental studies,
and numerical simulations have been carried out to study the influence of inter-layer heterogeneity
on rainfall infiltration characteristics and slope stability [22–25]. If the hydraulic properties are
heterogeneously distributed, a sudden change in pore pressure and water content will be observed at
the interface of the formation—this can affect the advancement of the wetting front. The failure modes
and safety factor of the slope also change [26,27].

Intra-layer heterogeneity means that soil properties vary spatially even within a given soil layer.
The values of soil properties are different from point to point, but are spatially correlated (Figure 1c). The
correlation structure can be used to describe spatial variations of soil properties within the framework of
random fields effectively [28]. This inherent heterogeneity is a major source of geotechnical uncertainty
and has significant impacts on the reliability of slope stability [29–31]. For the rainfall-induced slope
failures, the intra-layer heterogeneity leads to the propagation of the uncertainty of soil hydraulic
properties to variation of water pressure and fluctuation of the groundwater table. The factor of safety
of slope stability and the probability of slope failure are also influenced.

Up to the present, theoretical studies of the influence of the heterogeneity of hydraulic parameters
on the field responses of slopes (i.e., forward problems) are quite developed [19,20]. However, for the
inverse problem, the related studies are still very limited [13,16]. Previous studies only considered
one specific distribution of material heterogeneity to verify and illustrate the proposed various
methods [32–36]. In reality, the natural heterogeneity of soils is extremely diverse. The performance of
inverse analysis methods for different ground situations has not been fully investigated. The conditions
of soil heterogeneity under which the monitoring data can provide a more reliable estimation of soil
hydraulic properties remains an open question.

In previous studies, our research team has demonstrated that the Bayesian method can be used to
estimate the heterogeneity of hydraulic properties in unsaturated soil slopes [16]. The combination of
Karhunen-Loève (K-L) expansion and the polynomial chaos expansion (PCE) can successfully reduce
the computation load with acceptable accuracy. Suggestions for planning slope monitoring schemes
were provided [36].

The objective of this study is to investigate the conditions under which monitoring data can
provide a more reliable estimation of heterogeneous hydraulic properties. The performance of Bayesian
estimation for different realizations of the saturated coefficient of permeability ks is assessed based on
the criteria of mutual information (I), and the root mean square error (RMSE). The effect of heterogeneity
is studied with sensitivity analysis. The relationship between estimated error and monitoring response
is measured by the metric similarity. Instead of introducing a new inverse method, the methodology in
our previous study [16] is adopted, due to its high computational efficiency. Other inverse methods
can also be used.

2. Bayesian Estimation of Heterogeneity with Polynomial Chaos Expansion and Karhunen-Loève
Expansion

Bayesian estimation with integration of the polynomial chaos expansion (PCE) surrogate model
and the Karhunen-Loève (K-L) expansion is emerged to estimate material heterogeneity in recent
years [32–36]. To solve high-dimensional inverse problems, K-L expansion is adopted to transform
the inverse problem to inference on a truncated sequence of weights of the K-L expansion modes. To
accelerate the computational efficiency in Bayesian inference, PCE is constructed as a meta-model
to surrogate the original model. As a result, the calculation of system responses using a simple
equation consisting of polynomials is allowed. The purpose of this study focuses on the effect of
soil heterogeneity instead of the methodology. Therefore, a brief introduction of the method [16] is
described here. Detailed descriptions of the method can be found in Yang et al. (2018) [16].

The computational cost of the numerical prediction would be extremely large, due to the increase
of nonlinearity of the boundary value problem [37–39]. Therefore, the first step is to establish the
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surrogate model for responses of the numerical model and random variables in K-L expansion by
polynomial chaos expansion (PCE) [40,41]:

P(θ) =
m∑

j=0

c jΨ j(θ), (1)

where j denotes the index of polynomials; m denotes the total number of polynomials; cj is coefficient;
θ is the random variables in K-L expansion; ψj(θ) are polynomials; P(θ) is the response of the
numerical model.

Second, the random variables θ are estimated by Markov chain Monte Carlo (MCMC) in
conjunction with corresponding monitoring data in a Bayesian framework. The posterior probability
density function of θ is expressed as follows [42]:

f
(
θ, σ2

e

∣∣∣∣∣^P)
= const · f (θ) ·

T∏
t=1

1√
2πσ2

e

exp

− (Pt(θ) − P̂t)
2

2σ2
e

, (2)

where const is a normalizing constant; f (θ) is the prior distribution of θ; σ2
e is the variance of the

residual error; P̂ = [P̂1, . . . , P̂t, . . . , P̂T] is a vector of monitoring data; P̂t is the monitoring data from
the tth measurement point and T is the total number of the measurement points.

Finally, the estimated random variables are transferred to the estimated field by K-L expansion.
the spatially varied soil properties U(x) is expressed as:

U(x) = µ(x) +
n∑

i=1

θiϕi(x)
√
λi, (3)

where x denotes a vector of spatial coordinates; µ(x) is the mean of U(x); θi is the ith uncorrelated
Gaussian random variable; n is the truncated level; λi and ϕi(x) are the ith eigenvalues and eigenvectors
of the covariance function, respectively. In practice, covariance function is estimated from sample data
or fitted to parametric variogram models.

3. Modeling of Unsaturated Infiltration in a Soil Slope with Spatially Heterogeneous ks Field

A typical unsaturated soil slope subject to rainfall infiltration with heterogeneous ks field is
modeled. The slope angle is 45◦, and the slope is 20 m high (Figure 2). The mean value and standard
deviation of ks are 2 × 10−5 m/s and 1.6 × 10−5 m/s, respectively. The horizontal correlation length lx and
vertical correlation length lz are assumed to be 50 m and 10 m, respectively. Six K-L terms are sufficient
to preserve 95% of the total field variance. Therefore, the truncation level of the K-L expansion is 6.

The numerical model of unsaturated infiltration in the heterogeneous soil slope is established to
model the infiltration and pore pressure responses. According to Darcy’s law and the conservation law
of water mass in soil pores, the steady-state flow in an unsaturated soil slope can be described as:

∂
∂x

(
k(h)

∂H
∂x

)
+
∂
∂z

(
k(h)

∂H
∂z

)
= 0, (4)

where H is the total hydraulic head, which is the sum of elevation head z and pore-water pressure head
h; k is the unsaturated coefficient of permeability. Here, the permeability of the soil slope is assumed to
be isotropic with the unsaturated coefficient of permeability of x-direction and z-direction are the same.

Laboratory studies have shown that there is a relationship between water content and soil suction
(negative pressure) for the unsaturated soil defined as soil-water characteristic curve (SWCC). Direct
measurements of the unsaturated coefficient of permeability in the laboratory can be time-consuming,
especially for low water content conditions. Indirect measurements of permeability are commonly
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performed by establishing permeability functions (PF) through SWCC. Several models of hydraulic
properties are proposed for unsaturated soil [43–46]. Concerning geotechnical applications, the model
proposed by Fredlund et al. (2012) [47] is adopted. An exponential PF is used to define the unsaturated
coefficient of permeability function [48]:

k = ks

(
θw

θs

)b
, (5)

where ks is the saturated coefficient of permeability, θw is the volumetric water content, θs is the
saturated water content, and b is a constant depending on the soil type. The SWCC is described as [49]:

θw = θs

{
ln

[
exp(1) +

(
ua − uw

a f

)n f
]}−m f

, (6)

where ua and uw represent the pore-air pressure and the pore-water pressure, respectively; af, nf and mf
are fitting parameters. In this study, we assume that the saturated water content θs is 0.4, b is equal to 3
and the SWCC parameters for af, nf and mf are 5, 2 and 1, respectively.

The numerical model of an unsaturated soil slope under the steady-state rainfall infiltration
is established using a Multiphysics PDE (partial differential equation) solver COMSOL. The initial
pore-water pressure distribution is hydrostatic with the initial groundwater level, as shown in Figure 2.
The rain flux, q = 2 × 10−7 m/s, is applied along the slope surface. Along the left and right boundaries
beneath the groundwater table, the hydraulic heads are constant. A zero-flux boundary is applied along
the left and right boundaries above the groundwater table. The bottom boundary is impermeable.
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4. Artificial Monitoring Scheme for Inverse Estimation

The rainfall-induced slope failures are typically shallow above the groundwater table [50,51]. It is
mainly due to a loss in shear strength when soil suctions (i.e., negative pressure head) is decreased
or dissipated [47,52]. In engineering practice, shallow piezometers are generally installed to monitor
the pressure heads in the slope. For example, the automatic recording piezometers are installed from
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1.00 m to 16.6 m below ground level in a natural terrain above the North Lantau Expressway in Hong
Kong reported from Evans and Lam (2003) [53]. It is, therefore, reasonable to place measurement
points in shallow depth for property estimation. In this study, a monitoring scheme of eight boreholes
with a horizontal spacing of 5 m is established within the shallow depths of the slope (Figure 2). Two
piezometers are installed in each borehole. The shallower piezometer is 2.5 m below the ground, and
the deeper one is 7.5 m depth. The corresponding pore pressure heads calculated by the numerical
model, which are corrupted with 2% noises are regarded as synthetic monitoring data.

To determine the characteristics of heterogeneity for a robust back estimation, 500 random
realizations of the ks field are generated. Figure 3 presents the mean value of the pressure head at
16 different measurement points with the increasing number of realizations. As shown in the graph,
there is a small fluctuation of pressure head when the number of realizations reaches 500. This result
shows that 500 realizations are enough for covering the uncertainties of pressure head responses for
heterogeneity estimation.
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5. Performance Evaluation of Inverse Estimation

5.1. Quantification of Parametric Uncertainty Reduction

The outcomes of the Bayesian inference are the posterior distributions of basic random variables θ.
To quantify the effects of inverse estimation, the mutual information (I) based on Shannon entropy [54]
is used. The Shannon entropy for a continuous random variable with probability density function f (θ)
within [a, b] is called differential entropy:

H(θ) = −

∫ b

a
f (θ) log f (θ)dθ, (7)
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For continuous variables, the differential entropy itself cannot signify the effects of inverse
estimation. The mutual information I is proposed to quantify the amount of information obtained
through the observed data P̂:

I
(
P̂;θ

)
= H(θ) −H(θ|P̂), (8)

where H(θ) is the differential entropy of prior probability density distribution of θ, which is regarded
as a measure of uncertainty about θ; H(θ|P̂) denotes the differential entropy of the posterior probability
density distribution of θ, which means the amount of uncertainty remaining about θ after the data
is observed.

5.2. Quantification of Estimated Field

The estimated fields can be simulated via the K-L expansion with the statistics of posterior
distributions. In this study, the maximum a posteriori density (MAP) value denoting the best solution
from Bayesian inverse estimation is utilized to represent the optimal estimated field. The root mean
square error (RMSE) is calculated to evaluate the difference between the true field and the best-estimated
field:

RMSE =

√√√√ L∑
j=1

[ks
(
x j

)
− k̂s

(
x j

)
]
2
/L, (9)

where k̂s
(
x j

)
is the optimal estimated value with MAP at coordinate xi = (xj, zj) corresponding to ks(xj);

L is the total number of the discrete coordinates of the spatial varied field. RMSE can be regarded as an
integrated index to rank the results of the estimated fields.

6. Results and Discussion

6.1. Performance Evaluations Based on Synthetic Monitoring Data

Figure 4 shows the mean I value of random variables θ1–θ6 of 500 sets of synthetic monitoring
data. The mean I value of each random variable is around two nats. It indicates that a significant
difference exists between prior and posterior distributions of random variables. All the random
variables are well identified, and the uncertainties are significantly reduced after inverse estimation.
The I value of θ1, θ4, and θ5 are 2.48, 2.30, and 2.14 nat, respectively, which are much larger than θ2

and θ3. This means θ1, θ4 and θ5 are better estimated than θ2 and θ3. This finding is consistent with
the sensitivity analysis results, according to Yang et al. (2018).
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Figure 4. The mean I value of random variables θ1–θ6 estimated with 500 sets of synthetic
monitoring data.

Figure 5 displays the probability density function of the RMSE based on 500 estimated fields. The
RMSE corresponding to the maximum probability density is 1.77 × 10−6 m/s. The median (Q2) value is
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3.14 × 10−6 m/s, which can represent the typical error of the estimated fields. The interquartile range
(IQR, upper quartile, Q3—lower quartile, Q1) is 4.12 × 10−6 m/s, which is narrow compared to the full
range. It indicates the major RMSE values are allocated within a narrow range of RMSE. The error of
the estimated fields is centralized in a narrow range from 1.55 × 10−6 m/s to 5.67 × 10−6 m/s.
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Figure 6 shows the contour map of the mean percentage error with 500 random fields. It is the
average value of the percentage error of 500 random fields with the simulation of MAP value in
posterior distributions. The percentage error around the measurement points is less than 3%, whereas,
the maximum is 20% near the bottom boundary. The significant difference between the real and
estimated field occurs at locations that are far from the measurement points.
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Figure 7 shows the mean value of Coefficient of variation (COV) with 500 random fields. The
COV in each field is defined as the ratio of the standard deviation to the mean value based on the last
20% samples of the posterior distribution. It can be observed that the COV around the measurement
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points is very small, which is less than 0.08. This means that the uncertainty of estimation around
measurement points is low. The uncertainty of estimation is significant near the bottom boundary, and
the COV is approximate to 0.22. The above results show that the measurement points can reduce the
error and uncertainty of the inverse estimation of heterogeneity.
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6.2. Analysis of the Effect of Heterogeneity with Extreme RMSE Values

Sensitivity analysis of the pressure head is conducted at measurement points with respect to ks.
Taking the partial derivative of the output pressure head with respect to the input parameter ks, small
perturbations of ks with 2% are exanimated at each location in the field. The average sensitivity of
pressure head at measurement points is shown in Figure 8. The sensitivity away from the slope and
below the water table is positive, indicating the average pressure head of sixteen measurement points
will increase along with the increasing ks and vice versa. Opposite effects occur in the crest, slope
part, and toe. Sensitivity in the crest is extremely large. It means that the ks in the crest zone has a
noteworthy influence on the average pressure head responses. The change of ks in the crest can cause
significant uncertainty in the average pressure head responses. Therefore, the slope can be divided
into two parts bounded by the water table. The relationship between the characteristics of distributed
ks on both sides and the estimated effects are worth studying. Moreover, the responses of pressure
head in the crest, according to the ks, should be the focus of attention.
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To analyze the characteristics of the heterogeneous fields, the 500 realizations of heterogeneous
fields are ranked by the RMSE values of estimation. Figure 9a shows the first five fields, which are
best-estimated. The mean RMSE of these fields is 2.75 × 10−7 m/s. Figure 9b shows the first five
worst-estimated fields. The mean RMSE is 3.21 × 10−5 m/s. The RMSEs of these ten fields are listed in
Table 1. There are nearly two orders of magnitude differences in terms of the RMSEs. The distribution
of heterogeneity can significantly influence the effect of inverse estimation. Compared to the first five
best and worst real fields, there are two characteristics of the range and the distribution of ks. First, the
ks of the best-estimated fields range from 0.35 × 10−5 m/s to 3.92 × 10−5 m/s, which is much narrower
than the worst estimated fields ranging from 0.55 × 10−5 m/s to 12.99 × 10−5 m/s. Second, when the
larger ks values (around 3 × 10−5 m/s) are distributed in the unsaturated zone of slope crest, it will lead
to the best estimation. However, the distribution of ks for the worst estimated fields is reversed. For
these fields, the crest part of the slope is generally less permeable compared with the main body part
of the slope. According to Zhang et al. (2004) [55], the steady-state matric suction in the unsaturated
zone can be determined by the ratio of ground surface flux to the saturated coefficient of permeability,
q/ks. Therefore, a reliable estimation of the heterogeneous field of ks can be obtained when the q/ks in
the slope crest is less than 1/150.
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Figure 9. Real fields: (a) First five best estimations; (b) first five worst estimations.
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Table 1. RMSE, average mutual information (I) with six random variables and Manhattan distance (d)
of the first five best and worst estimated fields.

Rank 1st 2nd 3rd 4th 5th

Best estimation
RMSE (×10−7 m/s) 2.43 2.68 2.81 2.82 3.02

Average I (nat) 3.44 3.11 2.92 2.69 2.77
d (m) 20.82 13.30 9.41 10.85 19.41

Worst estimation
RMSE (×10−5 m/s) 3.49 3.30 3.17 3.11 3.00

Average I (nat) 0.93 1.51 1.62 1.50 1.55
d (m) 39.06 24.48 15.00 28.40 29.08

To further analyze the characteristics of the pressure head responses in these fields, Figure 10a,b
show the pressure head profiles corresponding to the ten fields and the homogeneous case in section
A-A of the slope (Figure 2). It can be observed that only a small deviation of pressure head profiles
exists between the five best-estimated fields and the homogeneous case. This is because the ks values
in the crest for the five best-estimated fields are close to the mean value (i.e., 2 × 10−5 m/s). For the
worst estimated fields, the pressure head profiles in the unsaturated zones are significantly different
from that of the homogeneous case. The complex responses of the pressure head may result from the
less permeable zone in the slope crest.
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First five worst estimation.

To investigate the uncertainty of random variables for Bayesian estimation, Figure 11 shows the
prior and posterior distributions corresponding to the first five best and worst estimated fields of
random variable θ1. Compared with the prior distribution, the posterior distributions of θ1 are within
a narrower region. This indicates that θ1 corresponding to all the fields is well identified, but it is better
for the first five best fields. In Table 1, the average values of the mutual information (I) for the random
variables are also presented. The average I values of the best-estimated fields are nearly doubled
compared with those of the worst estimated fields.
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6.3. Relations between Estimation Error and Monitoring Response

As shown in Figure 10, the performance of inverse estimation may depend on the shape of the
pressure head profiles. To quantify this complexity, the metric similarity of Manhattan distance (Li et
al., 2004) is introduced to qualify the shape of the pressure head profile in the A-A section (Figure 12).
The pressure head profile of the homogeneous case is used as a reference. The similarity between
the pressure head profile in the A-A section of 500 fields and the homogeneous case is quantified.
A scatter plot of RMSE values of the 500 fields and the Manhattan distance is displayed in Figure 12.
The logarithm of the RMSE values and the Manhattan distance have a positive correlation coefficient of
0.4. It implies that the pressure head profiles will cause an inaccurate estimation of soil heterogeneity.
An empirical correlation equation between the Manhattan distance and the RMSE value is also given
in Figure 12. This equation can be used to roughly assess the potential estimation error of the spatial
heterogeneity once the pressure head monitoring data is obtained along a cross-section of the slope.
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7. Conclusions

In this study, the conditions under which monitoring data can provide a more reliable estimation
of hydraulic heterogeneity are investigated. The performance of the estimation is assessed based on
mutual information (I) of random variables, and the root mean square error (RMSE) of the estimated
field. The effect of the characteristics of heterogeneity on inverse estimation is investigated with
sensitivity analysis and best-estimated and worst-estimated fields. The major conclusions of the study
are summarized below.

1. The mean I value of each random variable is around two nats. All the random variables
are appropriately identified, and the uncertainties are significantly reduced after inverse estimation.
The RMSE corresponding to the maximum probability density is 1.77 × 10−6 m/s. The interquartile
range is narrow centralized from 1.55 × 10−6 m/s to 5.67 × 10−6 m/s. The percentage error around
the measurement points is less than 3%, and the COV around the measurement points is less than
0.08. The field measurements can reduce the errors and uncertainties around the locations of the
monitoring points.

2. The characteristics of heterogeneity can significantly influence the effect of inverse estimation.
The ranges of ks values for the best-estimated fields are much narrower than those of the worst
estimated fields. For the best-estimated fields, the larger values of ks are distributed in the crest of the
unsaturated zone. A less permeable crest zone could result in the complex responses of pressure head
and further cause the ill identification of heterogeneity.

3. The similarity between the pressure head profiles of 500 random fields and the homogeneous
case is measured. The RMSE value and the Manhattan distance have a positive correlation with a
correlation coefficient r equals 0.4. It implies that the complexity of the pressure head profiles will
cause an inaccurate estimation of soil heterogeneity.

One of the limitations of the present study is that the conclusions are based on numerical analysis
without comparing the results to field measurements or laboratory experiments. Exploring the
conditions of soil heterogeneity with real cases of field monitoring projects has several obstacles,
including limited data of site investigation and measurement uncertainties. Well-controlled laboratory
experiments are possible to validate the conclusions. Relevant laboratory validation is ongoing with
reduced-scale slope models.
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